Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2010

Open Access 01-12-2010 | Research article

Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling

Authors: Ethan A Winkler, Robert D Bell, Berislav V Zlokovic

Published in: Molecular Neurodegeneration | Issue 1/2010

Login to get access

Abstract

Background

Pericytes are integral members of the neurovascular unit. Using mouse models lacking endothelial-secreted platelet derived growth factor-B (PDGF-B) or platelet derived growth factor receptor beta (PDGFRβ) on pericytes, it has been demonstrated that PDGF-B/PDGFRβ interactions mediate pericyte recruitment to the vessel wall in the embryonic brain regulating the development of the cerebral microcirculation and the blood-brain barrier (BBB). Relatively little is known, however, about the roles of PDGF-B/PDGFRβ interactions and pericytes in the adult brain in part due to a lack of adequate and/or properly characterized experimental models. To address whether genetic disruption of PDGFRβ signaling would result in a pericyte-specific insult in adult mice, we studied the pattern and cellular distribution of PDGFRβ expression in the brain in adult control mice and F7 mice that express two hypomorphic Pdgfrβ alleles containing seven point mutations in the cytoplasmic domain of PDGFRβ that impair downstream PDGFRβ receptor signaling.

Results

Using dual fluorescent in situ hybridization, immunofluorescent staining for different cell types in the neurovascular unit, and a fluorescent in situ proximity ligation assay to visualize molecular PDGF-B/PDGFRβ interactions on brain tissue sections, we show for the first time that PDGFRβ is exclusively expressed in pericytes, and not in neurons, astrocytes or endothelial cells, in the adult brain of control 129S1/SvlmJ mice. PDGFRβ co-localized only with well-established pericyte markers such as Chondroitin Sulfate Proteoglycan NG2 and the xLacZ4 transgenic reporter. We next confirm pericyte-specific PDGFRβ expression in the brains of F7 mutants and show that these mice are viable in spite of substantial 40-60% reductions in regional pericyte coverage of brain capillaries.

