Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2014

Open Access 01-12-2014 | Research

Identification of a promising PI3K inhibitor for the treatment of multiple myeloma through the structural optimization

Authors: Kunkun Han, Xin Xu, Guodong Chen, Yuanying Zeng, Jingyu Zhu, Xiaolin Du, Zubin Zhang, Biyin Cao, Zhaopeng Liu, Xinliang Mao

Published in: Journal of Hematology & Oncology | Issue 1/2014

Login to get access

Abstract

Background

We previously reported a PI3K inhibitor S14161 which displays a promising preclinical activity against multiple myeloma (MM) and leukemia, but the chiral structure and poor solubility prevent its further application.

Methods

Six S14161 analogs were designed based on the structure–activity relationship; activity of the compounds in terms of cell death and inhibition of PI3K were analyzed by flow cytometry and Western blotting, respectively; anti-myeloma activity in vivo was performed on two independent xenograft models.

Results

Among the six analogs, BENC-511 was one of the most potent compounds which significantly inhibited PI3K activity and induced MM cell apoptosis. BENC-511 was able to inactivate PI3K and its downstream signals AKT, mTOR, p70S6K, and 4E-BP1 at 1 μM but had no effects on their total protein expression. Consistent with its effects on PI3K activity, BENC-511 induced MM cell apoptosis which was evidenced by the cleavage of Caspase-3 and PARP. Notably, addition of insulin-like growth factor 1 and interleukin-6, two important triggers for PI3K activation in MM cells, partly blocked BENC-511-induced MM cell death, which further demonstrated that PI3K signaling pathway was critical for the anti-myeloma activity of BENC-511. Moreover, BENC-511 also showed potent oral activity against myeloma in vivo. Oral administration of BENC-511 decreased tumor growth up to 80% within 3 weeks in two independent MM xenograft models at a dose of 50 mg/kg body weight, but presented minimal toxicity. Suppression of BENC-511 on MM tumor growth was associated with decreased PI3K/AKT activity and increased cell apoptosis.

