Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2010

Open Access 01-12-2010 | Research

Three-dimensional structure of β-cell-specific zinc transporter, ZnT-8, predicted from the type 2 diabetes-associated gene variant SLC30A8 R325W

Author: Rob NM Weijers

Published in: Diabetology & Metabolic Syndrome | Issue 1/2010

Login to get access

Abstract

Background

We examined the effects of the R325W mutation on the three-dimensional (3D) structure of the β-cell-specific Zn2+ (zinc) transporter ZnT-8.

Methods

A model of the C-terminal domain of the human ZnT-8 protein was generated by homology modeling based on the known crystal structure of the Escherichia coli (E. coli) zinc transporter YiiP at 3.8 Å resolution.

Results

The homodimer ZnT-8 protein structure exists as a Y-shaped architecture with Arg325 located at the ultimate bottom of this motif at approximately 13.5 Å from the transmembrane domain juncture. The C-terminal domain sequences of the human ZnT-8 protein and the E. coli zinc transporter YiiP share 12.3% identical and 39.5% homologous residues resulting in an overall homology of 51.8%. Validation statistics of the homology model showed a reasonable quality of the model. The C-terminal domain exhibited an αββαβ fold with Arg325 as the penultimate N-terminal residue of the α2-helix. The side chains of both Arg325 and Trp325 point away from the interface with the other monomer, whereas the ε-NH3 + group of Arg325 is predicted to form an ionic interaction with the β-COO- group of Asp326 as well as Asp295. An amino acid alignment of the β2-α2 C-terminal loop domain revealed a variety of neutral amino acids at position 325 of different ZnT-8 proteins.

Conclusions

Our validated homology models predict that both Arg325 and Trp325, amino acids with a helix-forming behavior, and penultimate N-terminal residues in the α2-helix of the C-terminal domain, are shielded by the planar surface of the three cytoplasmic β-strands and hence unable to affect the sensing capacity of the C-terminal domain. Moreover, the amino acid residue at position 325 is too far removed from the docking and transporter parts of ZnT-8 to affect their local protein conformations. These data indicate that the inherited R325W abnormality in SLC30A8 may be tolerated and results in adequate zinc transfer to the correct sites in the pancreatic islet cells and are consistent with the observation that the SLC30A8 gene variant R325W has a low predicted value for future type 2 diabetes at population-based level.
Appendix
Available only for authorised users
Literature
1.
go back to reference Weijers RNM: Risk loci for type 2 diabetes - Quo vadis? [minireview]. Clin Chem Lab Med. 2009, 47: 383-386. 10.1515/CCLM.2009.077.CrossRefPubMed Weijers RNM: Risk loci for type 2 diabetes - Quo vadis? [minireview]. Clin Chem Lab Med. 2009, 47: 383-386. 10.1515/CCLM.2009.077.CrossRefPubMed
2.
go back to reference Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007, 316: 1331-1336. 10.1126/science.1142358.CrossRef Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007, 316: 1331-1336. 10.1126/science.1142358.CrossRef
3.
go back to reference Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, et al: Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007, 316: 1336-1341. 10.1126/science.1142364.PubMedCentralCrossRefPubMed Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, et al: Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007, 316: 1336-1341. 10.1126/science.1142364.PubMedCentralCrossRefPubMed
4.
go back to reference Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al: A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007, 316: 1341-1345. 10.1126/science.1142382.PubMedCentralCrossRefPubMed Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al: A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007, 316: 1341-1345. 10.1126/science.1142382.PubMedCentralCrossRefPubMed
5.
go back to reference Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediksson R, Jonsdottir T, Walters GB, et al: A variant in CDKALI influences insulin response and risk of type 2 diabetes. Science. 2007, 316: 770-775. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediksson R, Jonsdottir T, Walters GB, et al: A variant in CDKALI influences insulin response and risk of type 2 diabetes. Science. 2007, 316: 770-775.
6.
go back to reference Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al: A genome-wide association study identifies novel risk loci for type 2 diabetes. Nat. 2007, 445: 828-830. 10.1038/nature05616.CrossRef Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al: A genome-wide association study identifies novel risk loci for type 2 diabetes. Nat. 2007, 445: 828-830. 10.1038/nature05616.CrossRef
7.
go back to reference A Meigs JB, Shrader P, Sullivan LM, McAteer JB, Fox CS, Dupuis J, et al: Genome score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med. 2008, 359: 2208-2219. 10.1056/NEJMoa0804742.CrossRefPubMed A Meigs JB, Shrader P, Sullivan LM, McAteer JB, Fox CS, Dupuis J, et al: Genome score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med. 2008, 359: 2208-2219. 10.1056/NEJMoa0804742.CrossRefPubMed
8.
go back to reference Hoek van M, Dehghan A, Witteman JCM, Duijn van CM, Uitterlinden AG, Oostra BA, et al: Predicting type 2 diabetes based on polymorphisms from genome-wide association studies. A population-based study. Diabetes. 2008, 57: 3122-3128. 10.2337/db08-0425.CrossRef Hoek van M, Dehghan A, Witteman JCM, Duijn van CM, Uitterlinden AG, Oostra BA, et al: Predicting type 2 diabetes based on polymorphisms from genome-wide association studies. A population-based study. Diabetes. 2008, 57: 3122-3128. 10.2337/db08-0425.CrossRef
9.
go back to reference Lango H, Palmer CAN, Morris AD, Zeggini E, Hattersley AT, McCarthy MI, et al: Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk. Diabetes. 2008, 57: 3129-3135. 10.2337/db08-0504.PubMedCentralCrossRefPubMed Lango H, Palmer CAN, Morris AD, Zeggini E, Hattersley AT, McCarthy MI, et al: Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk. Diabetes. 2008, 57: 3129-3135. 10.2337/db08-0504.PubMedCentralCrossRefPubMed
10.
