Skip to main content
Top
Published in: Fibrogenesis & Tissue Repair 1/2012

Open Access 01-12-2012 | Proceedings

Functional role of intrahepatic monocyte subsets for the progression of liver inflammation and liver fibrosis in vivo

Author: Frank Tacke

Published in: Fibrogenesis & Tissue Repair | Special Issue 1/2012

Login to get access

Abstract

Sustained inflammation upon chronic liver injury induces the development of liver fibrosis in mice and men. Experimental models of liver fibrosis highlight the importance of hepatic macrophages, so-called Kupffer cells, for perpetuating inflammation by releasing proinflammatory cytokines and chemokines as well as activating hepatic stellate cells (HSC). Recent studies in mice demonstrate that these actions are only partially conducted by liver-resident macrophages, classically termed Kupffer cells, but largely depend on recruitment of monocytes into the liver. Monocytes are circulating precursors of tissue macrophages and dendritic cells (DC), which comprise two major subsets in blood, characterized by the differential expression of chemokine receptors, adhesion molecules and distinct markers, such as Ly6C/Gr1 in mice or CD14 and CD16 in humans. Upon organ injury, chemokine receptor CCR2 and its ligand MCP-1 (CCL2) as well as CCR8 and CCL1 promote monocyte subset accumulation in the liver, namely of the inflammatory Ly6C+ (Gr1+) monocyte subset as precursors of tissue macrophages. The infiltration of proinflammatory monocytes into injured murine liver can be specifically blocked by novel anti-MCP-1 directed agents. In contrast, chemokine receptor CX3CR1 and its ligand fractalkine (CX3CL1) are important negative regulators of monocyte infiltration in hepatic inflammation by controlling their survival and differentiation into functionally diverse macrophage subsets. In patients with liver cirrhosis, 'non-classical' CD14+CD16+ monocytes are found activated in blood as well as liver and promote pro-inflammatory along with pro-fibrogenic actions by the release of distinct cytokines and direct interactions with HSC, indicating that the findings from murine models can be translated into pathogenesis of human liver fibrosis. Moreover, experimental animal models indicate that monocytes/macrophages and DCs are not only critical for fibrosis progression, but also for fibrosis regression, because macrophages can also degrade extracellular matrix proteins and exert anti-inflammatory actions. The recently identified cellular and molecular pathways for monocyte subset recruitment, macrophage differentiation and interactions with other hepatic cell types in injured liver may therefore represent interesting novel targets for future therapeutic approaches in liver fibrosis.
Literature
1.
go back to reference Heymann F, Trautwein C, Tacke F: Monocytes and macrophages as cellular targets in liver fibrosis. Inflamm Allergy Drug Targets. 2009, 8: 307-318. 10.2174/187152809789352230.CrossRefPubMed Heymann F, Trautwein C, Tacke F: Monocytes and macrophages as cellular targets in liver fibrosis. Inflamm Allergy Drug Targets. 2009, 8: 307-318. 10.2174/187152809789352230.CrossRefPubMed
3.
go back to reference Imamura M, Ogawa T, Sasaguri Y, Chayama K, Ueno H: Suppression of macrophage infiltration inhibits activation of hepatic stellate cells and liver fibrogenesis in rats. Gastroenterology. 2005, 128: 138-146. 10.1053/j.gastro.2004.10.005.CrossRefPubMed Imamura M, Ogawa T, Sasaguri Y, Chayama K, Ueno H: Suppression of macrophage infiltration inhibits activation of hepatic stellate cells and liver fibrogenesis in rats. Gastroenterology. 2005, 128: 138-146. 10.1053/j.gastro.2004.10.005.CrossRefPubMed
4.
go back to reference Karlmark KR, Weiskirchen R, Zimmermann HW, Gassler N, Ginhoux F, Weber C, Merad M, Luedde T, Trautwein C, Tacke F: Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology. 2009, 50: 261-274. 10.1002/hep.22950.CrossRefPubMed Karlmark KR, Weiskirchen R, Zimmermann HW, Gassler N, Ginhoux F, Weber C, Merad M, Luedde T, Trautwein C, Tacke F: Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology. 2009, 50: 261-274. 10.1002/hep.22950.CrossRefPubMed