Conclusions

Because of its potent anti-MM activity, low toxicity (LD50 oral >1.5 g/kg), and easy synthesis, BENC-511 could be developed as a promising agent for the treatment of MM via suppressing the PI3K/AKT signaling pathway.
Appendix
Available only for authorised users
Literature
1.
go back to reference Czech MP: PIP2 and PIP3: complex roles at the cell surface. Cell. 2000, 100 (6): 603-606. 10.1016/S0092-8674(00)80696-0.CrossRefPubMed Czech MP: PIP2 and PIP3: complex roles at the cell surface. Cell. 2000, 100 (6): 603-606. 10.1016/S0092-8674(00)80696-0.CrossRefPubMed
2.
go back to reference Cantrell DA: Phosphoinositide 3-kinase signalling pathways. J Cell Sci. 2001, 114 (Pt 8): 1439-1445.PubMed Cantrell DA: Phosphoinositide 3-kinase signalling pathways. J Cell Sci. 2001, 114 (Pt 8): 1439-1445.PubMed
3.
go back to reference Hu C, Huang L, Gest C, Xi X, Janin A, Soria C, Li H, Lu H: Opposite regulation by PI3K/Akt and MAPK/ERK pathways of tissue factor expression, cell-associated procoagulant activity and invasiveness in MDA-MB-231 cells. J Hematol Oncol. 2012, 5: 16-10.1186/1756-8722-5-16.PubMedCentralCrossRefPubMed Hu C, Huang L, Gest C, Xi X, Janin A, Soria C, Li H, Lu H: Opposite regulation by PI3K/Akt and MAPK/ERK pathways of tissue factor expression, cell-associated procoagulant activity and invasiveness in MDA-MB-231 cells. J Hematol Oncol. 2012, 5: 16-10.1186/1756-8722-5-16.PubMedCentralCrossRefPubMed
4.
go back to reference Shenker BJ, Ali H, Boesze-Battaglia K: PIP3 regulation as promising targeted therapy of mast-cell-mediated diseases. Curr Pharm Des. 2011, 17 (34): 3815-3822. 10.2174/138161211798357926.CrossRefPubMed Shenker BJ, Ali H, Boesze-Battaglia K: PIP3 regulation as promising targeted therapy of mast-cell-mediated diseases. Curr Pharm Des. 2011, 17 (34): 3815-3822. 10.2174/138161211798357926.CrossRefPubMed
5.
go back to reference Akinleye A, Avvaru P, Furqan M, Song Y, Liu D: Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. J Hematol Oncol. 2013, 6 (1): 88-10.1186/1756-8722-6-88.PubMedCentralCrossRefPubMed Akinleye A, Avvaru P, Furqan M, Song Y, Liu D: Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. J Hematol Oncol. 2013, 6 (1): 88-10.1186/1756-8722-6-88.PubMedCentralCrossRefPubMed
6.
go back to reference Vivanco I, Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002, 2 (7): 489-501. 10.1038/nrc839.CrossRefPubMed Vivanco I, Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002, 2 (7): 489-501. 10.1038/nrc839.CrossRefPubMed
7.
go back to reference Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira SM, Garcia-Echeverria C, Schultz PG, Reddy VA: The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci USA. 2009, 106 (1): 268-273. 10.1073/pnas.0810956106.PubMedCentralCrossRefPubMed Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira SM, Garcia-Echeverria C, Schultz PG, Reddy VA: The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci USA. 2009, 106 (1): 268-273. 10.1073/pnas.0810956106.PubMedCentralCrossRefPubMed
8.
go back to reference Polak R, Buitenhuis M: The PI3K/PKB signaling module as key regulator of hematopoiesis: implications for therapeutic strategies in leukemia. Blood. 2012, 119 (4): 911-923. 10.1182/blood-2011-07-366203.CrossRefPubMed Polak R, Buitenhuis M: The PI3K/PKB signaling module as key regulator of hematopoiesis: implications for therapeutic strategies in leukemia. Blood. 2012, 119 (4): 911-923. 10.1182/blood-2011-07-366203.CrossRefPubMed
9.
go back to reference Fang X, Zhou X, Wang X: Clinical development of phosphatidylinositol 3-kinase inhibitors for non-Hodgkin lymphoma. Biomark Res. 2013, 1 (1): 30-10.1186/2050-7771-1-30.PubMedCentralCrossRefPubMed Fang X, Zhou X, Wang X: Clinical development of phosphatidylinositol 3-kinase inhibitors for non-Hodgkin lymphoma. Biomark Res. 2013, 1 (1): 30-10.1186/2050-7771-1-30.PubMedCentralCrossRefPubMed