go back to reference D Miyake K, Yang W, Hara K, Horikawa Y, Osawa H, et al: Construction of a prediction model for type 2 diabetes mellitus in the Japanese population based on 11 genes with strong evidence of the association. J Hum genet. 2009, 54: 236-241. 10.1038/jhg.2009.17.CrossRef D Miyake K, Yang W, Hara K, Horikawa Y, Osawa H, et al: Construction of a prediction model for type 2 diabetes mellitus in the Japanese population based on 11 genes with strong evidence of the association. J Hum genet. 2009, 54: 236-241. 10.1038/jhg.2009.17.CrossRef
11.
go back to reference Chimienti F, Devergnas S, Favier A, Seve M: Identification and cloning of a β-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes. 2004, 53: 2330-2337. 10.2337/diabetes.53.9.2330.CrossRefPubMed Chimienti F, Devergnas S, Favier A, Seve M: Identification and cloning of a β-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes. 2004, 53: 2330-2337. 10.2337/diabetes.53.9.2330.CrossRefPubMed
12.
go back to reference Chimienti F, Devergnas S, Pattou F, Schuit F, Garcia-Cuenca R, Vandewalle B, et al: In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci. 2006, 119: 4199-4206. 10.1242/jcs.03164.CrossRefPubMed Chimienti F, Devergnas S, Pattou F, Schuit F, Garcia-Cuenca R, Vandewalle B, et al: In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci. 2006, 119: 4199-4206. 10.1242/jcs.03164.CrossRefPubMed
13.
go back to reference Dunn MF: Zinc-ligand interactions modulate assembly and stability of the insulin hexamer [review]. Biometals. 2005, 18: 295-303. 10.1007/s10534-005-3685-y.CrossRefPubMed Dunn MF: Zinc-ligand interactions modulate assembly and stability of the insulin hexamer [review]. Biometals. 2005, 18: 295-303. 10.1007/s10534-005-3685-y.CrossRefPubMed
14.
go back to reference Chimienti F, Aouffen M, Favier A, Seve M: Zinc homeostasis-regulating proteins: new drug targets for triggering cell fate. Curr Drug Targets. 2003, 4: 323-328. 10.2174/1389450033491082.CrossRefPubMed Chimienti F, Aouffen M, Favier A, Seve M: Zinc homeostasis-regulating proteins: new drug targets for triggering cell fate. Curr Drug Targets. 2003, 4: 323-328. 10.2174/1389450033491082.CrossRefPubMed
15.
go back to reference Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, et al: The Pfam protein families database. Nucleic Acids Res. 2004, 32: 138-141. 10.1093/nar/gkh121.CrossRef Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, et al: The Pfam protein families database. Nucleic Acids Res. 2004, 32: 138-141. 10.1093/nar/gkh121.CrossRef
16.
go back to reference Haney CJ, Grass G, Franke S, Rensing C: New developments in the understanding of the cation diffusion facilitator family. J Industrial Microbiol & Biotech. 2005, 32: 215-226.CrossRef Haney CJ, Grass G, Franke S, Rensing C: New developments in the understanding of the cation diffusion facilitator family. J Industrial Microbiol & Biotech. 2005, 32: 215-226.CrossRef
17.
go back to reference Montanini B, Blaudez D, Jeandroz S, Sanders D, Chalot M: Phylogenetic and fuctional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics. 2007, 8: 107-10.1186/1471-2164-8-107. [PubMed: 17448255]PubMedCentralCrossRefPubMed Montanini B, Blaudez D, Jeandroz S, Sanders D, Chalot M: Phylogenetic and fuctional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics. 2007, 8: 107-10.1186/1471-2164-8-107. [PubMed: 17448255]PubMedCentralCrossRefPubMed
18.
go back to reference Paulsen IT, Saier MH: A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol. 1997, 156: 99-103. 10.1007/s002329900192.CrossRefPubMed Paulsen IT, Saier MH: A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol. 1997, 156: 99-103. 10.1007/s002329900192.CrossRefPubMed
19.
go back to reference Lu M, Fu D: Structure of the zinc transporter YiiP. Science. 2007, 317: 1746-1748. 10.1126/science.1143748.CrossRefPubMed Lu M, Fu D: Structure of the zinc transporter YiiP. Science. 2007, 317: 1746-1748. 10.1126/science.1143748.CrossRefPubMed
20.
go back to reference Cherezov V, Höfer N, Szebenyl DME, Kolaj O, Wall JG, Gillilan R, et al: Insights into the mode of action of a putative zinc transporter CzrB in Thermus thermophilus. Structure. 2008, 16: 1378-1388. 10.1016/j.str.2008.05.014.PubMedCentralCrossRefPubMed Cherezov V, Höfer N, Szebenyl DME, Kolaj O, Wall JG, Gillilan R, et al: Insights into the mode of action of a putative zinc transporter CzrB in Thermus thermophilus. Structure. 2008, 16: 1378-1388. 10.1016/j.str.2008.05.014.PubMedCentralCrossRefPubMed
21.
go back to reference Agre P, Bonhivers M, Borgnia MJ: The aquaporins, blueprints for cellular plumbing systems. J Biol Chem. 1998, 273: 14659-14662. 10.1074/jbc.273.24.14659.CrossRefPubMed Agre P, Bonhivers M, Borgnia MJ: The aquaporins, blueprints for cellular plumbing systems. J Biol Chem. 1998, 273: 14659-14662. 10.1074/jbc.273.24.14659.CrossRefPubMed
22.
go back to reference Tomii K, Kanehisa M: A comparative analysis of ABC transporters in complete microbial genomes. Genome Res. 1998, 8: 1048-1059.PubMed Tomii K, Kanehisa M: A comparative analysis of ABC transporters in complete microbial genomes. Genome Res. 1998, 8: 1048-1059.PubMed
23.
go back to reference Wei Y, Li H, Fu D: Oligomeric state of the Eschericia coli metal transporter YiiP. J Biol Chem. 279, 38: 39251-39259. Wei Y, Li H, Fu D: Oligomeric state of the Eschericia coli metal transporter YiiP. J Biol Chem. 279, 38: 39251-39259.
25.
go back to reference Gasteiger E, Gattiker A, Hoogland C, Ivany I, Appel RD, Bairoch A, et al: ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31: 3784-3788. 10.1093/nar/gkg563.PubMedCentralCrossRefPubMed Gasteiger E, Gattiker A, Hoogland C, Ivany I, Appel RD, Bairoch A, et al: ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31: 3784-3788. 10.1093/nar/gkg563.PubMedCentralCrossRefPubMed
26.
go back to reference Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al: The Protein Databank. Nucleic Acids Res. 2000, 28: 235-242. 10.1093/nar/28.1.235.PubMedCentralCrossRefPubMed Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al: The Protein Databank. Nucleic Acids Res. 2000, 28: 235-242. 10.1093/nar/28.1.235.PubMedCentralCrossRefPubMed
27.
go back to reference Sali A, Blundell TL: Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993, 234: 779-815. 10.1006/jmbi.1993.1626.CrossRefPubMed Sali A, Blundell TL: Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993, 234: 779-815. 10.1006/jmbi.1993.1626.CrossRefPubMed
28.
go back to reference Bhattacharya A, Tejero R, Montelione GT: Evaluating protein structures determined by structural genomics consortia. Proteins: Structure, Function, and Bioinformatics. 2007, 66: 778-795. 10.1002/prot.21165.CrossRef Bhattacharya A, Tejero R, Montelione GT: Evaluating protein structures determined by structural genomics consortia. Proteins: Structure, Function, and Bioinformatics. 2007, 66: 778-795. 10.1002/prot.21165.CrossRef
29.
go back to reference Laskowski RA, MacArthur MW, Moss DS, Thornton JM: PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Cryst. 1993, 26: 283-291. 10.1107/S0021889892009944.CrossRef Laskowski RA, MacArthur MW, Moss DS, Thornton JM: PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Cryst. 1993, 26: 283-291. 10.1107/S0021889892009944.CrossRef
30.
go back to reference Lüthy R, Bowie JU, Eisenberg D: Assessment of protein models with three-dimensional profiles. Nature. 1992, 356: 83-85. 10.1038/356083a0.CrossRefPubMed Lüthy R, Bowie JU, Eisenberg D: Assessment of protein models with three-dimensional profiles. Nature. 1992, 356: 83-85. 10.1038/356083a0.CrossRefPubMed
31.
go back to reference Sippl MJ: Recognition of errors in three-dimensional structures of proteins. Proteins. 1993, 17: 355-362. 10.1002/prot.340170404.CrossRefPubMed Sippl MJ: Recognition of errors in three-dimensional structures of proteins. Proteins. 1993, 17: 355-362. 10.1002/prot.340170404.CrossRefPubMed
32.
go back to reference Word JM, Bateman RC, Presley BK, Lovell SC, Richardson DC: Exploring steric constraints on protein mutations using MAGE/PROBE. Prot Sci. 2000, 9: 2251-2259. 10.1110/ps.9.11.2251.CrossRef Word JM, Bateman RC, Presley BK, Lovell SC, Richardson DC: Exploring steric constraints on protein mutations using MAGE/PROBE. Prot Sci. 2000, 9: 2251-2259. 10.1110/ps.9.11.2251.CrossRef
33.
go back to reference DeLano WL: The PyMOL Molecular Grafics System. 2002, Palo Alto: DeLano Scientific LLC DeLano WL: The PyMOL Molecular Grafics System. 2002, Palo Alto: DeLano Scientific LLC
34.
go back to reference Nicolson TJ, Bellomo EA, Wijesekara N, Loder MK, Baldwin JM, Gyulkhandanyan AV, et al: Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes. 2009, 58: 2070-2083. 10.2337/db09-0551.PubMedCentralCrossRefPubMed Nicolson TJ, Bellomo EA, Wijesekara N, Loder MK, Baldwin JM, Gyulkhandanyan AV, et al: Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes. 2009, 58: 2070-2083. 10.2337/db09-0551.PubMedCentralCrossRefPubMed
35.
go back to reference Chothia C, Lesk AM: The relation between the divergence of sequence and structure in proteins. EMBO J. 1986, 5: 823-826.PubMedCentralPubMed Chothia C, Lesk AM: The relation between the divergence of sequence and structure in proteins. EMBO J. 1986, 5: 823-826.PubMedCentralPubMed
36.
go back to reference Tai K, Fowler P, Mokrab Y, Stansfeld P, Sansom MPS: Molecular modeling and simulation studies of ion channel structures, dynamics and mechanisms. Methods Cell Biol. 2008, 90: 233-265. full_text.CrossRefPubMed Tai K, Fowler P, Mokrab Y, Stansfeld P, Sansom MPS: Molecular modeling and simulation studies of ion channel structures, dynamics and mechanisms. Methods Cell Biol. 2008, 90: 233-265. full_text.CrossRefPubMed
37.
go back to reference Nicolson TJ, Bellomo EA, Wijesekara N, Loder MK, Baldwin JM, Gyulkhandanyan AV, et al: Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes. 2009, 58: 2070-2083. 10.2337/db09-0551.PubMedCentralCrossRefPubMed Nicolson TJ, Bellomo EA, Wijesekara N, Loder MK, Baldwin JM, Gyulkhandanyan AV, et al: Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes. 2009, 58: 2070-2083. 10.2337/db09-0551.PubMedCentralCrossRefPubMed
38.
go back to reference Hung IH, Casareno RLB, Labesse G, Mathews FS: HAH1 is a copper-binding protein with distinct amino acid residues mediating cpper homeostasis and antioxidant defense. J Biol Chem. 1998, 273: 1749-1754. 10.1074/jbc.273.3.1749.CrossRefPubMed Hung IH, Casareno RLB, Labesse G, Mathews FS: HAH1 is a copper-binding protein with distinct amino acid residues mediating cpper homeostasis and antioxidant defense. J Biol Chem. 1998, 273: 1749-1754. 10.1074/jbc.273.3.1749.CrossRefPubMed
39.
go back to reference Finney LA, O'Halloran TV: Transition metal speciation in the cell: insights from the chemistry of metal receptors. Science. 2003, 300: 931-936. 10.1126/science.1085049.CrossRefPubMed Finney LA, O'Halloran TV: Transition metal speciation in the cell: insights from the chemistry of metal receptors. Science. 2003, 300: 931-936. 10.1126/science.1085049.CrossRefPubMed
40.
go back to reference Rosenzweig AC, O'Halloran TV: Structure and chemistry of the copper chaperone proteins. Curr Opin Chem Biol. 2000, 4: 140-147. 10.1016/S1367-5931(99)00066-6.CrossRefPubMed Rosenzweig AC, O'Halloran TV: Structure and chemistry of the copper chaperone proteins. Curr Opin Chem Biol. 2000, 4: 140-147. 10.1016/S1367-5931(99)00066-6.CrossRefPubMed
41.
go back to reference Valentine RA, Jackson KA, Christie GR, Mathers JC, Taylor PM, Ford D: ZnT5 variant B is a bidirectional zinc transporter and mediates zinc uptake in human intestinal Caco-2 cells. J Biol Chem. 2007, 282: 14389-14393. 10.1074/jbc.M701752200.CrossRefPubMed Valentine RA, Jackson KA, Christie GR, Mathers JC, Taylor PM, Ford D: ZnT5 variant B is a bidirectional zinc transporter and mediates zinc uptake in human intestinal Caco-2 cells. J Biol Chem. 2007, 282: 14389-14393. 10.1074/jbc.M701752200.CrossRefPubMed
42.
go back to reference Peter GJ, Davies A, Watt PW, Birrell J, Taylor PM: Interactions between the thiol-group reagent N-ethylmaleimide and neutral and basic amino acid transporter-related amino acid transport. Biochem J. 1999, 343: 169-176. 10.1042/0264-6021:3430169.PubMedCentralCrossRefPubMed Peter GJ, Davies A, Watt PW, Birrell J, Taylor PM: Interactions between the thiol-group reagent N-ethylmaleimide and neutral and basic amino acid transporter-related amino acid transport. Biochem J. 1999, 343: 169-176. 10.1042/0264-6021:3430169.PubMedCentralCrossRefPubMed
43.
go back to reference Garrett RH, Grisham CM: Biochemistry. 1999, Fort Worth: Saunders College Publishing, 2 Garrett RH, Grisham CM: Biochemistry. 1999, Fort Worth: Saunders College Publishing, 2
44.
go back to reference Yki-Järvinen H: Pathogenesis of non-insulin-dependent diabetes mellitus. Lancet. 1994, 34: 91-95. 10.1016/S0140-6736(94)90821-4.CrossRef Yki-Järvinen H: Pathogenesis of non-insulin-dependent diabetes mellitus. Lancet. 1994, 34: 91-95. 10.1016/S0140-6736(94)90821-4.CrossRef
45.
go back to reference Weijers RNM, Bekedam DJ: Relationship between gestational diabetes mellitus and type 2 diabetes. Clin Chem. 2007, 53: 377-383. 10.1373/clinchem.2006.077636.CrossRefPubMed Weijers RNM, Bekedam DJ: Relationship between gestational diabetes mellitus and type 2 diabetes. Clin Chem. 2007, 53: 377-383. 10.1373/clinchem.2006.077636.CrossRefPubMed
Metadata
Title
Three-dimensional structure of β-cell-specific zinc transporter, ZnT-8, predicted from the type 2 diabetes-associated gene variant SLC30A8 R325W
Author
Rob NM Weijers
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2010
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/1758-5996-2-33

Other articles of this Issue 1/2010

Diabetology & Metabolic Syndrome 1/2010 Go to the issue