5.
go back to reference Mitchell C, Couton D, Couty JP, Anson M, Crain AM, Bizet V, Renia L, Pol S, Mallet V, Gilgenkrantz H: Dual role of CCR2 in the constitution and the resolution of liver fibrosis in mice. Am J Pathol. 2009, 174: 1766-1775. 10.2353/ajpath.2009.080632.PubMedCentralCrossRefPubMed Mitchell C, Couton D, Couty JP, Anson M, Crain AM, Bizet V, Renia L, Pol S, Mallet V, Gilgenkrantz H: Dual role of CCR2 in the constitution and the resolution of liver fibrosis in mice. Am J Pathol. 2009, 174: 1766-1775. 10.2353/ajpath.2009.080632.PubMedCentralCrossRefPubMed
6.
go back to reference Seki E, de Minicis S, Inokuchi S, Taura K, Miyai K, van Rooijen N, Schwabe RF, Brenner DA: CCR2 promotes hepatic fibrosis in mice. Hepatology. 2009, 50: 185-197. 10.1002/hep.22952.PubMedCentralCrossRefPubMed Seki E, de Minicis S, Inokuchi S, Taura K, Miyai K, van Rooijen N, Schwabe RF, Brenner DA: CCR2 promotes hepatic fibrosis in mice. Hepatology. 2009, 50: 185-197. 10.1002/hep.22952.PubMedCentralCrossRefPubMed
7.
go back to reference Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R, Iredale JP: Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest. 2005, 115: 56-65.PubMedCentralCrossRefPubMed Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R, Iredale JP: Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest. 2005, 115: 56-65.PubMedCentralCrossRefPubMed
8.
go back to reference Klein I, Cornejo JC, Polakos NK, John B, Wuensch SA, Topham DJ, Pierce RH, Crispe IN: Kupffer cell heterogeneity: functional properties of bone marrow derived and sessile hepatic macrophages. Blood. 2007, 110: 4077-4085. 10.1182/blood-2007-02-073841.PubMedCentralCrossRefPubMed Klein I, Cornejo JC, Polakos NK, John B, Wuensch SA, Topham DJ, Pierce RH, Crispe IN: Kupffer cell heterogeneity: functional properties of bone marrow derived and sessile hepatic macrophages. Blood. 2007, 110: 4077-4085. 10.1182/blood-2007-02-073841.PubMedCentralCrossRefPubMed
9.
go back to reference Seki E, De Minicis S, Gwak GY, Kluwe J, Inokuchi S, Bursill CA, Llovet JM, Brenner DA, Schwabe RF: CCR1 and CCR5 promote hepatic fibrosis in mice. J Clin Invest. 2009, 119: 1858-1870.PubMedCentralPubMed Seki E, De Minicis S, Gwak GY, Kluwe J, Inokuchi S, Bursill CA, Llovet JM, Brenner DA, Schwabe RF: CCR1 and CCR5 promote hepatic fibrosis in mice. J Clin Invest. 2009, 119: 1858-1870.PubMedCentralPubMed
10.
go back to reference Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, MacDonald AS, Allen JE: Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science. 2011, 332: 1284-1288. 10.1126/science.1204351.PubMedCentralCrossRefPubMed Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, MacDonald AS, Allen JE: Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science. 2011, 332: 1284-1288. 10.1126/science.1204351.PubMedCentralCrossRefPubMed
11.
go back to reference Tacke F, Kurts C: Infiltrating monocytes versus resident Kupffer cells: do alternatively activated macrophages need to be targeted alternatively?. Hepatology. 2011, 54: 2267-2270.CrossRefPubMed Tacke F, Kurts C: Infiltrating monocytes versus resident Kupffer cells: do alternatively activated macrophages need to be targeted alternatively?. Hepatology. 2011, 54: 2267-2270.CrossRefPubMed
12.
go back to reference Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K: Development of monocytes, macrophages, and dendritic cells. Science. 2010, 327: 656-661. 10.1126/science.1178331.PubMedCentralCrossRefPubMed Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K: Development of monocytes, macrophages, and dendritic cells. Science. 2010, 327: 656-661. 10.1126/science.1178331.PubMedCentralCrossRefPubMed
13.