Conclusions

Our data show that PDGFRβ is exclusively expressed in pericytes in the adult 129S1/Sv1mJ and F7 mouse brain. Moreover, our findings suggest that genetic disruption of PDGFRβ signaling results in a pericyte-specific insult in adult F7 mutants and will not exert a primary effect on neurons because PDGFRβ is not expressed in neurons of the adult 129S1/SvlmJ and F7 mouse brain. Therefore, mouse models with normal and deficient PDGFRβ signaling on a 129S1/SvlmJ background may effectively be used to deduce the specific roles of pericytes in maintaining the cerebral microcirculation and BBB integrity in the adult and aging brain as well as during neurodegenerative and brain vascular disorders.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rouget C: Memoire sur le developpement, la structure et les proprieties des capillaires sanguins and lymphatiques. Archs Physiol Norm Pathol. 1873, 5: 603-633. Rouget C: Memoire sur le developpement, la structure et les proprieties des capillaires sanguins and lymphatiques. Archs Physiol Norm Pathol. 1873, 5: 603-633.
2.
go back to reference Balabanov R, Dore-Duffy P: Role of the CNC microvascular pericyte in the blood-brain barrier. J Neurosci Res. 1998, 53: 637-644. 10.1002/(SICI)1097-4547(19980915)53:6<637::AID-JNR1>3.0.CO;2-6.PubMedCrossRef Balabanov R, Dore-Duffy P: Role of the CNC microvascular pericyte in the blood-brain barrier. J Neurosci Res. 1998, 53: 637-644. 10.1002/(SICI)1097-4547(19980915)53:6<637::AID-JNR1>3.0.CO;2-6.PubMedCrossRef
3.
go back to reference Iadecola C: Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci. 2004, 5: 347-360. 10.1038/nrn1387.PubMedCrossRef Iadecola C: Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci. 2004, 5: 347-360. 10.1038/nrn1387.PubMedCrossRef
4.
go back to reference Zlokovic BV: The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008, 57: 178-201. 10.1016/j.neuron.2008.01.003.PubMedCrossRef Zlokovic BV: The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008, 57: 178-201. 10.1016/j.neuron.2008.01.003.PubMedCrossRef
5.
go back to reference Segura I, De Smet F, Hohensinner PJ, Ruiz de Almodovar C, Carmeliet P: The neurovascular link in health and disease: an update. Trends Mol Med. 2009, 15: 439-451. 10.1016/j.molmed.2009.08.005.PubMedCrossRef Segura I, De Smet F, Hohensinner PJ, Ruiz de Almodovar C, Carmeliet P: The neurovascular link in health and disease: an update. Trends Mol Med. 2009, 15: 439-451. 10.1016/j.molmed.2009.08.005.PubMedCrossRef
6.
go back to reference Shepro D, Morel NM: Pericyte physiology. FASEB J. 1993, 7: 1031-1038.PubMed Shepro D, Morel NM: Pericyte physiology. FASEB J. 1993, 7: 1031-1038.PubMed
7.
go back to reference Armulik A, Abramsson A, Betsholtz C: Endothelial/pericyte interactions. Circ Res. 2005, 97: 512-523. 10.1161/01.RES.0000182903.16652.d7.PubMedCrossRef Armulik A, Abramsson A, Betsholtz C: Endothelial/pericyte interactions. Circ Res. 2005, 97: 512-523. 10.1161/01.RES.0000182903.16652.d7.PubMedCrossRef
8.
go back to reference Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C: Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 1994, 8: 1875-1887. 10.1101/gad.8.16.1875.PubMedCrossRef Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C: Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 1994, 8: 1875-1887. 10.1101/gad.8.16.1875.PubMedCrossRef
9.
go back to reference Soriano P: Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev. 1994, 8: 1888-1896. 10.1101/gad.8.16.1888.PubMedCrossRef Soriano P: Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev. 1994, 8: 1888-1896. 10.1101/gad.8.16.1888.PubMedCrossRef
10.
go back to reference Lindahl P, Johansson BR, Leveen P, Betsholtz C: Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997, 277: 242-245. 10.1126/science.277.5323.242.PubMedCrossRef Lindahl P, Johansson BR, Leveen P, Betsholtz C: Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997, 277: 242-245. 10.1126/science.277.5323.242.PubMedCrossRef
11.