10.
go back to reference Li J, Zhu J, Cao B, Mao X: The mTOR signaling pathway is an emerging therapeutic target in multiple myeloma. Curr Pharm Des. 2014, 20 (1): 125-35. 10.2174/13816128113199990638.CrossRefPubMed Li J, Zhu J, Cao B, Mao X: The mTOR signaling pathway is an emerging therapeutic target in multiple myeloma. Curr Pharm Des. 2014, 20 (1): 125-35. 10.2174/13816128113199990638.CrossRefPubMed
11.
go back to reference Mao X, Cao B, Wood TE, Hurren R, Tong J, Wang X, Wang W, Li J, Jin Y, Sun W et al: A small-molecule inhibitor of D-cyclin transactivation displays preclinical efficacy in myeloma and leukemia via phosphoinositide 3-kinase pathway. Blood. 2011, 117 (6): 1986-1997. 10.1182/blood-2010-05-284810.CrossRefPubMed Mao X, Cao B, Wood TE, Hurren R, Tong J, Wang X, Wang W, Li J, Jin Y, Sun W et al: A small-molecule inhibitor of D-cyclin transactivation displays preclinical efficacy in myeloma and leukemia via phosphoinositide 3-kinase pathway. Blood. 2011, 117 (6): 1986-1997. 10.1182/blood-2010-05-284810.CrossRefPubMed
12.
go back to reference Falasca M: PI3K/Akt signalling pathway specific inhibitors: a novel strategy to sensitize cancer cells to anti-cancer drugs. Curr Pharm Des. 2010, 16 (12): 1410-1416. 10.2174/138161210791033950.CrossRefPubMed Falasca M: PI3K/Akt signalling pathway specific inhibitors: a novel strategy to sensitize cancer cells to anti-cancer drugs. Curr Pharm Des. 2010, 16 (12): 1410-1416. 10.2174/138161210791033950.CrossRefPubMed
13.
go back to reference Courtney KD, Corcoran RB, Engelman JA: The PI3K pathway as drug target in human cancer. J Clin Oncol. 2010, 28 (6): 1075-1083. 10.1200/JCO.2009.25.3641.PubMedCentralCrossRefPubMed Courtney KD, Corcoran RB, Engelman JA: The PI3K pathway as drug target in human cancer. J Clin Oncol. 2010, 28 (6): 1075-1083. 10.1200/JCO.2009.25.3641.PubMedCentralCrossRefPubMed
14.
go back to reference Wu P, Hu YZ: PI3K/Akt/mTOR pathway inhibitors in cancer: a perspective on clinical progress. Curr Med Chem. 2010, 17 (35): 4326-4341. 10.2174/092986710793361234.CrossRefPubMed Wu P, Hu YZ: PI3K/Akt/mTOR pathway inhibitors in cancer: a perspective on clinical progress. Curr Med Chem. 2010, 17 (35): 4326-4341. 10.2174/092986710793361234.CrossRefPubMed
15.
go back to reference Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB: Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005, 4 (12): 988-1004. 10.1038/nrd1902.CrossRefPubMed Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB: Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005, 4 (12): 988-1004. 10.1038/nrd1902.CrossRefPubMed
16.
go back to reference Bianchi G, Kumar S, Ghobrial IM, Roccaro AM: Cell trafficking in multiple myeloma. Open J Hematol. 2012, 3 (Suppl 1): 1-17.CrossRef Bianchi G, Kumar S, Ghobrial IM, Roccaro AM: Cell trafficking in multiple myeloma. Open J Hematol. 2012, 3 (Suppl 1): 1-17.CrossRef
17.
go back to reference Sutherlin DP, Baker S, Bisconte A, Blaney PM, Brown A, Chan BK, Chantry D, Castanedo G, DePledge P, Goldsmith P et al: Potent and selective inhibitors of PI3Kdelta: obtaining isoform selectivity from the affinity pocket and tryptophan shelf. Bioorg Med Chem Lett. 2012, 22 (13): 4296-4302. 10.1016/j.bmcl.2012.05.027.CrossRefPubMed Sutherlin DP, Baker S, Bisconte A, Blaney PM, Brown A, Chan BK, Chantry D, Castanedo G, DePledge P, Goldsmith P et al: Potent and selective inhibitors of PI3Kdelta: obtaining isoform selectivity from the affinity pocket and tryptophan shelf. Bioorg Med Chem Lett. 2012, 22 (13): 4296-4302. 10.1016/j.bmcl.2012.05.027.CrossRefPubMed
18.
go back to reference Zhang J, Choi Y, Mavromatis B, Lichtenstein A, Li W: Preferential killing of PTEN-null myelomas by PI3K inhibitors through Akt pathway. Oncogene. 2003, 22 (40): 6289-6295. 10.1038/sj.onc.1206718.CrossRefPubMed Zhang J, Choi Y, Mavromatis B, Lichtenstein A, Li W: Preferential killing of PTEN-null myelomas by PI3K inhibitors through Akt pathway. Oncogene. 2003, 22 (40): 6289-6295. 10.1038/sj.onc.1206718.CrossRefPubMed
