Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2014

Open Access 01-12-2014 | Research

Impact of altered glycaemia on blood-brain barrier endothelium: an in vitro study using the hCMEC/D3 cell line

Authors: Ravi K Sajja, Shikha Prasad, Luca Cucullo

Published in: Fluids and Barriers of the CNS | Issue 1/2014

Login to get access

Abstract

Background

Cerebrovascular complications involving endothelial dysfunction at the blood-brain barrier (BBB) are central to the pathogenesis of diabetes-related CNS disorders. However, clinical and experimental studies have reported contrasting evidence in relation to the effects of hyperglycemia on BBB permeability and function. Similarly the effect of hypoglycemia on BBB integrity is not well understood. Therefore, we assessed the differential impact of hypo and hyperglycemic conditions on BBB integrity and endothelial function in vitro using hCMEC/D3, a well characterized human brain microvascular endothelial cell line.

Methods

Parallel monolayers of hCMEC/D3 were exposed to normal, hypo- or hyperglycemic media, containing 5.5, 2.2 or 35 mM D-glucose, respectively. Following 3-24h exposure, the expression and distribution of BBB tight junction (ZO-1 and claudin-5) adherence junction (VE-cadherin) proteins, and glucose transporters as well as inflammatory (VCAM-1) and oxidative stress (Nrf-2) markers were analyzed by immunofluorescence and western blotting. Endothelial release of growth factors and pro-inflammatory cytokines were determined by ELISA. Further, the impact of altered glycemia on BBB permeability was assessed in hCMEC/D3 – astrocyte co-cultures on Transwell supports using fluorescent dextrans (4–70 kDa).

Results

Compared to controls, exposure to hypoglycemia (3 and 24h) down-regulated the expression of claudin-5 and disrupted the ZO-1 localization at cell-cell contacts, while hyperglycemia marginally reduced claudin-5 expression without affecting ZO-1 distribution. Permeability to dextrans (4-10 kDa) and VEGF release at 24h were significantly increased by hypo- and hyperglycemia, although 70 kDa dextran permeability was increased only under hypoglycemic conditions. The expression of SGLT-1 was up-regulated at 24h hypoglycemic exposure while only a modest increase of GLUT-1 expression was observed. In addition, the expression of Nrf-2 and release of interleukin-6 and PDGF-BB, were down-regulated by hypoglycemia (but not hyperglycemia), while both conditions induced a marginal and transient increase in VCAM-1 expression from 3 to 24h, including a significant increase in VE-cadherin expression at 3 h following hyperglycemia.

Conclusions

In summary, our findings demonstrate a potential impairment of BBB integrity and function by hypo or hyperglycemia, through altered expression/distribution of TJ proteins and nutrient transporters. In addition, hypoglycemic exposure severely affects the expression of oxidative and inflammatory stress markers of BBB endothelium.
Appendix
Available only for authorised users
Literature
1.
go back to reference Abbott NJ: Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013, 36: 437-449. 10.1007/s10545-013-9608-0.CrossRefPubMed Abbott NJ: Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013, 36: 437-449. 10.1007/s10545-013-9608-0.CrossRefPubMed
2.
go back to reference Hawkins BT, Davis TP: The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005, 57: 173-185. 10.1124/pr.57.2.4.CrossRefPubMed Hawkins BT, Davis TP: The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005, 57: 173-185. 10.1124/pr.57.2.4.CrossRefPubMed
3.
go back to reference Wolburg H, Lippoldt A: Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul Pharmacol. 2002, 38: 323-337. 10.1016/S1537-1891(02)00200-8.CrossRefPubMed Wolburg H, Lippoldt A: Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul Pharmacol. 2002, 38: 323-337. 10.1016/S1537-1891(02)00200-8.CrossRefPubMed
4.
go back to reference Agarwal N, Lippmann ES, Shusta EV: Identification and expression profiling of blood–brain barrier membrane proteins. J Neurochem. 2010, 112: 625-635. 10.1111/j.1471-4159.2009.06481.x.PubMedCentralCrossRefPubMed Agarwal N, Lippmann ES, Shusta EV: Identification and expression profiling of blood–brain barrier membrane proteins. J Neurochem. 2010, 112: 625-635. 10.1111/j.1471-4159.2009.06481.x.PubMedCentralCrossRefPubMed
5.
go back to reference Pardridge WM: Blood–brain barrier genomics. Stroke. 2007, 38: 686-690. 10.1161/01.STR.0000247887.61831.74.CrossRefPubMed Pardridge WM: Blood–brain barrier genomics. Stroke. 2007, 38: 686-690. 10.1161/01.STR.0000247887.61831.74.CrossRefPubMed
6.
go back to reference Zlokovic BV: The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008, 57: 178-201. 10.1016/j.neuron.2008.01.003.CrossRefPubMed Zlokovic BV: The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008, 57: 178-201. 10.1016/j.neuron.2008.01.003.CrossRefPubMed
7.
go back to reference Horani MH, Mooradian AD: Effect of diabetes on the blood brain barrier. Curr Pharm Des. 2003, 9: 833-840. 10.2174/1381612033455314.CrossRefPubMed Horani MH, Mooradian AD: Effect of diabetes on the blood brain barrier. Curr Pharm Des. 2003, 9: 833-840. 10.2174/1381612033455314.CrossRefPubMed
8.
go back to reference Serlin Y, Levy J, Shalev H: Vascular pathology and blood–brain barrier disruption in cognitive and psychiatric complications of type 2 diabetes mellitus. Cardiovasc Psychiatry Neurol. 2011, 2011: 609202-PubMedCentralCrossRefPubMed Serlin Y, Levy J, Shalev H: Vascular pathology and blood–brain barrier disruption in cognitive and psychiatric complications of type 2 diabetes mellitus. Cardiovasc Psychiatry Neurol. 2011, 2011: 609202-PubMedCentralCrossRefPubMed
9.
go back to reference Huber JD, Vangilder RL, Houser KA: Streptozotocin-induced diabetes progressively increases blood–brain barrier permeability in specific brain regions in rats. Am J Physiol Heart Circ Physiol. 2006, 291: H2660-H2668. 10.1152/ajpheart.00489.2006.CrossRefPubMed Huber JD, Vangilder RL, Houser KA: Streptozotocin-induced diabetes progressively increases blood–brain barrier permeability in specific brain regions in rats. Am J Physiol Heart Circ Physiol. 2006, 291: H2660-H2668. 10.1152/ajpheart.00489.2006.CrossRefPubMed
10.
go back to reference Mooradian AD, Haas MJ, Batejko O, Hovsepyan M, Feman SS: Statins ameliorate endothelial barrier permeability changes in the cerebral tissue of streptozotocin-induced diabetic rats. Diabetes. 2005, 54: 2977-2982. 10.2337/diabetes.54.10.2977.CrossRefPubMed Mooradian AD, Haas MJ, Batejko O, Hovsepyan M, Feman SS: Statins ameliorate endothelial barrier permeability changes in the cerebral tissue of streptozotocin-induced diabetic rats. Diabetes. 2005, 54: 2977-2982. 10.2337/diabetes.54.10.2977.CrossRefPubMed
11.
go back to reference Dai J, Vrensen GF, Schlingemann RO: Blood–brain barrier integrity is unaltered in human brain cortex with diabetes mellitus. Brain Res. 2002, 954: 311-316. 10.1016/S0006-8993(02)03294-8.CrossRefPubMed Dai J, Vrensen GF, Schlingemann RO: Blood–brain barrier integrity is unaltered in human brain cortex with diabetes mellitus. Brain Res. 2002, 954: 311-316. 10.1016/S0006-8993(02)03294-8.CrossRefPubMed
12.
go back to reference Starr JM, Wardlaw J, Ferguson K, MacLullich A, Deary IJ, Marshall I: Increased blood–brain barrier permeability in type II diabetes demonstrated by gadolinium magnetic resonance imaging. J Neurol Neurosurg Psychiatry. 2003, 74: 70-76. 10.1136/jnnp.74.1.70.PubMedCentralCrossRefPubMed Starr JM, Wardlaw J, Ferguson K, MacLullich A, Deary IJ, Marshall I: Increased blood–brain barrier permeability in type II diabetes demonstrated by gadolinium magnetic resonance imaging. J Neurol Neurosurg Psychiatry. 2003, 74: 70-76. 10.1136/jnnp.74.1.70.PubMedCentralCrossRefPubMed
13.
go back to reference Kumagai AK, Kang YS, Boado RJ, Pardridge WM: Upregulation of blood–brain barrier GLUT1 glucose transporter protein and mRNA in experimental chronic hypoglycemia. Diabetes. 1995, 44: 1399-1404. 10.2337/diab.44.12.1399.CrossRefPubMed Kumagai AK, Kang YS, Boado RJ, Pardridge WM: Upregulation of blood–brain barrier GLUT1 glucose transporter protein and mRNA in experimental chronic hypoglycemia. Diabetes. 1995, 44: 1399-1404. 10.2337/diab.44.12.1399.CrossRefPubMed
14.
go back to reference Warren MS, Zerangue N, Woodford K, Roberts LM, Tate EH, Feng B, Li C, Feuerstein TJ, Gibbs J, Smith B, de Morais SM, Dower WJ, Koller KJ: Comparative gene expression profiles of ABC transporters in brain microvessel endothelial cells and brain in five species including human. Pharmacol Res. 2009, 59: 404-413. 10.1016/j.phrs.2009.02.007.CrossRefPubMed Warren MS, Zerangue N, Woodford K, Roberts LM, Tate EH, Feng B, Li C, Feuerstein TJ, Gibbs J, Smith B, de Morais SM, Dower WJ, Koller KJ: Comparative gene expression profiles of ABC transporters in brain microvessel endothelial cells and brain in five species including human. Pharmacol Res. 2009, 59: 404-413. 10.1016/j.phrs.2009.02.007.CrossRefPubMed
15.
16.
go back to reference Cucullo L, Couraud PO, Weksler B, Romero IA, Hossain M, Rapp E, Janigro D: Immortalized human brain endothelial cells and flow-based vascular modeling: a marriage of convenience for rational neurovascular studies. J Cereb Blood Flow Metab. 2008, 28: 312-328. 10.1038/sj.jcbfm.9600525.CrossRefPubMed Cucullo L, Couraud PO, Weksler B, Romero IA, Hossain M, Rapp E, Janigro D: Immortalized human brain endothelial cells and flow-based vascular modeling: a marriage of convenience for rational neurovascular studies. J Cereb Blood Flow Metab. 2008, 28: 312-328. 10.1038/sj.jcbfm.9600525.CrossRefPubMed
17.
go back to reference Hatherell K, Couraud PO, Romero IA, Weksler B, Pilkington GJ: Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation Transwell models. J Neurosci Methods. 2011, 199: 223-229. 10.1016/j.jneumeth.2011.05.012.CrossRefPubMed Hatherell K, Couraud PO, Romero IA, Weksler B, Pilkington GJ: Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation Transwell models. J Neurosci Methods. 2011, 199: 223-229. 10.1016/j.jneumeth.2011.05.012.CrossRefPubMed
18.
go back to reference Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greenwood J, Romero IA, Couraud PO: Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 1872–1874, 2005: 19- Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greenwood J, Romero IA, Couraud PO: Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 1872–1874, 2005: 19-
19.
go back to reference Luissint AC, Artus C, Glacial F, Ganeshamoorthy K, Couraud PO: Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS. 2012, 9: 23-10.1186/2045-8118-9-23.PubMedCentralCrossRefPubMed Luissint AC, Artus C, Glacial F, Ganeshamoorthy K, Couraud PO: Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS. 2012, 9: 23-10.1186/2045-8118-9-23.PubMedCentralCrossRefPubMed
20.
go back to reference Weksler B, Romero IA, Couraud PO: The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS. 2013, 10: 16-10.1186/2045-8118-10-16.PubMedCentralCrossRefPubMed Weksler B, Romero IA, Couraud PO: The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS. 2013, 10: 16-10.1186/2045-8118-10-16.PubMedCentralCrossRefPubMed
21.
go back to reference Poller B, Gutmann H, Krahenbuhl S, Weksler B, Romero I, Couraud PO, Tuffin G, Drewe J, Huwyler J: The human brain endothelial cell line hCMEC/D3 as a human blood–brain barrier model for drug transport studies. J Neurochem. 2008, 107: 1358-1368. 10.1111/j.1471-4159.2008.05730.x.CrossRefPubMed Poller B, Gutmann H, Krahenbuhl S, Weksler B, Romero I, Couraud PO, Tuffin G, Drewe J, Huwyler J: The human brain endothelial cell line hCMEC/D3 as a human blood–brain barrier model for drug transport studies. J Neurochem. 2008, 107: 1358-1368. 10.1111/j.1471-4159.2008.05730.x.CrossRefPubMed
22.
go back to reference Cowan KM, Easton AS: Neutrophils block permeability increases induced by oxygen glucose deprivation in a culture model of the human blood–brain barrier. Brain Res. 2010, 1332: 20-31.CrossRefPubMed Cowan KM, Easton AS: Neutrophils block permeability increases induced by oxygen glucose deprivation in a culture model of the human blood–brain barrier. Brain Res. 2010, 1332: 20-31.CrossRefPubMed
23.
go back to reference Santaguida S, Janigro D, Hossain M, Oby E, Rapp E, Cucullo L: Side by side comparison between dynamic versus static models of blood–brain barrier in vitro: a permeability study. Brain Res. 2006, 1109: 1-13. 10.1016/j.brainres.2006.06.027.CrossRefPubMed Santaguida S, Janigro D, Hossain M, Oby E, Rapp E, Cucullo L: Side by side comparison between dynamic versus static models of blood–brain barrier in vitro: a permeability study. Brain Res. 2006, 1109: 1-13. 10.1016/j.brainres.2006.06.027.CrossRefPubMed
24.
go back to reference Yan J, Zhang Z, Shi H: HIF-1 is involved in high glucose-induced paracellular permeability of brain endothelial cells. Cell Mol Life Sci. 2012, 69: 115-128. 10.1007/s00018-011-0731-5.CrossRefPubMed Yan J, Zhang Z, Shi H: HIF-1 is involved in high glucose-induced paracellular permeability of brain endothelial cells. Cell Mol Life Sci. 2012, 69: 115-128. 10.1007/s00018-011-0731-5.CrossRefPubMed
25.
go back to reference Kemeny SF, Figueroa DS, Clyne AM: Hypo- and hyperglycemia impair endothelial cell actin alignment and nitric oxide synthase activation in response to shear stress. PLoS One. 2013, 8: e66176-10.1371/journal.pone.0066176.PubMedCentralCrossRefPubMed Kemeny SF, Figueroa DS, Clyne AM: Hypo- and hyperglycemia impair endothelial cell actin alignment and nitric oxide synthase activation in response to shear stress. PLoS One. 2013, 8: e66176-10.1371/journal.pone.0066176.PubMedCentralCrossRefPubMed
26.
go back to reference Rapoport SI: Osmotic opening of the blood–brain barrier: principles, mechanism, and therapeutic applications. Cell Mol Neurobiol. 2000, 20: 217-230. 10.1023/A:1007049806660.CrossRefPubMed Rapoport SI: Osmotic opening of the blood–brain barrier: principles, mechanism, and therapeutic applications. Cell Mol Neurobiol. 2000, 20: 217-230. 10.1023/A:1007049806660.CrossRefPubMed
27.
go back to reference Sajja RK, Rahman S: Cytisine modulates chronic voluntary ethanol consumption and ethanol-induced striatal up-regulation of DeltaFosB in mice. Alcohol. 2013, 47: 299-307. 10.1016/j.alcohol.2013.02.003.CrossRefPubMed Sajja RK, Rahman S: Cytisine modulates chronic voluntary ethanol consumption and ethanol-induced striatal up-regulation of DeltaFosB in mice. Alcohol. 2013, 47: 299-307. 10.1016/j.alcohol.2013.02.003.CrossRefPubMed
28.
go back to reference Lee SW, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, Kim YJ, Kim KW: SSeCKS regulates angiogenesis and tight junction formation in blood–brain barrier. Nat Med. 2003, 9: 900-906. 10.1038/nm889.CrossRefPubMed Lee SW, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, Kim YJ, Kim KW: SSeCKS regulates angiogenesis and tight junction formation in blood–brain barrier. Nat Med. 2003, 9: 900-906. 10.1038/nm889.CrossRefPubMed
29.
go back to reference Alfieri A, Srivastava S, Siow RC, Modo M, Fraser PA, Mann GE: Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke. J Physiol. 2011, 589: 4125-4136. 10.1113/jphysiol.2011.210294.PubMedCentralCrossRefPubMed Alfieri A, Srivastava S, Siow RC, Modo M, Fraser PA, Mann GE: Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke. J Physiol. 2011, 589: 4125-4136. 10.1113/jphysiol.2011.210294.PubMedCentralCrossRefPubMed
30.
go back to reference Sandberg M, Patil J, D'Angelo B, Weber SG, Mallard C: NRF2-regulation in brain health and disease: Implication of cerebral inflammation. Neuropharmacology. 2014, 79C: 298-306.CrossRef Sandberg M, Patil J, D'Angelo B, Weber SG, Mallard C: NRF2-regulation in brain health and disease: Implication of cerebral inflammation. Neuropharmacology. 2014, 79C: 298-306.CrossRef
31.
go back to reference Fasler-Kan E, Suenderhauf C, Barteneva N, Poller B, Gygax D, Huwyler J: Cytokine signaling in the human brain capillary endothelial cell line hCMEC/D3. Brain Res. 2010, 1354: 15-22.CrossRefPubMed Fasler-Kan E, Suenderhauf C, Barteneva N, Poller B, Gygax D, Huwyler J: Cytokine signaling in the human brain capillary endothelial cell line hCMEC/D3. Brain Res. 2010, 1354: 15-22.CrossRefPubMed
32.
go back to reference Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V, Potente M, Daly C, Dimmeler S, Dejana E: Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol. 2008, 10: 923-934. 10.1038/ncb1752.CrossRefPubMed Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V, Potente M, Daly C, Dimmeler S, Dejana E: Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol. 2008, 10: 923-934. 10.1038/ncb1752.CrossRefPubMed
33.
go back to reference Krewski D, Acosta D, Andersen M, Anderson H, Bailar JC, Boekelheide K, Brent R, Charnley G, Cheung VG, Green S, Kelsey KT, Kerkvliet NI, Li AA, McCray L, Meyer O, Patterson RD, Pennie W, Scala RA, Solomon GM, Stephens M, Yager J, Zeise L: Toxicity testing in the 21st century: a vision and a strategy. J Toxicol Environ Health B Crit Rev. 2010, 13: 51-138. 10.1080/10937404.2010.483176.PubMedCentralCrossRefPubMed Krewski D, Acosta D, Andersen M, Anderson H, Bailar JC, Boekelheide K, Brent R, Charnley G, Cheung VG, Green S, Kelsey KT, Kerkvliet NI, Li AA, McCray L, Meyer O, Patterson RD, Pennie W, Scala RA, Solomon GM, Stephens M, Yager J, Zeise L: Toxicity testing in the 21st century: a vision and a strategy. J Toxicol Environ Health B Crit Rev. 2010, 13: 51-138. 10.1080/10937404.2010.483176.PubMedCentralCrossRefPubMed
34.
go back to reference Qosa H, Abuasal BS, Romero IA, Weksler B, Couraud PO, Keller JN, Kaddoumi A: Differences in amyloid-beta clearance across mouse and human blood–brain barrier models: Kinetic analysis and mechanistic modeling. Neuropharmacology. 2014, 79C: 668-678.CrossRef Qosa H, Abuasal BS, Romero IA, Weksler B, Couraud PO, Keller JN, Kaddoumi A: Differences in amyloid-beta clearance across mouse and human blood–brain barrier models: Kinetic analysis and mechanistic modeling. Neuropharmacology. 2014, 79C: 668-678.CrossRef
35.
go back to reference Tai LM, Reddy PS, Lopez-Ramirez MA, Davies HA, Male DK, Loughlin AJ, Romero IA: Polarized P-glycoprotein expression by the immortalised human brain endothelial cell line, hCMEC/D3, restricts apical-to-basolateral permeability to rhodamine 123. Brain Res. 2009, 1292: 14-24.CrossRefPubMed Tai LM, Reddy PS, Lopez-Ramirez MA, Davies HA, Male DK, Loughlin AJ, Romero IA: Polarized P-glycoprotein expression by the immortalised human brain endothelial cell line, hCMEC/D3, restricts apical-to-basolateral permeability to rhodamine 123. Brain Res. 2009, 1292: 14-24.CrossRefPubMed
36.
go back to reference Ohtsuki S, Ikeda C, Uchida Y, Sakamoto Y, Miller F, Glacial F, Decleves X, Scherrmann JM, Couraud PO, Kubo Y, Tachikawa M, Terasaki T: Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood–brain barrier model. Mol Pharm. 2013, 10: 289-296. 10.1021/mp3004308.CrossRefPubMed Ohtsuki S, Ikeda C, Uchida Y, Sakamoto Y, Miller F, Glacial F, Decleves X, Scherrmann JM, Couraud PO, Kubo Y, Tachikawa M, Terasaki T: Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood–brain barrier model. Mol Pharm. 2013, 10: 289-296. 10.1021/mp3004308.CrossRefPubMed
37.
go back to reference Luissint AC, Federici C, Guillonneau F, Chretien F, Camoin L, Glacial F, Ganeshamoorthy K, Couraud PO: Guanine nucleotide-binding protein Galphai2: a new partner of claudin-5 that regulates tight junction integrity in human brain endothelial cells. J Cereb Blood Flow Metab. 2012, 32: 860-873. 10.1038/jcbfm.2011.202.PubMedCentralCrossRefPubMed Luissint AC, Federici C, Guillonneau F, Chretien F, Camoin L, Glacial F, Ganeshamoorthy K, Couraud PO: Guanine nucleotide-binding protein Galphai2: a new partner of claudin-5 that regulates tight junction integrity in human brain endothelial cells. J Cereb Blood Flow Metab. 2012, 32: 860-873. 10.1038/jcbfm.2011.202.PubMedCentralCrossRefPubMed
38.
go back to reference Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR: VEGF-mediated disruption of endothelial CLN-5 promotes blood–brain barrier breakdown. Proc Natl Acad Sci U S A. 1977–1982, 2009: 106- Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR: VEGF-mediated disruption of endothelial CLN-5 promotes blood–brain barrier breakdown. Proc Natl Acad Sci U S A. 1977–1982, 2009: 106-
39.
go back to reference Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S: Size-selective loosening of the blood–brain barrier in claudin-5-deficient mice. J Cell Biol. 2003, 161: 653-660. 10.1083/jcb.200302070.PubMedCentralCrossRefPubMed Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S: Size-selective loosening of the blood–brain barrier in claudin-5-deficient mice. J Cell Biol. 2003, 161: 653-660. 10.1083/jcb.200302070.PubMedCentralCrossRefPubMed
40.
go back to reference Chehade JM, Haas MJ, Mooradian AD: Diabetes-related changes in rat cerebral occludin and zonula occludens-1 (ZO-1) expression. Neurochem Res. 2002, 27: 249-252. 10.1023/A:1014892706696.CrossRefPubMed Chehade JM, Haas MJ, Mooradian AD: Diabetes-related changes in rat cerebral occludin and zonula occludens-1 (ZO-1) expression. Neurochem Res. 2002, 27: 249-252. 10.1023/A:1014892706696.CrossRefPubMed
41.
go back to reference Fischer S, Wobben M, Marti HH, Renz D, Schaper W: Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc Res. 2002, 63: 70-80. 10.1006/mvre.2001.2367.CrossRefPubMed Fischer S, Wobben M, Marti HH, Renz D, Schaper W: Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc Res. 2002, 63: 70-80. 10.1006/mvre.2001.2367.CrossRefPubMed
42.
go back to reference El-Remessy AB, Franklin T, Ghaley N, Yang J, Brands MW, Caldwell RB, Behzadian MA: Diabetes-Induced Superoxide Anion and Breakdown of the Blood-Retinal Barrier: Role of the VEGF/uPAR Pathway. PLoS One. 2013, 8: e71868-10.1371/journal.pone.0071868.PubMedCentralCrossRefPubMed El-Remessy AB, Franklin T, Ghaley N, Yang J, Brands MW, Caldwell RB, Behzadian MA: Diabetes-Induced Superoxide Anion and Breakdown of the Blood-Retinal Barrier: Role of the VEGF/uPAR Pathway. PLoS One. 2013, 8: e71868-10.1371/journal.pone.0071868.PubMedCentralCrossRefPubMed
43.
go back to reference Hawkins BT, Lundeen TF, Norwood KM, Brooks HL, Egleton RD: Increased blood–brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia. 2007, 50: 202-211.CrossRefPubMed Hawkins BT, Lundeen TF, Norwood KM, Brooks HL, Egleton RD: Increased blood–brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia. 2007, 50: 202-211.CrossRefPubMed
44.
go back to reference Cristante E, McArthur S, Mauro C, Maggioli E, Romero IA, Wylezinska-Arridge M, Couraud PO, Lopez-Tremoleda J, Christian HC, Weksler BB, Malaspina A, Solito E: Identification of an essential endogenous regulator of blood–brain barrier integrity, and its pathological and therapeutic implications. Proc Natl Acad Sci U S A. 2013, 110: 832-841. 10.1073/pnas.1209362110.PubMedCentralCrossRefPubMed Cristante E, McArthur S, Mauro C, Maggioli E, Romero IA, Wylezinska-Arridge M, Couraud PO, Lopez-Tremoleda J, Christian HC, Weksler BB, Malaspina A, Solito E: Identification of an essential endogenous regulator of blood–brain barrier integrity, and its pathological and therapeutic implications. Proc Natl Acad Sci U S A. 2013, 110: 832-841. 10.1073/pnas.1209362110.PubMedCentralCrossRefPubMed
45.
go back to reference Vannucci SJ, Clark RR, Koehler-Stec E, Li K, Smith CB, Davies P, Maher F, Simpson IA: Glucose transporter expression in brain: relationship to cerebral glucose utilization. Dev Neurosci. 1998, 20: 369-379. 10.1159/000017333.CrossRefPubMed Vannucci SJ, Clark RR, Koehler-Stec E, Li K, Smith CB, Davies P, Maher F, Simpson IA: Glucose transporter expression in brain: relationship to cerebral glucose utilization. Dev Neurosci. 1998, 20: 369-379. 10.1159/000017333.CrossRefPubMed
46.
go back to reference Pardridge WM, Triguero D, Farrell CR: Downregulation of blood–brain barrier glucose transporter in experimental diabetes. Diabetes. 1990, 39: 1040-1044. 10.2337/diab.39.9.1040.CrossRefPubMed Pardridge WM, Triguero D, Farrell CR: Downregulation of blood–brain barrier glucose transporter in experimental diabetes. Diabetes. 1990, 39: 1040-1044. 10.2337/diab.39.9.1040.CrossRefPubMed
47.
go back to reference Duelli R, Maurer MH, Staudt R, Heiland S, Duembgen L, Kuschinsky W: Increased cerebral glucose utilization and decreased glucose transporter Glut1 during chronic hyperglycemia in rat brain. Brain Res. 2000, 858: 338-347. 10.1016/S0006-8993(00)01942-9.CrossRefPubMed Duelli R, Maurer MH, Staudt R, Heiland S, Duembgen L, Kuschinsky W: Increased cerebral glucose utilization and decreased glucose transporter Glut1 during chronic hyperglycemia in rat brain. Brain Res. 2000, 858: 338-347. 10.1016/S0006-8993(00)01942-9.CrossRefPubMed
48.
go back to reference Hou WK, Xian YX, Zhang L, Lai H, Hou XG, Xu YX, Yu T, Xu FY, Song J, Fu CL, Zhang WW, Chen L: Influence of blood glucose on the expression of glucose trans-porter proteins 1 and 3 in the brain of diabetic rats. Chin Med J (Engl). 2007, 120: 1704-1709. Hou WK, Xian YX, Zhang L, Lai H, Hou XG, Xu YX, Yu T, Xu FY, Song J, Fu CL, Zhang WW, Chen L: Influence of blood glucose on the expression of glucose trans-porter proteins 1 and 3 in the brain of diabetic rats. Chin Med J (Engl). 2007, 120: 1704-1709.
49.
go back to reference Simpson IA, Appel NM, Hokari M, Oki J, Holman GD, Maher F, Koehler-Stec EM, Vannucci SJ, Smith QR: Blood–brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited. J Neurochem. 1999, 72: 238-247.CrossRefPubMed Simpson IA, Appel NM, Hokari M, Oki J, Holman GD, Maher F, Koehler-Stec EM, Vannucci SJ, Smith QR: Blood–brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited. J Neurochem. 1999, 72: 238-247.CrossRefPubMed
50.
go back to reference Abdul Muneer PM, Alikunju S, Szlachetka AM, Murrin LC, Haorah J: Impairment of brain endothelial glucose transporter by methamphetamine causes blood–brain barrier dysfunction. Mol Neurodegener. 2011, 6: 23-10.1186/1750-1326-6-23.PubMedCentralCrossRefPubMed Abdul Muneer PM, Alikunju S, Szlachetka AM, Murrin LC, Haorah J: Impairment of brain endothelial glucose transporter by methamphetamine causes blood–brain barrier dysfunction. Mol Neurodegener. 2011, 6: 23-10.1186/1750-1326-6-23.PubMedCentralCrossRefPubMed
51.
go back to reference McCall AL, van Bueren AM, Huang L, Stenbit A, Celnik E, Charron MJ: Forebrain endothelium expresses GLUT4, the insulin-responsive glucose transporter. Brain Res. 1997, 744: 318-326. 10.1016/S0006-8993(96)01122-5.CrossRefPubMed McCall AL, van Bueren AM, Huang L, Stenbit A, Celnik E, Charron MJ: Forebrain endothelium expresses GLUT4, the insulin-responsive glucose transporter. Brain Res. 1997, 744: 318-326. 10.1016/S0006-8993(96)01122-5.CrossRefPubMed
52.
go back to reference Ngarmukos C, Baur EL, Kumagai AK: Co-localization of GLUT1 and GLUT4 in the blood–brain barrier of the rat ventromedial hypothalamus. Brain Res. 2001, 900: 1-8. 10.1016/S0006-8993(01)02184-9.CrossRefPubMed Ngarmukos C, Baur EL, Kumagai AK: Co-localization of GLUT1 and GLUT4 in the blood–brain barrier of the rat ventromedial hypothalamus. Brain Res. 2001, 900: 1-8. 10.1016/S0006-8993(01)02184-9.CrossRefPubMed
53.
go back to reference Meireles M, Martel F, Araujo J, Santos-Buelga C, Gonzalez-Manzano S, Duenas M, de Freitas V, Mateus N, Calhau C, Faria A: Characterization and modulation of glucose uptake in a human blood–brain barrier model. J Membr Biol. 2013, 246: 669-677. 10.1007/s00232-013-9583-2.CrossRefPubMed Meireles M, Martel F, Araujo J, Santos-Buelga C, Gonzalez-Manzano S, Duenas M, de Freitas V, Mateus N, Calhau C, Faria A: Characterization and modulation of glucose uptake in a human blood–brain barrier model. J Membr Biol. 2013, 246: 669-677. 10.1007/s00232-013-9583-2.CrossRefPubMed
54.
go back to reference Nishizaki T, Matsuoka T: Low glucose enhances Na+/glucose transport in bovine brain artery endothelial cells. Stroke. 1998, 29: 844-849. 10.1161/01.STR.29.4.844.CrossRefPubMed Nishizaki T, Matsuoka T: Low glucose enhances Na+/glucose transport in bovine brain artery endothelial cells. Stroke. 1998, 29: 844-849. 10.1161/01.STR.29.4.844.CrossRefPubMed
55.
go back to reference Vemula S, Roder KE, Yang T, Bhat GJ, Thekkumkara TJ, Abbruscato TJ: A functional role for sodium-dependent glucose transport across the blood–brain barrier during oxygen glucose deprivation. J Pharmacol Exp Ther. 2009, 328: 487-495. 10.1124/jpet.108.146589.PubMedCentralCrossRefPubMed Vemula S, Roder KE, Yang T, Bhat GJ, Thekkumkara TJ, Abbruscato TJ: A functional role for sodium-dependent glucose transport across the blood–brain barrier during oxygen glucose deprivation. J Pharmacol Exp Ther. 2009, 328: 487-495. 10.1124/jpet.108.146589.PubMedCentralCrossRefPubMed
57.
go back to reference Singh P, Jain A, Kaur G: Impact of hypoglycemia and diabetes on CNS: correlation of mitochondrial oxidative stress with DNA damage. Mol Cell Biochem. 2004, 260: 153-159.CrossRefPubMed Singh P, Jain A, Kaur G: Impact of hypoglycemia and diabetes on CNS: correlation of mitochondrial oxidative stress with DNA damage. Mol Cell Biochem. 2004, 260: 153-159.CrossRefPubMed
58.
go back to reference Tsuruta R, Fujita M, Ono T, Koda Y, Koga Y, Yamamoto T, Nanba M, Shitara M, Kasaoka S, Maruyama I, Yuasa M, Maekawa T: Hyperglycemia enhances excessive superoxide anion radical generation, oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion rats. Brain Res. 2010, 1309: 155-163.CrossRefPubMed Tsuruta R, Fujita M, Ono T, Koda Y, Koga Y, Yamamoto T, Nanba M, Shitara M, Kasaoka S, Maruyama I, Yuasa M, Maekawa T: Hyperglycemia enhances excessive superoxide anion radical generation, oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion rats. Brain Res. 2010, 1309: 155-163.CrossRefPubMed
59.
go back to reference Coisne C, Engelhardt B: Tight junctions in brain barriers during central nervous system inflammation. Antioxid Redox Signal. 2011, 15: 1285-1303. 10.1089/ars.2011.3929.CrossRefPubMed Coisne C, Engelhardt B: Tight junctions in brain barriers during central nervous system inflammation. Antioxid Redox Signal. 2011, 15: 1285-1303. 10.1089/ars.2011.3929.CrossRefPubMed
60.
go back to reference Lehner C, Gehwolf R, Tempfer H, Krizbai I, Hennig B, Bauer HC, Bauer H: Oxidative stress and blood–brain barrier dysfunction under particular consideration of matrix metalloproteinases. Antioxid Redox Signal. 2011, 15: 1305-1323. 10.1089/ars.2011.3923.CrossRefPubMed Lehner C, Gehwolf R, Tempfer H, Krizbai I, Hennig B, Bauer HC, Bauer H: Oxidative stress and blood–brain barrier dysfunction under particular consideration of matrix metalloproteinases. Antioxid Redox Signal. 2011, 15: 1305-1323. 10.1089/ars.2011.3923.CrossRefPubMed
61.
go back to reference Freeman LR, Keller JN: Oxidative stress and cerebral endothelial cells: regulation of the blood–brain-barrier and antioxidant based interventions. Biochim Biophys Acta. 1822, 2012: 822-829. Freeman LR, Keller JN: Oxidative stress and cerebral endothelial cells: regulation of the blood–brain-barrier and antioxidant based interventions. Biochim Biophys Acta. 1822, 2012: 822-829.
62.
go back to reference Okouchi M, Okayama N, Alexander JS, Aw TY: NRF2-dependent glutamate-L-cysteine ligase catalytic subunit expression mediates insulin protection against hyperglycemia- induced brain endothelial cell apoptosis. Curr Neurovasc Res. 2006, 3: 249-261. 10.2174/156720206778792876.CrossRefPubMed Okouchi M, Okayama N, Alexander JS, Aw TY: NRF2-dependent glutamate-L-cysteine ligase catalytic subunit expression mediates insulin protection against hyperglycemia- induced brain endothelial cell apoptosis. Curr Neurovasc Res. 2006, 3: 249-261. 10.2174/156720206778792876.CrossRefPubMed
63.
go back to reference Zhao J, Moore AN, Redell JB, Dash PK: Enhancing expression of Nrf2-driven genes protects the blood brain barrier after brain injury. J Neurosci. 2007, 27: 10240-10248. 10.1523/JNEUROSCI.1683-07.2007.CrossRefPubMed Zhao J, Moore AN, Redell JB, Dash PK: Enhancing expression of Nrf2-driven genes protects the blood brain barrier after brain injury. J Neurosci. 2007, 27: 10240-10248. 10.1523/JNEUROSCI.1683-07.2007.CrossRefPubMed
64.
go back to reference Tsai HY, Huang PH, Lin FY, Chen JS, Lin SJ, Chen JW: Ginkgo biloba extract reduces high-glucose-induced endothelial reactive oxygen species generation and cell adhesion molecule expression by enhancing HO-1 expression via Akt/eNOS and p38 MAP kinase pathways. Eur J Pharm Sci. 2013, 48: 803-811. 10.1016/j.ejps.2013.01.002.CrossRefPubMed Tsai HY, Huang PH, Lin FY, Chen JS, Lin SJ, Chen JW: Ginkgo biloba extract reduces high-glucose-induced endothelial reactive oxygen species generation and cell adhesion molecule expression by enhancing HO-1 expression via Akt/eNOS and p38 MAP kinase pathways. Eur J Pharm Sci. 2013, 48: 803-811. 10.1016/j.ejps.2013.01.002.CrossRefPubMed
65.
go back to reference Wruck CJ, Streetz K, Pavic G, Gotz ME, Tohidnezhad M, Brandenburg LO, Varoga D, Eickelberg O, Herdegen T, Trautwein C, Cha K, Kan YW, Pufe T: Nrf2 induces interleukin-6 (IL-6) expression via an antioxidant response element within the IL-6 promoter. J Biol Chem. 2011, 286: 4493-4499. 10.1074/jbc.M110.162008.PubMedCentralCrossRefPubMed Wruck CJ, Streetz K, Pavic G, Gotz ME, Tohidnezhad M, Brandenburg LO, Varoga D, Eickelberg O, Herdegen T, Trautwein C, Cha K, Kan YW, Pufe T: Nrf2 induces interleukin-6 (IL-6) expression via an antioxidant response element within the IL-6 promoter. J Biol Chem. 2011, 286: 4493-4499. 10.1074/jbc.M110.162008.PubMedCentralCrossRefPubMed
66.
go back to reference Lopez-Ramirez MA, Male DK, Wang C, Sharrack B, Wu D, Romero IA: Cytokine-induced changes in the gene expression profile of a human cerebral microvascular endothelial cell-line, hCMEC/D3. Fluids Barriers CNS. 2013, 10: 27-10.1186/2045-8118-10-27.PubMedCentralCrossRefPubMed Lopez-Ramirez MA, Male DK, Wang C, Sharrack B, Wu D, Romero IA: Cytokine-induced changes in the gene expression profile of a human cerebral microvascular endothelial cell-line, hCMEC/D3. Fluids Barriers CNS. 2013, 10: 27-10.1186/2045-8118-10-27.PubMedCentralCrossRefPubMed
67.
go back to reference Hoffman WH, Stamatovic SM, Andjelkovic AV: Inflammatory mediators and blood brain barrier disruption in fatal brain edema of diabetic ketoacidosis. Brain Res. 2009, 1254: 138-148.CrossRefPubMed Hoffman WH, Stamatovic SM, Andjelkovic AV: Inflammatory mediators and blood brain barrier disruption in fatal brain edema of diabetic ketoacidosis. Brain Res. 2009, 1254: 138-148.CrossRefPubMed
68.
go back to reference Winkler EA, Bell RD, Zlokovic BV: Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling. Mol Neurodegener. 2010, 5: 32-10.1186/1750-1326-5-32.PubMedCentralCrossRefPubMed Winkler EA, Bell RD, Zlokovic BV: Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling. Mol Neurodegener. 2010, 5: 32-10.1186/1750-1326-5-32.PubMedCentralCrossRefPubMed
Metadata
Title
Impact of altered glycaemia on blood-brain barrier endothelium: an in vitro study using the hCMEC/D3 cell line
Authors
Ravi K Sajja
Shikha Prasad
Luca Cucullo
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2014
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/2045-8118-11-8

Other articles of this Issue 1/2014

Fluids and Barriers of the CNS 1/2014 Go to the issue