go back to reference Lindblom P, Gerhardt H, Liebner S, Abramsson A, Enge M, Hellstrom M, Backstrom G, Fredriksson S, Landegren U, Nystrom HC, Bergstrom G, Dejana E, Ostman A, Lindahl P, Betsholtz C: Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 2003, 17: 1835-1840. 10.1101/gad.266803.PubMedPubMedCentralCrossRef Lindblom P, Gerhardt H, Liebner S, Abramsson A, Enge M, Hellstrom M, Backstrom G, Fredriksson S, Landegren U, Nystrom HC, Bergstrom G, Dejana E, Ostman A, Lindahl P, Betsholtz C: Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 2003, 17: 1835-1840. 10.1101/gad.266803.PubMedPubMedCentralCrossRef
12.
go back to reference Tallquist MD, French WJ, Soriano P: Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development. PLoS Biol. 2003, 1: E52-10.1371/journal.pbio.0000052.PubMedPubMedCentralCrossRef Tallquist MD, French WJ, Soriano P: Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development. PLoS Biol. 2003, 1: E52-10.1371/journal.pbio.0000052.PubMedPubMedCentralCrossRef
13.
go back to reference Gaengel K, Genove G, Armulik A, Betsholtz C: Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol. 2009, 29: 630-638. 10.1161/ATVBAHA.107.161521.PubMedCrossRef Gaengel K, Genove G, Armulik A, Betsholtz C: Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol. 2009, 29: 630-638. 10.1161/ATVBAHA.107.161521.PubMedCrossRef
14.
go back to reference Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C: Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 1999, 126: 3047-3055.PubMed Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C: Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 1999, 126: 3047-3055.PubMed
15.
go back to reference Heldin CH, Ostman A, Ronnstrand L: Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta. 1998, 1378: F79-113.PubMed Heldin CH, Ostman A, Ronnstrand L: Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta. 1998, 1378: F79-113.PubMed
16.
go back to reference Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martin-Vasallo P, Diaz-Flores L: Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol. 2009, 24: 909-969.PubMed Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martin-Vasallo P, Diaz-Flores L: Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol. 2009, 24: 909-969.PubMed
17.
go back to reference Peppiatt CM, Howarth C, Mobbs P, Attwell D: Bidirectional control of CNS capillary diameter by pericytes. Nature. 2006, 443: 700-704. 10.1038/nature05193.PubMedPubMedCentralCrossRef Peppiatt CM, Howarth C, Mobbs P, Attwell D: Bidirectional control of CNS capillary diameter by pericytes. Nature. 2006, 443: 700-704. 10.1038/nature05193.PubMedPubMedCentralCrossRef
18.
go back to reference Pfister F, Feng Y, vom Hagen F, Hoffmann S, Molema G, Hillebrands JL, Shani M, Deutsch U, Hammes HP: Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes. 2008, 57: 2495-2502. 10.2337/db08-0325.PubMedPubMedCentralCrossRef Pfister F, Feng Y, vom Hagen F, Hoffmann S, Molema G, Hillebrands JL, Shani M, Deutsch U, Hammes HP: Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes. 2008, 57: 2495-2502. 10.2337/db08-0325.PubMedPubMedCentralCrossRef
19.
go back to reference Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T: Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med. 2009, 15: 1031-1037. 10.1038/nm.2022.PubMedCrossRef Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T: Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med. 2009, 15: 1031-1037. 10.1038/nm.2022.PubMedCrossRef
20.
go back to reference Tidhar A, Reichenstein M, Cohen D, Faerman A, Copeland NG, Gilbert DJ, Jenkins NA, Shani M: A novel transgenic marker for migrating limb muscle precursors and for vascular smooth muscle cells. Dev Dyn. 2001, 220: 60-73. 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1089>3.0.CO;2-X.PubMedCrossRef Tidhar A, Reichenstein M, Cohen D, Faerman A, Copeland NG, Gilbert DJ, Jenkins NA, Shani M: A novel transgenic marker for migrating limb muscle precursors and for vascular smooth muscle cells. Dev Dyn. 2001, 220: 60-73. 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1089>3.0.CO;2-X.PubMedCrossRef
21.
go back to reference Song S, Ewald AJ, Stallcup W, Werb Z, Bergers G: PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol. 2005, 7: 870-879. 10.1038/ncb1288.PubMedPubMedCentralCrossRef Song S, Ewald AJ, Stallcup W, Werb Z, Bergers G: PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol. 2005, 7: 870-879. 10.1038/ncb1288.PubMedPubMedCentralCrossRef
22.
go back to reference Kokovay E, Li L, Cunningham LA: Angiogenic recruitment of pericytes from bone marrow after stroke. J Cereb Blood Flow Metab. 2006, 26: 545-555. 10.1038/sj.jcbfm.9600214.PubMedCrossRef Kokovay E, Li L, Cunningham LA: Angiogenic recruitment of pericytes from bone marrow after stroke. J Cereb Blood Flow Metab. 2006, 26: 545-555. 10.1038/sj.jcbfm.9600214.PubMedCrossRef
23.
go back to reference Ohi Y, Ishii Y, Haji A, Noguchi S, Sasaoka T, Fujimori T, Nabeshima Y, Sasahara M, Hattori Y: Platelet-derived growth factor (PDGF)-BB inhibits AMPA receptor-mediated synaptic transmission via PDGF receptor-beta in murine nucleus tractus solitarius. Brain Res. 2007, 1159: 77-85. 10.1016/j.brainres.2007.05.037.PubMedCrossRef Ohi Y, Ishii Y, Haji A, Noguchi S, Sasaoka T, Fujimori T, Nabeshima Y, Sasahara M, Hattori Y: Platelet-derived growth factor (PDGF)-BB inhibits AMPA receptor-mediated synaptic transmission via PDGF receptor-beta in murine nucleus tractus solitarius. Brain Res. 2007, 1159: 77-85. 10.1016/j.brainres.2007.05.037.PubMedCrossRef
24.
go back to reference Ohi Y, Ishii Y, Sasahara M, Haji A: Involvement of platelet-derived growth factor-BB and its receptor-beta in hypoxia-induced depression of excitatory synaptic transmission in the nucleus tractus solitarius of mice. J Pharmacol Sci. 2010, 112: 477-481. 10.1254/jphs.09345SC.PubMedCrossRef Ohi Y, Ishii Y, Sasahara M, Haji A: Involvement of platelet-derived growth factor-BB and its receptor-beta in hypoxia-induced depression of excitatory synaptic transmission in the nucleus tractus solitarius of mice. J Pharmacol Sci. 2010, 112: 477-481. 10.1254/jphs.09345SC.PubMedCrossRef
25.
go back to reference Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG, Landegren U: Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods. 2006, 3: 995-1000. 10.1038/nmeth947.PubMedCrossRef Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG, Landegren U: Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods. 2006, 3: 995-1000. 10.1038/nmeth947.PubMedCrossRef
26.
go back to reference Soderberg O, Leuchowius KJ, Gullberg M, Jarvius M, Weibrecht I, Larsson LG, Landegren U: Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods. 2008, 45: 227-232. 10.1016/j.ymeth.2008.06.014.PubMedCrossRef Soderberg O, Leuchowius KJ, Gullberg M, Jarvius M, Weibrecht I, Larsson LG, Landegren U: Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods. 2008, 45: 227-232. 10.1016/j.ymeth.2008.06.014.PubMedCrossRef
27.
go back to reference Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA: A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 2008, 28: 264-267. 10.1523/JNEUROSCI.4178-07.2008.PubMedCrossRef Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA: A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 2008, 28: 264-267. 10.1523/JNEUROSCI.4178-07.2008.PubMedCrossRef
29.
go back to reference Zheng L, Ishii Y, Tokunaga A, Hamashima T, Shen J, Zhao QL, Ishizawa S, Fujimori T, Nabeshima Y, Mori H, Kondo T, Sasahara M: Neuroprotective effects of PDGF against oxidative stress and the signaling pathway involved. J Neurosci Res. 2010, 88: 1273-1284. 10.1002/jnr.22488.PubMedCrossRef Zheng L, Ishii Y, Tokunaga A, Hamashima T, Shen J, Zhao QL, Ishizawa S, Fujimori T, Nabeshima Y, Mori H, Kondo T, Sasahara M: Neuroprotective effects of PDGF against oxidative stress and the signaling pathway involved. J Neurosci Res. 2010, 88: 1273-1284. 10.1002/jnr.22488.PubMedCrossRef
30.
go back to reference Tosh D, Slack JM: How cells change their phenotype. Nat Rev Mol Cell Biol. 2002, 3: 187-194. 10.1038/nrm761.PubMedCrossRef Tosh D, Slack JM: How cells change their phenotype. Nat Rev Mol Cell Biol. 2002, 3: 187-194. 10.1038/nrm761.PubMedCrossRef
31.
go back to reference Hsieh J, Gage FH: Epigenetic control of neural stem cell fate. Curr Opin Genet Dev. 2004, 14: 461-469. 10.1016/j.gde.2004.07.006.PubMedCrossRef Hsieh J, Gage FH: Epigenetic control of neural stem cell fate. Curr Opin Genet Dev. 2004, 14: 461-469. 10.1016/j.gde.2004.07.006.PubMedCrossRef
32.
go back to reference Liu XS, Zhang ZG, Zhang RL, Gregg SR, Meng H, Chopp M: Comparison of in vivo and in vitro gene expression profiles in subventricular zone neural progenitor cells from the adult mouse after middle cerebral artery occlusion. Neuroscience. 2007, 146: 1053-1061. 10.1016/j.neuroscience.2007.02.056.PubMedPubMedCentralCrossRef Liu XS, Zhang ZG, Zhang RL, Gregg SR, Meng H, Chopp M: Comparison of in vivo and in vitro gene expression profiles in subventricular zone neural progenitor cells from the adult mouse after middle cerebral artery occlusion. Neuroscience. 2007, 146: 1053-1061. 10.1016/j.neuroscience.2007.02.056.PubMedPubMedCentralCrossRef
33.
go back to reference Ishii Y, Oya T, Zheng L, Gao Z, Kawaguchi M, Sabit H, Matsushima T, Tokunaga A, Ishizawa S, Hori E, Nabeshima Y, Sasaoka T, Fujimori T, Mori H, Sasahara M: Mouse brains deficient in neuronal PDGF receptor-beta develop normally but are vulnerable to injury. J Neurochem. 2006, 98: 588-600. 10.1111/j.1471-4159.2006.03922.x.PubMedCrossRef Ishii Y, Oya T, Zheng L, Gao Z, Kawaguchi M, Sabit H, Matsushima T, Tokunaga A, Ishizawa S, Hori E, Nabeshima Y, Sasaoka T, Fujimori T, Mori H, Sasahara M: Mouse brains deficient in neuronal PDGF receptor-beta develop normally but are vulnerable to injury. J Neurochem. 2006, 98: 588-600. 10.1111/j.1471-4159.2006.03922.x.PubMedCrossRef
34.
go back to reference Dore-Duffy P, Katychev A, Wang X, Van Buren E: CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab. 2006, 26: 613-624. 10.1038/sj.jcbfm.9600272.PubMedCrossRef Dore-Duffy P, Katychev A, Wang X, Van Buren E: CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab. 2006, 26: 613-624. 10.1038/sj.jcbfm.9600272.PubMedCrossRef
35.
go back to reference Heldin CH, Backstrom G, Ostman A, Hammacher A, Ronnstrand L, Rubin K, Nister M, Westermark B: Binding of different dimeric forms of PDGF to human fibroblasts: evidence for two separate receptor types. EMBO J. 1988, 7: 1387-1393.PubMedPubMedCentral Heldin CH, Backstrom G, Ostman A, Hammacher A, Ronnstrand L, Rubin K, Nister M, Westermark B: Binding of different dimeric forms of PDGF to human fibroblasts: evidence for two separate receptor types. EMBO J. 1988, 7: 1387-1393.PubMedPubMedCentral
36.
go back to reference Claesson-Welsh L, Eriksson A, Westermark B, Heldin CH: cDNA cloning and expression of the human A-type platelet-derived growth factor (PDGF) receptor establishes structural similarity to the B-type PDGF receptor. Proc Natl Acad Sci USA. 1989, 86: 4917-4921. 10.1073/pnas.86.13.4917.PubMedPubMedCentralCrossRef Claesson-Welsh L, Eriksson A, Westermark B, Heldin CH: cDNA cloning and expression of the human A-type platelet-derived growth factor (PDGF) receptor establishes structural similarity to the B-type PDGF receptor. Proc Natl Acad Sci USA. 1989, 86: 4917-4921. 10.1073/pnas.86.13.4917.PubMedPubMedCentralCrossRef
37.
go back to reference Eriksson A, Siegbahn A, Westermark B, Heldin CH, Claesson-Welsh L: PDGF alpha- and beta-receptors activate unique and common signal transduction pathways. EMBO J. 1992, 11: 543-550.PubMedPubMedCentral Eriksson A, Siegbahn A, Westermark B, Heldin CH, Claesson-Welsh L: PDGF alpha- and beta-receptors activate unique and common signal transduction pathways. EMBO J. 1992, 11: 543-550.PubMedPubMedCentral
38.
go back to reference Vignais L, Oumesmar BN, Baron-Van Evercooren AB: PDGF-alpha receptor is expressed by mature neurones of the central nervous system. Neuroreport. 1995, 6: 1993-1996. 10.1097/00001756-199510010-00010.PubMedCrossRef Vignais L, Oumesmar BN, Baron-Van Evercooren AB: PDGF-alpha receptor is expressed by mature neurones of the central nervous system. Neuroreport. 1995, 6: 1993-1996. 10.1097/00001756-199510010-00010.PubMedCrossRef
39.
go back to reference Oumesmar BN, Vignais L, Baron-Van Evercooren A: Developmental expression of platelet-derived growth factor alpha-receptor in neurons and glial cells of the mouse CNS. J Neurosci. 1997, 17: 125-139. Oumesmar BN, Vignais L, Baron-Van Evercooren A: Developmental expression of platelet-derived growth factor alpha-receptor in neurons and glial cells of the mouse CNS. J Neurosci. 1997, 17: 125-139.
40.
go back to reference Tabrizi P, Wang L, Seeds N, McComb JG, Yamada S, Griffin JH, Carmeliet P, Weiss MH, Zlokovic BV: Tissue plasminogen activator (tPA) deficiency exacerbates cerebrovascular fibrin deposition and brain injury in a murine stroke model: studies in tPA-deficient mice and wild-type mice on a matched genetic control. Aterioscler Thromb Vasc Biol. 1999, 19: 2801-2806.CrossRef Tabrizi P, Wang L, Seeds N, McComb JG, Yamada S, Griffin JH, Carmeliet P, Weiss MH, Zlokovic BV: Tissue plasminogen activator (tPA) deficiency exacerbates cerebrovascular fibrin deposition and brain injury in a murine stroke model: studies in tPA-deficient mice and wild-type mice on a matched genetic control. Aterioscler Thromb Vasc Biol. 1999, 19: 2801-2806.CrossRef
41.
go back to reference Connolly ES, Winfree CJ, Stern DM, Solomon RA, Pinsky DJ: Procedural and strain-related variables significantly affect outcome in a murine model of focal cerebral ischemia. Neurosurgery. 1996, 38: 523-531. 10.1097/00006123-199603000-00021. discussion 532PubMed Connolly ES, Winfree CJ, Stern DM, Solomon RA, Pinsky DJ: Procedural and strain-related variables significantly affect outcome in a murine model of focal cerebral ischemia. Neurosurgery. 1996, 38: 523-531. 10.1097/00006123-199603000-00021. discussion 532PubMed
42.
go back to reference Mutant mice and neuroscience: recommendations concerning genetic background. Banbury Conference on genetic background in mice. Neuron. 1997, 19: 755-759. 10.1016/S0896-6273(00)80958-7. Mutant mice and neuroscience: recommendations concerning genetic background. Banbury Conference on genetic background in mice. Neuron. 1997, 19: 755-759. 10.1016/S0896-6273(00)80958-7.
43.
go back to reference Sandberg R, Yasuda R, Pankratz DG, Carter TA, Del Rio JA, Wodicka L, Mayford M, Lockhart DJ, Barlow C: Regional and strain-specific gene expression mapping in the adult mouse brain. Proc Natl Acad Sci USA. 2000, 97: 11038-11043. 10.1073/pnas.97.20.11038.PubMedPubMedCentralCrossRef Sandberg R, Yasuda R, Pankratz DG, Carter TA, Del Rio JA, Wodicka L, Mayford M, Lockhart DJ, Barlow C: Regional and strain-specific gene expression mapping in the adult mouse brain. Proc Natl Acad Sci USA. 2000, 97: 11038-11043. 10.1073/pnas.97.20.11038.PubMedPubMedCentralCrossRef
44.
go back to reference Smits A, Kato M, Westermark B, Nister M, Heldin CH, Funa K, Neurotrophic activity of platlet-derived growth factor (PDGF): Rat neuronal cells possess functional PDGF beta-type receptors and respond to PDGF. Proc Natl Acad Sci USA. 1991, 88: 8159-8163. 10.1073/pnas.88.18.8159.PubMedPubMedCentralCrossRef Smits A, Kato M, Westermark B, Nister M, Heldin CH, Funa K, Neurotrophic activity of platlet-derived growth factor (PDGF): Rat neuronal cells possess functional PDGF beta-type receptors and respond to PDGF. Proc Natl Acad Sci USA. 1991, 88: 8159-8163. 10.1073/pnas.88.18.8159.PubMedPubMedCentralCrossRef
45.
go back to reference Berger M, Bergers G, Arnold B, Hammerling GJ, Ganss R: Regulator of G-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization. Blood. 2005, 105: 1094-1101. 10.1182/blood-2004-06-2315.PubMedCrossRef Berger M, Bergers G, Arnold B, Hammerling GJ, Ganss R: Regulator of G-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization. Blood. 2005, 105: 1094-1101. 10.1182/blood-2004-06-2315.PubMedCrossRef
46.
go back to reference Thompson CL, Pathak SD, Jeromin A, Ng LL, MacPherson CR, Mortrud MT, Cusick A, Riley ZL, Sunkin SM, Bernard A, Puchalski RB, Gage FH, Jones AR, Bajic VB, Hawrylycz MJ, Lein ES: Genomic anatomy of the hippocampus. Neuron. 2008, 60: 1010-1021. 10.1016/j.neuron.2008.12.008.PubMedCrossRef Thompson CL, Pathak SD, Jeromin A, Ng LL, MacPherson CR, Mortrud MT, Cusick A, Riley ZL, Sunkin SM, Bernard A, Puchalski RB, Gage FH, Jones AR, Bajic VB, Hawrylycz MJ, Lein ES: Genomic anatomy of the hippocampus. Neuron. 2008, 60: 1010-1021. 10.1016/j.neuron.2008.12.008.PubMedCrossRef
Metadata
Title
Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling
Authors
Ethan A Winkler
Robert D Bell
Berislav V Zlokovic
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2010
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-5-32

Other articles of this Issue 1/2010

Molecular Neurodegeneration 1/2010 Go to the issue