go back to reference Tacke F, Randolph GJ: Migratory fate and differentiation of blood monocyte subsets. Immunobiology. 2006, 211: 609-618. 10.1016/j.imbio.2006.05.025.CrossRefPubMed Tacke F, Randolph GJ: Migratory fate and differentiation of blood monocyte subsets. Immunobiology. 2006, 211: 609-618. 10.1016/j.imbio.2006.05.025.CrossRefPubMed
14.
go back to reference Passlick B, Flieger D, Ziegler-Heitbrock HW: Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood. 1989, 74: 2527-2534.PubMed Passlick B, Flieger D, Ziegler-Heitbrock HW: Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood. 1989, 74: 2527-2534.PubMed
15.
go back to reference Seidler S, Zimmermann HW, Bartneck M, Trautwein C, Tacke F: Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol. 2010, 11: 30-10.1186/1471-2172-11-30.PubMedCentralCrossRefPubMed Seidler S, Zimmermann HW, Bartneck M, Trautwein C, Tacke F: Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol. 2010, 11: 30-10.1186/1471-2172-11-30.PubMedCentralCrossRefPubMed
16.
go back to reference Ingersoll MA, Spanbroek R, Lottaz C, Gautier EL, Frankenberger M, Hoffmann R, Lang R, Haniffa M, Collin M, Tacke F: Comparison of gene expression profiles between human and mouse monocyte subsets. Blood. 2010, 115: e10-19. 10.1182/blood-2009-07-235028.PubMedCentralCrossRefPubMed Ingersoll MA, Spanbroek R, Lottaz C, Gautier EL, Frankenberger M, Hoffmann R, Lang R, Haniffa M, Collin M, Tacke F: Comparison of gene expression profiles between human and mouse monocyte subsets. Blood. 2010, 115: e10-19. 10.1182/blood-2009-07-235028.PubMedCentralCrossRefPubMed
17.
go back to reference Geissmann F, Jung S, Littman DR: Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003, 19: 71-82. 10.1016/S1074-7613(03)00174-2.CrossRefPubMed Geissmann F, Jung S, Littman DR: Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003, 19: 71-82. 10.1016/S1074-7613(03)00174-2.CrossRefPubMed
18.
go back to reference Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH, Kourilsky P, Wong SC: Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011, 118: e16-31. 10.1182/blood-2010-12-326355.CrossRefPubMed Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH, Kourilsky P, Wong SC: Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011, 118: e16-31. 10.1182/blood-2010-12-326355.CrossRefPubMed
19.
go back to reference Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B, Puel A, Biswas SK, Moshous D, Picard C: Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity. 2010, 33: 375-386. 10.1016/j.immuni.2010.08.012.PubMedCentralCrossRefPubMed Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B, Puel A, Biswas SK, Moshous D, Picard C: Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity. 2010, 33: 375-386. 10.1016/j.immuni.2010.08.012.PubMedCentralCrossRefPubMed
20.
go back to reference Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, Garin A, Liu J, Mack M, van Rooijen N: Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest. 2007, 117: 185-194. 10.1172/JCI28549.PubMedCentralCrossRefPubMed Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, Garin A, Liu J, Mack M, van Rooijen N: Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest. 2007, 117: 185-194. 10.1172/JCI28549.PubMedCentralCrossRefPubMed
21.
go back to reference Le Borgne M, Etchart N, Goubier A, Lira SA, Sirard JC, van Rooijen N, Caux C, Ait-Yahia S, Vicari A, Kaiserlian D, Dubois B: Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity. 2006, 24: 191-201. 10.1016/j.immuni.2006.01.005.CrossRefPubMed Le Borgne M, Etchart N, Goubier A, Lira SA, Sirard JC, van Rooijen N, Caux C, Ait-Yahia S, Vicari A, Kaiserlian D, Dubois B: Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity. 2006, 24: 191-201. 10.1016/j.immuni.2006.01.005.CrossRefPubMed
22.
go back to reference Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP, Mack M, Charo IF: Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest. 2007, 117: 902-909. 10.1172/JCI29919.PubMedCentralCrossRefPubMed Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP, Mack M, Charo IF: Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest. 2007, 117: 902-909. 10.1172/JCI29919.PubMedCentralCrossRefPubMed
23.
go back to reference Vanbervliet B, Homey B, Durand I, Massacrier C, Ait-Yahia S, de Bouteiller O, Vicari A, Caux C: Sequential involvement of CCR2 and CCR6 ligands for immature dendritic cell recruitment: possible role at inflamed epithelial surfaces. Eur J Immunol. 2002, 32: 231-242. 10.1002/1521-4141(200201)32:1<231::AID-IMMU231>3.0.CO;2-8.CrossRefPubMed Vanbervliet B, Homey B, Durand I, Massacrier C, Ait-Yahia S, de Bouteiller O, Vicari A, Caux C: Sequential involvement of CCR2 and CCR6 ligands for immature dendritic cell recruitment: possible role at inflamed epithelial surfaces. Eur J Immunol. 2002, 32: 231-242. 10.1002/1521-4141(200201)32:1<231::AID-IMMU231>3.0.CO;2-8.CrossRefPubMed
24.
go back to reference Engel DR, Maurer J, Tittel AP, Weisheit C, Cavlar T, Schumak B, Limmer A, van Rooijen N, Trautwein C, Tacke F, Kurts C: CCR2 mediates homeostatic and inflammatory release of Gr1(high) monocytes from the bone marrow, but is dispensable for bladder infiltration in bacterial urinary tract infection. J Immunol. 2008, 181: 5579-5586.CrossRefPubMed Engel DR, Maurer J, Tittel AP, Weisheit C, Cavlar T, Schumak B, Limmer A, van Rooijen N, Trautwein C, Tacke F, Kurts C: CCR2 mediates homeostatic and inflammatory release of Gr1(high) monocytes from the bone marrow, but is dispensable for bladder infiltration in bacterial urinary tract infection. J Immunol. 2008, 181: 5579-5586.CrossRefPubMed
25.
go back to reference Serbina NV, Kuziel W, Flavell R, Akira S, Rollins B, Pamer EG: Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection. Immunity. 2003, 19: 891-901. 10.1016/S1074-7613(03)00330-3.CrossRefPubMed Serbina NV, Kuziel W, Flavell R, Akira S, Rollins B, Pamer EG: Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection. Immunity. 2003, 19: 891-901. 10.1016/S1074-7613(03)00330-3.CrossRefPubMed
26.
go back to reference Serbina NV, Pamer EG: Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol. 2006, 7: 311-317.CrossRefPubMed Serbina NV, Pamer EG: Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol. 2006, 7: 311-317.CrossRefPubMed
27.
go back to reference Osterholzer JJ, Ames T, Polak T, Sonstein J, Moore BB, Chensue SW, Toews GB, Curtis JL: CCR2 and CCR6, but not endothelial selectins, mediate the accumulation of immature dendritic cells within the lungs of mice in response to particulate antigen. J Immunol. 2005, 175: 874-883.PubMedCentralCrossRefPubMed Osterholzer JJ, Ames T, Polak T, Sonstein J, Moore BB, Chensue SW, Toews GB, Curtis JL: CCR2 and CCR6, but not endothelial selectins, mediate the accumulation of immature dendritic cells within the lungs of mice in response to particulate antigen. J Immunol. 2005, 175: 874-883.PubMedCentralCrossRefPubMed
28.
go back to reference Robays LJ, Maes T, Lebecque S, Lira SA, Kuziel WA, Brusselle GG, Joos GF, Vermaelen KV: Chemokine receptor CCR2 but not CCR5 or CCR6 mediates the increase in pulmonary dendritic cells during allergic airway inflammation. J Immunol. 2007, 178: 5305-5311.CrossRefPubMed Robays LJ, Maes T, Lebecque S, Lira SA, Kuziel WA, Brusselle GG, Joos GF, Vermaelen KV: Chemokine receptor CCR2 but not CCR5 or CCR6 mediates the increase in pulmonary dendritic cells during allergic airway inflammation. J Immunol. 2007, 178: 5305-5311.CrossRefPubMed
29.
go back to reference Heymann F, Hammerich L, Storch D, Bartneck M, Huss S, Russeler V, Gassler N, Lira SA, Luedde T, Trautwein C, Tacke F: Hepatic macrophage migration and differentiation critical for liver fibrosis is mediated by the chemokine receptor C-C motif chemokine receptor 8 in mice. Hepatology. 2012, 55 (3): 898-909. 10.1002/hep.24764.PubMedCentralCrossRefPubMed Heymann F, Hammerich L, Storch D, