Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2014

Open Access 01-12-2014 | Research

Effect of transporter inhibition on the distribution of cefadroxil in rat brain

Authors: Xiaomei Chen, Irena Loryan, Maryam Payan, Richard F Keep, David E Smith, Margareta Hammarlund-Udenaes

Published in: Fluids and Barriers of the CNS | Issue 1/2014

Login to get access

Abstract

Background

Cefadroxil, a cephalosporin antibiotic, is a substrate for several membrane transporters including peptide transporter 2 (PEPT2), organic anion transporters (OATs), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptides (OATPs). These transporters are expressed at the blood–brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and/or brain cells. The effect of these transporters on cefadroxil distribution in brain is unknown, especially in the extracellular and intracellular fluids within brain.

Methods

Intracerebral microdialysis was used to measure unbound concentrations of cefadroxil in rat blood, striatum extracellular fluid (ECF) and lateral ventricle cerebrospinal fluid (CSF). The distribution of cefadroxil in brain was compared in the absence and presence of probenecid, an inhibitor of OATs, MRPs and OATPs, where both drugs were administered intravenously. The effect of PEPT2 inhibition by intracerebroventricular (icv) infusion of Ala-Ala, a substrate of PEPT2, on cefadroxil levels in brain was also evaluated. In addition, using an in vitro brain slice method, the distribution of cefadroxil in brain intracellular fluid (ICF) was studied in the absence and presence of transport inhibitors (probenecid for OATs, MRPs and OATPs; Ala-Ala and glycylsarcosine for PEPT2).

Results

The ratio of unbound cefadroxil AUC in brain ECF to blood (Kp,uu,ECF) was ~2.5-fold greater during probenecid treatment. In contrast, the ratio of cefadroxil AUC in CSF to blood (Kp,uu,CSF) did not change significantly during probenecid infusion. Icv infusion of Ala-Ala did not change cefadroxil levels in brain ECF, CSF or blood. In the brain slice study, Ala-Ala and glycylsarcosine decreased the unbound volume of distribution of cefadroxil in brain (Vu,brain), indicating a reduction in cefadroxil accumulation in brain cells. In contrast, probenecid increased cefadroxil accumulation in brain cells, as indicated by a greater value for Vu,brain.

Conclusions

Transporters (OATs, MRPs, and perhaps OATPs) that can be inhibited by probenecid play an important role in mediating the brain-to-blood efflux of cefadroxil at the BBB. The uptake of cefadroxil in brain cells involves both the influx transporter PEPT2 and efflux transporters (probenecid-inhibitable). These findings demonstrate that drug-drug interactions via relevant transporters may affect the distribution of cephalosporins in both brain ECF and ICF.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brunton LL, Chabner BA, Knollmann BC: Goodman & Gilman’s The Pharmacological Basis of Therapeutics. 2011, New York: McGraw-Hill, 12 Brunton LL, Chabner BA, Knollmann BC: Goodman & Gilman’s The Pharmacological Basis of Therapeutics. 2011, New York: McGraw-Hill, 12
2.
go back to reference Brandsch M, Knutter I, Bosse-Doenecke E: Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol. 2008, 60: 543-585. 10.1211/jpp.60.5.0002.CrossRefPubMed Brandsch M, Knutter I, Bosse-Doenecke E: Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol. 2008, 60: 543-585. 10.1211/jpp.60.5.0002.CrossRefPubMed
3.
go back to reference Burckhardt G: Drug transport by Organic Anion Transporters (OATs). Pharmacol Ther. 2012, 136: 106-130. 10.1016/j.pharmthera.2012.07.010.CrossRefPubMed Burckhardt G: Drug transport by Organic Anion Transporters (OATs). Pharmacol Ther. 2012, 136: 106-130. 10.1016/j.pharmthera.2012.07.010.CrossRefPubMed
4.
go back to reference Nakakariya M, Shimada T, Irokawa M, Koibuchi H, Iwanaga T, Yabuuchi H, Maeda T, Tamai I: Predominant contribution of rat organic anion transporting polypeptide-2 (Oatp2) to hepatic uptake of beta-lactam antibiotics. Pharm Res. 2008, 25: 578-585. 10.1007/s11095-007-9427-9.CrossRefPubMed Nakakariya M, Shimada T, Irokawa M, Koibuchi H, Iwanaga T, Yabuuchi H, Maeda T, Tamai I: Predominant contribution of rat organic anion transporting polypeptide-2 (Oatp2) to hepatic uptake of beta-lactam antibiotics. Pharm Res. 2008, 25: 578-585. 10.1007/s11095-007-9427-9.CrossRefPubMed
5.
go back to reference Nakakariya M, Shimada T, Irokawa M, Maeda T, Tamai I: Identification and species similarity of OATP transporters responsible for hepatic uptake of beta-lactam antibiotics. Drug Metab Pharmacokinet. 2008, 23: 347-355. 10.2133/dmpk.23.347.CrossRefPubMed Nakakariya M, Shimada T, Irokawa M, Maeda T, Tamai I: Identification and species similarity of OATP transporters responsible for hepatic uptake of beta-lactam antibiotics. Drug Metab Pharmacokinet. 2008, 23: 347-355. 10.2133/dmpk.23.347.CrossRefPubMed
6.
go back to reference Akanuma S, Uchida Y, Ohtsuki S, Kamiie J, Tachikawa M, Terasaki T, Hosoya K: Molecular-weight-dependent, anionic-substrate-preferential transport of beta-lactam antibiotics via multidrug resistance-associated protein 4. Drug Metab Pharmacokinet. 2011, 26: 602-611. 10.2133/dmpk.DMPK-11-RG-063.CrossRefPubMed Akanuma S, Uchida Y, Ohtsuki S, Kamiie J, Tachikawa M, Terasaki T, Hosoya K: Molecular-weight-dependent, anionic-substrate-preferential transport of beta-lactam antibiotics via multidrug resistance-associated protein 4. Drug Metab Pharmacokinet. 2011, 26: 602-611. 10.2133/dmpk.DMPK-11-RG-063.CrossRefPubMed
7.
go back to reference Kato Y, Takahara S, Kato S, Kubo Y, Sai Y, Tamai I, Yabuuchi H, Tsuji A: Involvement of multidrug resistance-associated protein 2 (Abcc2) in molecular weight-dependent biliary excretion of beta-lactam antibiotics. Drug Metab Dispos. 2008, 36: 1088-1096. 10.1124/dmd.107.019125.CrossRefPubMed Kato Y, Takahara S, Kato S, Kubo Y, Sai Y, Tamai I, Yabuuchi H, Tsuji A: Involvement of multidrug resistance-associated protein 2 (Abcc2) in molecular weight-dependent biliary excretion of beta-lactam antibiotics. Drug Metab Dispos. 2008, 36: 1088-1096. 10.1124/dmd.107.019125.CrossRefPubMed
8.
go back to reference Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L: Membrane transporters in drug development. Nat Rev Drug Discov. 2010, 9: 215-236. 10.1038/nrd3028.CrossRefPubMed Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L: Membrane transporters in drug development. Nat Rev Drug Discov. 2010, 9: 215-236. 10.1038/nrd3028.CrossRefPubMed
9.
go back to reference Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ: Structure and function of the blood–brain barrier. Neurobiol Dis. 2010, 37: 13-25. 10.1016/j.nbd.2009.07.030.CrossRefPubMed Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ: Structure and function of the blood–brain barrier. Neurobiol Dis. 2010, 37: 13-25. 10.1016/j.nbd.2009.07.030.CrossRefPubMed
10.
go back to reference Abbott NJ: Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013, 36: 437-449. 10.1007/s10545-013-9608-0.CrossRefPubMed Abbott NJ: Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013, 36: 437-449. 10.1007/s10545-013-9608-0.CrossRefPubMed
11.
go back to reference Saunders NR, Habgood MD, Dziegielewska KM: Barrier mechanisms in the brain, I. adult brain. Clin Exp Pharmacol Physiol. 1999, 26: 11-19. 10.1046/j.1440-1681.1999.02986.x.CrossRefPubMed Saunders NR, Habgood MD, Dziegielewska KM: Barrier mechanisms in the brain, I. adult brain. Clin Exp Pharmacol Physiol. 1999, 26: 11-19. 10.1046/j.1440-1681.1999.02986.x.CrossRefPubMed
12.
go back to reference Kusuhara H, Sugiyama Y: Drug Transport(ers) and the Diseased Brain. Edited by: DeBoer AG. 2005, 111-122. Efflux transport systems at the blood–brain barrier and blood CSF barrier, 1277, International Congress Series. Kusuhara H, Sugiyama Y: Drug Transport(ers) and the Diseased Brain. Edited by: DeBoer AG. 2005, 111-122. Efflux transport systems at the blood–brain barrier and blood CSF barrier, 1277, International Congress Series.
13.
go back to reference Hartz AMS, Bauer B: ABC Transporters in the CNS - an inventory. Curr Pharm Biotechno. 2011, 12: 656-673. 10.2174/138920111795164020.CrossRef Hartz AMS, Bauer B: ABC Transporters in the CNS - an inventory. Curr Pharm Biotechno. 2011, 12: 656-673. 10.2174/138920111795164020.CrossRef
14.
go back to reference Farthing CA, Sweet DH: Expression and function of organic cation and anion transporters (SLC22 family) in the CNS. Curr Pharm Design. 2014, 20: 1472-1486. 10.2174/13816128113199990456.CrossRef Farthing CA, Sweet DH: Expression and function of organic cation and anion transporters (SLC22 family) in the CNS. Curr Pharm Design. 2014, 20: 1472-1486. 10.2174/13816128113199990456.CrossRef
15.
go back to reference Loscher W, Potschka H: Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol. 2005, 76: 22-76. 10.1016/j.pneurobio.2005.04.006.CrossRefPubMed Loscher W, Potschka H: Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol. 2005, 76: 22-76. 10.1016/j.pneurobio.2005.04.006.CrossRefPubMed
16.
go back to reference Smith DE, Johanson CE, Keep RF: Peptide and peptide analog transport systems at the blood-CSF barrier. Adv Drug Deliv Rev. 2004, 56: 1765-1791. 10.1016/j.addr.2004.07.008.CrossRefPubMed Smith DE, Johanson CE, Keep RF: Peptide and peptide analog transport systems at the blood-CSF barrier. Adv Drug Deliv Rev. 2004, 56: 1765-1791. 10.1016/j.addr.2004.07.008.CrossRefPubMed
17.
go back to reference Westholm DE, Rumbley JN, Salo DR, Rich TP, Anderson GW: Organic anion-transporting polypeptides at the blood–brain and blood-cerebrospinal fluid barriers. Curr Top Dev Biol. 2008, 80: 135-170.CrossRefPubMed Westholm DE, Rumbley JN, Salo DR, Rich TP, Anderson GW: Organic anion-transporting polypeptides at the blood–brain and blood-cerebrospinal fluid barriers. Curr Top Dev Biol. 2008, 80: 135-170.CrossRefPubMed
18.
19.
go back to reference Xiang J, Chiang PP, Hu Y, Smith DE, Keep RF: Role of PEPT2 in glycylsarcosine transport in astrocyte and glioma cultures. Neurosci Lett. 2006, 396: 225-229. 10.1016/j.neulet.2005.11.037.CrossRefPubMed Xiang J, Chiang PP, Hu Y, Smith DE, Keep RF: Role of PEPT2 in glycylsarcosine transport in astrocyte and glioma cultures. Neurosci Lett. 2006, 396: 225-229. 10.1016/j.neulet.2005.11.037.CrossRefPubMed
20.
go back to reference Shen H, Ocheltree SM, Hu Y, Keep RF, Smith DE: Impact of genetic knockout of PEPT2 on cefadroxil pharmacokinetics, renal tubular reabsorption, and brain penetration in mice. Drug Metab Dispos. 2007, 35: 1209-1216. 10.1124/dmd.107.015263.CrossRefPubMed Shen H, Ocheltree SM, Hu Y, Keep RF, Smith DE: Impact of genetic knockout of PEPT2 on cefadroxil pharmacokinetics, renal tubular reabsorption, and brain penetration in mice. Drug Metab Dispos. 2007, 35: 1209-1216. 10.1124/dmd.107.015263.CrossRefPubMed
21.
go back to reference Khamdang S, Takeda M, Babu E, Noshiro R, Onozato ML, Tojo A, Enomoto A, Huang XL, Narikawa S, Anzai N, Piyachaturawat P, Endou H: Interaction of human and rat organic anion transporter 2 with various cephalosporin antibiotics. Eur J Pharmacol. 2003, 465: 1-7. 10.1016/S0014-2999(03)01381-5.CrossRefPubMed Khamdang S, Takeda M, Babu E, Noshiro R, Onozato ML, Tojo A, Enomoto A, Huang XL, Narikawa S, Anzai N, Piyachaturawat P, Endou H: Interaction of human and rat organic anion transporter 2 with various cephalosporin antibiotics. Eur J Pharmacol. 2003, 465: 1-7. 10.1016/S0014-2999(03)01381-5.CrossRefPubMed
22.
go back to reference de Waart DR, van de Wetering K, Kunne C, Duijst S, Paulusma CC, Oude Elferink RP: Oral availability of cefadroxil depends on ABCC3 and ABCC4. Drug Metab Dispos. 2012, 40: 515-521. 10.1124/dmd.111.041731.CrossRefPubMed de Waart DR, van de Wetering K, Kunne C, Duijst S, Paulusma CC, Oude Elferink RP: Oral availability of cefadroxil depends on ABCC3 and ABCC4. Drug Metab Dispos. 2012, 40: 515-521. 10.1124/dmd.111.041731.CrossRefPubMed
23.
go back to reference Garcia-Carbonell MC, Granero L, Torres-Molina F, Aristorena JC, Chesa-Jimenez J, Pla-Delfina JM, Peris-Ribera JE: Nonlinear pharmacokinetics of cefadroxil in the rat. Drug Metab Dispos. 1993, 21: 215-217.PubMed Garcia-Carbonell MC, Granero L, Torres-Molina F, Aristorena JC, Chesa-Jimenez J, Pla-Delfina JM, Peris-Ribera JE: Nonlinear pharmacokinetics of cefadroxil in the rat. Drug Metab Dispos. 1993, 21: 215-217.PubMed
24.
go back to reference Posada MM, Smith DE: Relevance of PepT1 in the intestinal permeability and oral absorption of Cefadroxil. Pharm Res. 2013, 30: 1017-1025. 10.1007/s11095-012-0937-8.PubMedCentralCrossRefPubMed Posada MM, Smith DE: Relevance of PepT1 in the intestinal permeability and oral absorption of Cefadroxil. Pharm Res. 2013, 30: 1017-1025. 10.1007/s11095-012-0937-8.PubMedCentralCrossRefPubMed
25.
go back to reference Marino EL, Dominguezgil A: The pharmacokinetics of Cefadroxil associated with probenecid. Int J Clin Pharm Th. 1981, 19: 506-508. Marino EL, Dominguezgil A: The pharmacokinetics of Cefadroxil associated with probenecid. Int J Clin Pharm Th. 1981, 19: 506-508.
26.
go back to reference Sugiyama D, Kusuhara H, Shitara Y, Abe T, Meier PJ, Sekine T, Endou H, Suzuki H, Sugiyama Y: Characterization of the efflux transport of 17beta-estradiol-D-17beta-glucuronide from the brain across the blood–brain barrier. J Pharmacol Exp Ther. 2001, 298: 316-322.PubMed Sugiyama D, Kusuhara H, Shitara Y, Abe T, Meier PJ, Sekine T, Endou H, Suzuki H, Sugiyama Y: Characterization of the efflux transport of 17beta-estradiol-D-17beta-glucuronide from the brain across the blood–brain barrier. J Pharmacol Exp Ther. 2001, 298: 316-322.PubMed
27.
go back to reference Luna-Tortos C, Fedrowitz M, Loscher W: Evaluation of transport of common antiepileptic drugs by human multidrug resistance-associated proteins (MRP1, 2 and 5) that are overexpressed in pharmacoresistant epilepsy. Neuropharmacology. 2010, 58: 1019-1032. 10.1016/j.neuropharm.2010.01.007.CrossRefPubMed Luna-Tortos C, Fedrowitz M, Loscher W: Evaluation of transport of common antiepileptic drugs by human multidrug resistance-associated proteins (MRP1, 2 and 5) that are overexpressed in pharmacoresistant epilepsy. Neuropharmacology. 2010, 58: 1019-1032. 10.1016/j.neuropharm.2010.01.007.CrossRefPubMed
28.
go back to reference Ocheltree SM, Shen H, Hu Y, Xiang J, Keep RF, Smith DE: Mechanisms of cefadroxil uptake in the choroid plexus: studies in wild-type and PEPT2 knockout mice. J Pharmacol Exp Ther. 2004, 308: 462-467.CrossRefPubMed Ocheltree SM, Shen H, Hu Y, Xiang J, Keep RF, Smith DE: Mechanisms of cefadroxil uptake in the choroid plexus: studies in wild-type and PEPT2 knockout mice. J Pharmacol Exp Ther. 2004, 308: 462-467.CrossRefPubMed
29.
go back to reference Jiang H, Hu Y, Keep RF, Smith DE: Enhanced antinociceptive response to intracerebroventricular kyotorphin in Pept2 null mice. J Neurochem. 2009, 109: 1536-1543. 10.1111/j.1471-4159.2009.06090.x.PubMedCentralCrossRefPubMed Jiang H, Hu Y, Keep RF, Smith DE: Enhanced antinociceptive response to intracerebroventricular kyotorphin in Pept2 null mice. J Neurochem. 2009, 109: 1536-1543. 10.1111/j.1471-4159.2009.06090.x.PubMedCentralCrossRefPubMed
30.
31.
go back to reference Xie RJ, Bouw MR, Hammarlund-Udenaes M: Modelling of the blood–brain barrier transport of morphine-3-glucuronide studied using microdialysis in the rat: involvement of probenecid-sensitive transport. Br J Pharmacol. 2000, 131: 1784-1792. 10.1038/sj.bjp.0703759.PubMedCentralCrossRefPubMed Xie RJ, Bouw MR, Hammarlund-Udenaes M: Modelling of the blood–brain barrier transport of morphine-3-glucuronide studied using microdialysis in the rat: involvement of probenecid-sensitive transport. Br J Pharmacol. 2000, 131: 1784-1792. 10.1038/sj.bjp.0703759.PubMedCentralCrossRefPubMed
32.
go back to reference Bengtsson J, Bostrom E, Hammarlund-Udenaes M: The use of a deuterated calibrator for in vivo recovery estimations in microdialysis studies. J Pharm Sci. 2008, 97: 3433-3441. 10.1002/jps.21217.CrossRefPubMed Bengtsson J, Bostrom E, Hammarlund-Udenaes M: The use of a deuterated calibrator for in vivo recovery estimations in microdialysis studies. J Pharm Sci. 2008, 97: 3433-3441. 10.1002/jps.21217.CrossRefPubMed
33.
go back to reference Loryan I, Friden M, Hammarlund-Udenaes M: The brain slice method for studying drug distribution in the CNS. Fluids Barriers CNS. 2013, 10: 6-10.1186/2045-8118-10-6.PubMedCentralCrossRefPubMed Loryan I, Friden M, Hammarlund-Udenaes M: The brain slice method for studying drug distribution in the CNS. Fluids Barriers CNS. 2013, 10: 6-10.1186/2045-8118-10-6.PubMedCentralCrossRefPubMed
34.
go back to reference Friden M, Ducrozet F, Middleton B, Antonsson M, Bredberg U, Hammarlund-Udenaes M: Development of a high-throughput brain slice method for studying drug distribution in the central nervous system. Drug Metab Dispos. 2009, 37: 1226-1233. 10.1124/dmd.108.026377.CrossRefPubMed Friden M, Ducrozet F, Middleton B, Antonsson M, Bredberg U, Hammarlund-Udenaes M: Development of a high-throughput brain slice method for studying drug distribution in the central nervous system. Drug Metab Dispos. 2009, 37: 1226-1233. 10.1124/dmd.108.026377.CrossRefPubMed
35.
go back to reference Huh Y, Keep RF, Smith DE: Impact of lipopolysaccharide-induced inflammation on the disposition of the aminocephalosporin cefadroxil. Antimicrob Agents Chemother. 2013, 57: 6171-6178. 10.1128/AAC.01497-13.PubMedCentralCrossRefPubMed Huh Y, Keep RF, Smith DE: Impact of lipopolysaccharide-induced inflammation on the disposition of the aminocephalosporin cefadroxil. Antimicrob Agents Chemother. 2013, 57: 6171-6178. 10.1128/AAC.01497-13.PubMedCentralCrossRefPubMed
36.
go back to reference Hammarlund-Udenaes M, Friden M, Syvanen S, Gupta A: On the rate and extent of drug delivery to the brain. Pharm Res. 2008, 25: 1737-1750. 10.1007/s11095-007-9502-2.PubMedCentralCrossRefPubMed Hammarlund-Udenaes M, Friden M, Syvanen S, Gupta A: On the rate and extent of drug delivery to the brain. Pharm Res. 2008, 25: 1737-1750. 10.1007/s11095-007-9502-2.PubMedCentralCrossRefPubMed
37.
go back to reference Giacomini KM, Huang SM: Transporters in drug development and clinical pharmacology. Clin Pharmacol Ther. 2013, 94: 3-9. 10.1038/clpt.2013.86.CrossRefPubMed Giacomini KM, Huang SM: Transporters in drug development and clinical pharmacology. Clin Pharmacol Ther. 2013, 94: 3-9. 10.1038/clpt.2013.86.CrossRefPubMed
38.
go back to reference Mahringer A, Ott M, Reimold I, Reichel V, Fricker G: The ABC of the blood–brain barrier - regulation of drug efflux pumps. Curr Pharm Design. 2011, 17: 2762-2770. 10.2174/138161211797440221.CrossRef Mahringer A, Ott M, Reimold I, Reichel V, Fricker G: The ABC of the blood–brain barrier - regulation of drug efflux pumps. Curr Pharm Design. 2011, 17: 2762-2770. 10.2174/138161211797440221.CrossRef
40.
go back to reference Redzic Z: Molecular biology of the blood–brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS. 2011, 8: 3-10.1186/2045-8118-8-3.PubMedCentralCrossRefPubMed Redzic Z: Molecular biology of the blood–brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS. 2011, 8: 3-10.1186/2045-8118-8-3.PubMedCentralCrossRefPubMed
41.
go back to reference Miller DS: ABC transporters at the blood–brain barrier. Top Med Chem. 2013, doi:10.1007/7355_2013_31 Miller DS: ABC transporters at the blood–brain barrier. Top Med Chem. 2013, doi:10.1007/7355_2013_31
42.
go back to reference Abbott NJ, Ronnback L, Hansson E: Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006, 7: 41-53. 10.1038/nrn1824.CrossRefPubMed Abbott NJ, Ronnback L, Hansson E: Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006, 7: 41-53. 10.1038/nrn1824.CrossRefPubMed
43.
go back to reference Westerhout J, van den Berg DJ, Hartman R, Danhof M, de Lange EC: Prediction of methotrexate CNS distribution in different species - influence of disease conditions. Eur J Pharm Sci. 2014, 57: 11-24.CrossRefPubMed Westerhout J, van den Berg DJ, Hartman R, Danhof M, de Lange EC: Prediction of methotrexate CNS distribution in different species - influence of disease conditions. Eur J Pharm Sci. 2014, 57: 11-24.CrossRefPubMed
44.
go back to reference Deguchi Y, Nozawa K, Yamada S, Yokoyama Y, Kimura R: Quantitative evaluation of brain distribution and blood–brain barrier efflux transport of probenecid in rats by microdialysis: possible involvement of the monocarboxylic acid transport system. J Pharmacol Exp Ther. 1997, 280: 551-560.PubMed Deguchi Y, Nozawa K, Yamada S, Yokoyama Y, Kimura R: Quantitative evaluation of brain distribution and blood–brain barrier efflux transport of probenecid in rats by microdialysis: possible involvement of the monocarboxylic acid transport system. J Pharmacol Exp Ther. 1997, 280: 551-560.PubMed
45.
go back to reference Bourne A, Barnes K, Taylor BA, Turner AJ, Kenny AJ: Membrane peptidases in the pig choroid plexus and on other cell surfaces in contact with the cerebrospinal fluid. Biochem J. 1989, 259: 69-80.PubMedCentralCrossRefPubMed Bourne A, Barnes K, Taylor BA, Turner AJ, Kenny AJ: Membrane peptidases in the pig choroid plexus and on other cell surfaces in contact with the cerebrospinal fluid. Biochem J. 1989, 259: 69-80.PubMedCentralCrossRefPubMed
46.
go back to reference Shen H, Smith DE, Keep RF, Brosius FC: Immunolocalization of the proton-coupled oligopeptide transporter PEPT2 in developing rat brain. Mol Pharm. 2004, 1: 248-256. 10.1021/mp049944b.CrossRefPubMed Shen H, Smith DE, Keep RF, Brosius FC: Immunolocalization of the proton-coupled oligopeptide transporter PEPT2 in developing rat brain. Mol Pharm. 2004, 1: 248-256. 10.1021/mp049944b.CrossRefPubMed
47.
go back to reference Scism JL, Powers KM, Artru AA, Lewis L, Shen DD: Probenecid-inhibitable efflux transport of valproic acid in the brain parenchymal cells of rabbits: a microdialysis study. Brain Res. 2000, 884: 77-86. 10.1016/S0006-8993(00)02893-6.CrossRefPubMed Scism JL, Powers KM, Artru AA, Lewis L, Shen DD: Probenecid-inhibitable efflux transport of valproic acid in the brain parenchymal cells of rabbits: a microdialysis study. Brain Res. 2000, 884: 77-86. 10.1016/S0006-8993(00)02893-6.CrossRefPubMed
48.
go back to reference Hammarlund-Udenaes M: The use of microdialysis in CNS drug delivery studies - pharmacokinetic perspectives and results with analgesics and antiepileptics. Adv Drug Deliv Rev. 2000, 45: 283-294. 10.1016/S0169-409X(00)00109-5.CrossRefPubMed Hammarlund-Udenaes M: The use of microdialysis in CNS drug delivery studies - pharmacokinetic perspectives and results with analgesics and antiepileptics. Adv Drug Deliv Rev. 2000, 45: 283-294. 10.1016/S0169-409X(00)00109-5.CrossRefPubMed
49.
go back to reference Friden M, Gupta A, Antonsson M, Bredberg U, Hammarlund-Udenaes M: In vitro methods for estimating unbound drug concentrations in the brain interstitial and intracellular fluids. Drug Metab Dispos. 2007, 35: 1711-1719. 10.1124/dmd.107.015222.CrossRefPubMed Friden M, Gupta A, Antonsson M, Bredberg U, Hammarlund-Udenaes M: In vitro methods for estimating unbound drug concentrations in the brain interstitial and intracellular fluids. Drug Metab Dispos. 2007, 35: 1711-1719. 10.1124/dmd.107.015222.CrossRefPubMed
50.
go back to reference Meli DN, Christen S, Leib SL, Tauber MG: Current concepts in the pathogenesis of meningitis caused by Streptococcus pneumoniae. Curr Opin Infect Dis. 2002, 15: 253-257. 10.1097/00001432-200206000-00007.CrossRefPubMed Meli DN, Christen S, Leib SL, Tauber MG: Current concepts in the pathogenesis of meningitis caused by Streptococcus pneumoniae. Curr Opin Infect Dis. 2002, 15: 253-257. 10.1097/00001432-200206000-00007.CrossRefPubMed
51.
52.
go back to reference Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, Whitley RJ: Practice guidelines for the management of bacterial meningitis. Clin Infect Dis. 2004, 39: 1267-1284. 10.1086/425368.CrossRefPubMed Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, Whitley RJ: Practice guidelines for the management of bacterial meningitis. Clin Infect Dis. 2004, 39: 1267-1284. 10.1086/425368.CrossRefPubMed
53.
go back to reference Kumar V, Abbas AK, Fausto N, Robbins SL, Cotran RS: Robbins and Cotran Pathologic Basis of Disease. 2005, Philadelphia: Elsevier Saunders Kumar V, Abbas AK, Fausto N, Robbins SL, Cotran RS: Robbins and Cotran Pathologic Basis of Disease. 2005, Philadelphia: Elsevier Saunders
54.
go back to reference Robbins N, Koch SE, Tranter M, Rubinstein J: The history and future of probenecid. Cardiovasc Toxicol. 2012, 12: 1-9.CrossRefPubMed Robbins N, Koch SE, Tranter M, Rubinstein J: The history and future of probenecid. Cardiovasc Toxicol. 2012, 12: 1-9.CrossRefPubMed
Metadata
Title
Effect of transporter inhibition on the distribution of cefadroxil in rat brain
Authors
Xiaomei Chen
Irena Loryan
Maryam Payan
Richard F Keep
David E Smith
Margareta Hammarlund-Udenaes
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2014
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/2045-8118-11-25

Other articles of this Issue 1/2014

Fluids and Barriers of the CNS 1/2014 Go to the issue