19.
go back to reference Ramakrishnan V, Kimlinger T, Haug J, Painuly U, Wellik L, Halling T, Rajkumar SV, Kumar S: Anti-myeloma activity of Akt inhibition is linked to the activation status of PI3K/Akt and MEK/ERK pathway. PLoS One. 2012, 7 (11): e50005-10.1371/journal.pone.0050005.PubMedCentralCrossRefPubMed Ramakrishnan V, Kimlinger T, Haug J, Painuly U, Wellik L, Halling T, Rajkumar SV, Kumar S: Anti-myeloma activity of Akt inhibition is linked to the activation status of PI3K/Akt and MEK/ERK pathway. PLoS One. 2012, 7 (11): e50005-10.1371/journal.pone.0050005.PubMedCentralCrossRefPubMed
20.
go back to reference Hsu J, Shi Y, Krajewski S, Renner S, Fisher M, Reed JC, Franke TF, Lichtenstein A: The AKT kinase is activated in multiple myeloma tumor cells. Blood. 2001, 98 (9): 2853-2855. 10.1182/blood.V98.9.2853.CrossRefPubMed Hsu J, Shi Y, Krajewski S, Renner S, Fisher M, Reed JC, Franke TF, Lichtenstein A: The AKT kinase is activated in multiple myeloma tumor cells. Blood. 2001, 98 (9): 2853-2855. 10.1182/blood.V98.9.2853.CrossRefPubMed
21.
go back to reference Meadows SA, Vega F, Kashishian A, Johnson D, Diehl V, Miller LL, Younes A, Lannutti BJ: PI3Kdelta inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma. Blood. 2011, 119 (8): 1897-1900.CrossRefPubMed Meadows SA, Vega F, Kashishian A, Johnson D, Diehl V, Miller LL, Younes A, Lannutti BJ: PI3Kdelta inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma. Blood. 2011, 119 (8): 1897-1900.CrossRefPubMed
22.
go back to reference Brachmann SM, Kleylein-Sohn J, Gaulis S, Kauffmann A, Blommers MJ, Kazic-Legueux M, Laborde L, Hattenberger M, Stauffer F, Vaxelaire J et al: Characterization of the mechanism of action of the pan class I PI3K inhibitor NVP-BKM120 across a broad range of concentrations. Mol Cancer Ther. 2012, 11 (8): 1747-1757. 10.1158/1535-7163.MCT-11-1021.CrossRefPubMed Brachmann SM, Kleylein-Sohn J, Gaulis S, Kauffmann A, Blommers MJ, Kazic-Legueux M, Laborde L, Hattenberger M, Stauffer F, Vaxelaire J et al: Characterization of the mechanism of action of the pan class I PI3K inhibitor NVP-BKM120 across a broad range of concentrations. Mol Cancer Ther. 2012, 11 (8): 1747-1757. 10.1158/1535-7163.MCT-11-1021.CrossRefPubMed
23.
go back to reference Richardson PG, Eng C, Kolesar J, Hideshima T, Anderson KC: Perifosine, an oral, anti-cancer agent and inhibitor of the Akt pathway: mechanistic actions, pharmacodynamics, pharmacokinetics, and clinical activity. Expert Opin Drug Metab Toxicol. 2012, 8 (5): 623-633. 10.1517/17425255.2012.681376.PubMedCentralCrossRefPubMed Richardson PG, Eng C, Kolesar J, Hideshima T, Anderson KC: Perifosine, an oral, anti-cancer agent and inhibitor of the Akt pathway: mechanistic actions, pharmacodynamics, pharmacokinetics, and clinical activity. Expert Opin Drug Metab Toxicol. 2012, 8 (5): 623-633. 10.1517/17425255.2012.681376.PubMedCentralCrossRefPubMed
24.
go back to reference Ma J, Sawai H, Matsuo Y, Ochi N, Yasuda A, Takahashi H, Wakasugi T, Funahashi H, Sato M, Takeyama H: IGF-1 mediates PTEN suppression and enhances cell invasion and proliferation via activation of the IGF-1/PI3K/Akt signaling pathway in pancreatic cancer cells. J Surg Res. 2010, 160 (1): 90-101. 10.1016/j.jss.2008.08.016.CrossRefPubMed Ma J, Sawai H, Matsuo Y, Ochi N, Yasuda A, Takahashi H, Wakasugi T, Funahashi H, Sato M, Takeyama H: IGF-1 mediates PTEN suppression and enhances cell invasion and proliferation via activation of the IGF-1/PI3K/Akt signaling pathway in pancreatic cancer cells. J Surg Res. 2010, 160 (1): 90-101. 10.1016/j.jss.2008.08.016.CrossRefPubMed
25.
go back to reference Park S, Chapuis N, Tamburini J, Bardet V, Cornillet-Lefebvre P, Willems L, Green A, Mayeux P, Lacombe C, Bouscary D: Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia. Haematologica. 2010, 95 (5): 819-828. 10.3324/haematol.2009.013797.PubMedCentralCrossRefPubMed Park S, Chapuis N, Tamburini J, Bardet V, Cornillet-Lefebvre P, Willems L, Green A, Mayeux P, Lacombe C, Bouscary D: Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia. Haematologica. 2010, 95 (5): 819-828. 10.3324/haematol.2009.013797.PubMedCentralCrossRefPubMed
26.
go back to reference Bhatt AP, Bhende PM, Sin SH, Roy D, Dittmer DP, Damania B: Dual inhibition of PI3K and mTOR inhibits autocrine and paracrine proliferative loops in PI3K/Akt/mTOR-addicted lymphomas. Blood. 2010, 115 (22): 4455-4463. 10.1182/blood-2009-10-251082.PubMedCentralCrossRefPubMed Bhatt AP, Bhende PM, Sin SH, Roy D, Dittmer DP, Damania B: Dual inhibition of PI3K and mTOR inhibits autocrine and paracrine proliferative loops in PI3K/Akt/mTOR-addicted lymphomas. Blood. 2010, 115 (22): 4455-4463. 10.1182/blood-2009-10-251082.PubMedCentralCrossRefPubMed
27.
go back to reference Rodon J, Dienstmann R, Serra V, Tabernero J: Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol. 2013, 10 (3): 143-153. 10.1038/nrclinonc.2013.10.CrossRefPubMed Rodon J, Dienstmann R, Serra V, Tabernero J: Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol. 2013, 10 (3): 143-153. 10.1038/nrclinonc.2013.10.CrossRefPubMed
28.
go back to reference Guo YQ, Chen SL: [The significance of IGF-1, VEGF, IL-6 in multiple myeloma progression]. Zhonghua Xue Ye Xue Za Zhi. 2006, 27 (4): 231-234.PubMed Guo YQ, Chen SL: [The significance of IGF-1, VEGF, IL-6 in multiple myeloma progression]. Zhonghua Xue Ye Xue Za Zhi. 2006, 27 (4): 231-234.PubMed
29.
go back to reference Shannon EJ, Morales MJ, Sandoval F: Immunomodulatory assays to study structure-activity relationships of thalidomide. Immunopharmacology. 1997, 35 (3): 203-212. 10.1016/S0162-3109(96)00149-X.CrossRefPubMed Shannon EJ, Morales MJ, Sandoval F: Immunomodulatory assays to study structure-activity relationships of thalidomide. Immunopharmacology. 1997, 35 (3): 203-212. 10.1016/S0162-3109(96)00149-X.CrossRefPubMed
30.
go back to reference Hideshima T, Chauhan D, Shima Y, Raje N, Davies FE, Tai YT, Treon SP, Lin B, Schlossman RL, Richardson P et al: Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood. 2000, 96 (9): 2943-2950.PubMed Hideshima T, Chauhan D, Shima Y, Raje N, Davies FE, Tai YT, Treon SP, Lin B, Schlossman RL, Richardson P et al: Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood. 2000, 96 (9): 2943-2950.PubMed
31.
go back to reference Shimazawa R, Sano H, Tanatani A, Miyachi H, Hashimoto Y: Thalidomide as a nitric oxide synthase inhibitor and its structural development. Chem Pharm Bull (Tokyo). 2004, 52 (4): 498-499. 10.1248/cpb.52.498.CrossRef Shimazawa R, Sano H, Tanatani A, Miyachi H, Hashimoto Y: Thalidomide as a nitric oxide synthase inhibitor and its structural development. Chem Pharm Bull (Tokyo). 2004, 52 (4): 498-499. 10.1248/cpb.52.498.CrossRef
32.
go back to reference Hashimoto Y: Structural development of biological response modifiers based on thalidomide. Bioorg Med Chem. 2002, 10 (3): 461-479. 10.1016/S0968-0896(01)00308-X.CrossRefPubMed Hashimoto Y: Structural development of biological response modifiers based on thalidomide. Bioorg Med Chem. 2002, 10 (3): 461-479. 10.1016/S0968-0896(01)00308-X.CrossRefPubMed
33.
go back to reference Richardson P, Anderson K: Immunomodulatory analogs of thalidomide: an emerging new therapy in myeloma. J Clin Oncol. 2004, 22 (16): 3212-3214. 10.1200/JCO.2004.05.984.CrossRefPubMed Richardson P, Anderson K: Immunomodulatory analogs of thalidomide: an emerging new therapy in myeloma. J Clin Oncol. 2004, 22 (16): 3212-3214. 10.1200/JCO.2004.05.984.CrossRefPubMed
34.
go back to reference Foukas LC, Berenjeno IM, Gray A, Khwaja A, Vanhaesebroeck B: Activity of any class IA PI3K isoform can sustain cell proliferation and survival. Proc Natl Acad Sci USA. 2010, 107 (25): 11381-11386. 10.1073/pnas.0906461107.PubMedCentralCrossRefPubMed Foukas LC, Berenjeno IM, Gray A, Khwaja A, Vanhaesebroeck B: Activity of any class IA PI3K isoform can sustain cell proliferation and survival. Proc Natl Acad Sci USA. 2010, 107 (25): 11381-11386. 10.1073/pnas.0906461107.PubMedCentralCrossRefPubMed
35.
go back to reference Ghigo A, Damilano F, Braccini L, Hirsch E: PI3K inhibition in inflammation: Toward tailored therapies for specific diseases. Bioessays. 2010, 32 (3): 185-196. 10.1002/bies.200900150.CrossRefPubMed Ghigo A, Damilano F, Braccini L, Hirsch E: PI3K inhibition in inflammation: Toward tailored therapies for specific diseases. Bioessays. 2010, 32 (3): 185-196. 10.1002/bies.200900150.CrossRefPubMed
38.
go back to reference Chung J, Kuo CJ, Crabtree GR, Blenis J: Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell. 1992, 69 (7): 1227-1236. 10.1016/0092-8674(92)90643-Q.CrossRefPubMed Chung J, Kuo CJ, Crabtree GR, Blenis J: Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell. 1992, 69 (7): 1227-1236. 10.1016/0092-8674(92)90643-Q.CrossRefPubMed
39.
go back to reference Gingras AC, Kennedy SG, O’Leary MA, Sonenberg N, Hay N: 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 1998, 12 (4): 502-513. 10.1101/gad.12.4.502.PubMedCentralCrossRefPubMed Gingras AC, Kennedy SG, O’Leary MA, Sonenberg N, Hay N: 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 1998, 12 (4): 502-513. 10.1101/gad.12.4.502.PubMedCentralCrossRefPubMed
40.
go back to reference She QB, Halilovic E, Ye Q, Zhen W, Shirasawa S, Sasazuki T, Solit DB, Rosen N: 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell. 2010, 18 (1): 39-51. 10.1016/j.ccr.2010.05.023.PubMedCentralCrossRefPubMed She QB, Halilovic E, Ye Q, Zhen W, Shirasawa S, Sasazuki T, Solit DB, Rosen N: 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell. 2010, 18 (1): 39-51. 10.1016/j.ccr.2010.05.023.PubMedCentralCrossRefPubMed
41.
go back to reference Yin SQ, Shi M, Kong TT, Zhang CM, Han K, Cao B, Zhang Z, Du X, Tang LQ, Mao X et al: Preparation of S14161 and its analogues and the discovery of 6-bromo-8-ethoxy-3-nitro-2H-chromene as a more potent antitumor agent in vitro. Bioorg Med Chem Lett. 2013, 23 (11): 3314-3319. 10.1016/j.bmcl.2013.03.097.CrossRefPubMed Yin SQ, Shi M, Kong TT, Zhang CM, Han K, Cao B, Zhang Z, Du X, Tang LQ, Mao X et al: Preparation of S14161 and its analogues and the discovery of 6-bromo-8-ethoxy-3-nitro-2H-chromene as a more potent antitumor agent in vitro. Bioorg Med Chem Lett. 2013, 23 (11): 3314-3319. 10.1016/j.bmcl.2013.03.097.CrossRefPubMed
42.
go back to reference Ling C, Chen G, Chen G, Zhang Z, Cao B, Han K, Yin J, Chu A, Zhao Y, Mao X: A deuterated analog of dasatinib disrupts cell cycle progression and displays anti-non-small cell lung cancer activity in vitro and in vivo. Int J Cancer. 2012, 131 (10): 2411-2419. 10.1002/ijc.27504.CrossRefPubMed Ling C, Chen G, Chen G, Zhang Z, Cao B, Han K, Yin J, Chu A, Zhao Y, Mao X: A deuterated analog of dasatinib disrupts cell cycle progression and displays anti-non-small cell lung cancer activity in vitro and in vivo. Int J Cancer. 2012, 131 (10): 2411-2419. 10.1002/ijc.27504.CrossRefPubMed
Metadata
Title
Identification of a promising PI3K inhibitor for the treatment of multiple myeloma through the structural optimization
Authors
Kunkun Han
Xin Xu
Guodong Chen
Yuanying Zeng
Jingyu Zhu
Xiaolin Du
Zubin Zhang
Biyin Cao
Zhaopeng Liu
Xinliang Mao
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2014
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/1756-8722-7-9

Other articles of this Issue 1/2014

Journal of Hematology & Oncology 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine