Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2014

Open Access 01-12-2014 | Research

Effects of high-fat diet and the anti-diabetic drug metformin on circulating GLP-1 and the relative number of intestinal L-cells

Authors: Camilla Kappe, Qimin Zhang, Thomas Nyström, Åke Sjöholm

Published in: Diabetology & Metabolic Syndrome | Issue 1/2014

Login to get access

Abstract

Background

Elevated serum free fatty acids (FFAs) contribute to the pathogenesis of type-2-diabetes (T2D), and lipotoxicity is observed in many cell types. We recently showed that simulated hyperlipidemia induces lipoapoptosis also in GLP-1-secreting L-cells in vitro, while metformin confers lipoprotection.
The aim of this study was to determine if a high fat diet (HFD) reduces the number of enteroendocrine L-cells and/or GLP-1 plasma levels in a rodent model, and potential effects thereupon of metformin treatment.

Methods

C57/Bl6 mice received control/HFD for 12-weeks, and oral administration of metformin/saline for the last 14 days. Blood glucose, glycosylated hemoglobin and plasma insulin and GLP-1 were determined before and after treatment with metformin using ELISAs. GLP-1-immunopositive cells in intestinal tissue sections were quantified using immunohistochemistry.

Results

A HFD increased blood glucose, glycosylated hemoglobin, and fasting plasma insulin (33%, 15% and 70% increase, respectively), in conjunction with reduced oral glucose tolerance, indicating the manifestation of insulin resistance. Metformin counteracted these adverse effects, while also reducing prandial plasma FFAs. The number of GLP-1-positive cells was indicated to be reduced (55% reduction of the number of GLP-1-positive cells, p = 0.134), while there was a trend toward increased prandial plasma GLP-1 despite reduced food intake following a HFD.

Conclusion

HFD-fed mice rapidly develop insulin resistance. Metformin exerts beneficial glucose lowering effects, and is indicated to improve the incretin response. Albeit no significant effect, a HFD tends to reduce the number of GLP-1-positive cells. However, considering concurrent normal or increased plasma GLP-1, any reduction in the number of GLP-1-positive cells, probably does not contribute to development of the glucose intolerance, but may contribute to progression of the diabetic state through eventual loss of a functional incretin response.
Appendix
Available only for authorised users
Literature
2.
go back to reference Vilsboll T, Krarup T, Deacon CF, Madsbad S, Holst JJ: Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes. 2001, 50: 609-613. 10.2337/diabetes.50.3.609.CrossRefPubMed Vilsboll T, Krarup T, Deacon CF, Madsbad S, Holst JJ: Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes. 2001, 50: 609-613. 10.2337/diabetes.50.3.609.CrossRefPubMed
3.
go back to reference Meier JJ, Nauck MA: Glucagon-like peptide 1(GLP-1) in biology and pathology. Diabetes Metab Res Rev. 2005, 21: 91-117. 10.1002/dmrr.538.CrossRefPubMed Meier JJ, Nauck MA: Glucagon-like peptide 1(GLP-1) in biology and pathology. Diabetes Metab Res Rev. 2005, 21: 91-117. 10.1002/dmrr.538.CrossRefPubMed
4.
go back to reference Gribble FM, Williams L, Simpson AK, Reimann F: A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes. 2003, 52: 1147-1154. 10.2337/diabetes.52.5.1147.CrossRefPubMed Gribble FM, Williams L, Simpson AK, Reimann F: A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes. 2003, 52: 1147-1154. 10.2337/diabetes.52.5.1147.CrossRefPubMed
5.
go back to reference Tolhurst G, Reimann F, Gribble FM: Nutritional regulation of glucagon-like peptide-1 secretion. J Physiol. 2009, 587: 27-32. 10.1113/jphysiol.2008.164012.PubMedCentralCrossRefPubMed Tolhurst G, Reimann F, Gribble FM: Nutritional regulation of glucagon-like peptide-1 secretion. J Physiol. 2009, 587: 27-32. 10.1113/jphysiol.2008.164012.PubMedCentralCrossRefPubMed
6.
go back to reference Kappe C, Patrone C, Holst JJ, Zhang Q, Sjoholm A: Metformin protects against lipoapoptosis and enhances GLP-1 secretion from GLP-1-producing cells. J Gastroenterol. 2013, 48: 322-332. 10.1007/s00535-012-0637-5.CrossRefPubMed Kappe C, Patrone C, Holst JJ, Zhang Q, Sjoholm A: Metformin protects against lipoapoptosis and enhances GLP-1 secretion from GLP-1-producing cells. J Gastroenterol. 2013, 48: 322-332. 10.1007/s00535-012-0637-5.CrossRefPubMed
7.
go back to reference Beglinger S, Drewe J, Schirra J, Goke B, D’Amato M, Beglinger C: Role of fat hydrolysis in regulating glucagon-like Peptide-1 secretion. J Clin Endocrinol Metab. 2010, 95: 879-886. 10.1210/jc.2009-1062.CrossRefPubMed Beglinger S, Drewe J, Schirra J, Goke B, D’Amato M, Beglinger C: Role of fat hydrolysis in regulating glucagon-like Peptide-1 secretion. J Clin Endocrinol Metab. 2010, 95: 879-886. 10.1210/jc.2009-1062.CrossRefPubMed
8.
go back to reference Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM: Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012, 61: 364-371. 10.2337/db11-1019.PubMedCentralCrossRefPubMed Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM: Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012, 61: 364-371. 10.2337/db11-1019.PubMedCentralCrossRefPubMed
9.
go back to reference Reimann F: Molecular mechanisms underlying nutrient detection by incretin-secreting cells. Int Dairy J. 2010, 20: 236-242. 10.1016/j.idairyj.2009.11.014.PubMedCentralCrossRefPubMed Reimann F: Molecular mechanisms underlying nutrient detection by incretin-secreting cells. Int Dairy J. 2010, 20: 236-242. 10.1016/j.idairyj.2009.11.014.PubMedCentralCrossRefPubMed
10.
go back to reference Listenberger LL, Han X, Lewis SE, Cases S, Farese RV, Ory DS, Schaffer JE: Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A. 2003, 100: 3077-3082. 10.1073/pnas.0630588100.PubMedCentralCrossRefPubMed Listenberger LL, Han X, Lewis SE, Cases S, Farese RV, Ory DS, Schaffer JE: Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A. 2003, 100: 3077-3082. 10.1073/pnas.0630588100.PubMedCentralCrossRefPubMed
11.
go back to reference Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers DG: Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes. 2001, 50: 1771-1777. 10.2337/diabetes.50.8.1771.CrossRefPubMed Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers DG: Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes. 2001, 50: 1771-1777. 10.2337/diabetes.50.8.1771.CrossRefPubMed
12.
go back to reference Muscelli E, Mari A, Casolaro A, Camastra S, Seghieri G, Gastaldelli A, Holst JJ, Ferrannini E: Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients. Diabetes. 2008, 57: 1340-1348. 10.2337/db07-1315.CrossRefPubMed Muscelli E, Mari A, Casolaro A, Camastra S, Seghieri G, Gastaldelli A, Holst JJ, Ferrannini E: Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients. Diabetes. 2008, 57: 1340-1348. 10.2337/db07-1315.CrossRefPubMed
13.
go back to reference Kappe C, Holst JJ, Zhang Q, Sjoholm A: Molecular mechanisms of lipoapoptosis and metformin protection in GLP-1 secreting cells. Biochem Biophys Res Commun. 2012, 427: 91-95. 10.1016/j.bbrc.2012.09.010.CrossRefPubMed Kappe C, Holst JJ, Zhang Q, Sjoholm A: Molecular mechanisms of lipoapoptosis and metformin protection in GLP-1 secreting cells. Biochem Biophys Res Commun. 2012, 427: 91-95. 10.1016/j.bbrc.2012.09.010.CrossRefPubMed
14.
go back to reference Mannucci E, Ognibene A, Cremasco F, Bardini G, Mencucci A, Pierazzuoli E, Ciani S, Messeri G, Rotella CM: Effect of metformin on glucagon-like peptide 1 (GLP-1) and leptin levels in obese nondiabetic subjects. Diabetes Care. 2001, 24: 489-494. 10.2337/diacare.24.3.489.CrossRefPubMed Mannucci E, Ognibene A, Cremasco F, Bardini G, Mencucci A, Pierazzuoli E, Ciani S, Messeri G, Rotella CM: Effect of metformin on glucagon-like peptide 1 (GLP-1) and leptin levels in obese nondiabetic subjects. Diabetes Care. 2001, 24: 489-494. 10.2337/diacare.24.3.489.CrossRefPubMed
15.
go back to reference Gundersen HJ, Bendtsen TF, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B, Sorensen FB, Vesterby A, West MJ: Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS. 1988, 96: 379-394. 10.1111/j.1699-0463.1988.tb05320.x.CrossRefPubMed Gundersen HJ, Bendtsen TF, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B, Sorensen FB, Vesterby A, West MJ: Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS. 1988, 96: 379-394. 10.1111/j.1699-0463.1988.tb05320.x.CrossRefPubMed
16.
go back to reference Giannarelli R, Aragona M, Coppelli A, Del Prato S: Reducing insulin resistance with metformin: the evidence today. Diabetes Metab. 2003, 29: 6S28-6S35. 10.1016/S1262-3636(07)70079-4.CrossRefPubMed Giannarelli R, Aragona M, Coppelli A, Del Prato S: Reducing insulin resistance with metformin: the evidence today. Diabetes Metab. 2003, 29: 6S28-6S35. 10.1016/S1262-3636(07)70079-4.CrossRefPubMed
17.
go back to reference Matsui Y, Hirasawa Y, Sugiura T, Toyoshi T, Kyuki K, Ito M: Metformin reduces body weight gain and improves glucose intolerance in high-fat diet-fed C57BL/6 J mice. Biol Pharm Bull. 2010, 33: 963-970. 10.1248/bpb.33.963.CrossRefPubMed Matsui Y, Hirasawa Y, Sugiura T, Toyoshi T, Kyuki K, Ito M: Metformin reduces body weight gain and improves glucose intolerance in high-fat diet-fed C57BL/6 J mice. Biol Pharm Bull. 2010, 33: 963-970. 10.1248/bpb.33.963.CrossRefPubMed
18.
go back to reference Ahlkvist L, Brown K, Ahren B: Upregulated insulin secretion in insulin-resistant mice: evidence of increased islet GLP1 receptor levels and GPR119-activated GLP1 secretion. Endocr Connect. 2013, 2: 69-78. 10.1530/EC-12-0079.PubMedCentralCrossRefPubMed Ahlkvist L, Brown K, Ahren B: Upregulated insulin secretion in insulin-resistant mice: evidence of increased islet GLP1 receptor levels and GPR119-activated GLP1 secretion. Endocr Connect. 2013, 2: 69-78. 10.1530/EC-12-0079.PubMedCentralCrossRefPubMed
Metadata
Title
Effects of high-fat diet and the anti-diabetic drug metformin on circulating GLP-1 and the relative number of intestinal L-cells
Authors
Camilla Kappe
Qimin Zhang
Thomas Nyström
Åke Sjöholm
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2014
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/1758-5996-6-70

Other articles of this Issue 1/2014

Diabetology & Metabolic Syndrome 1/2014 Go to the issue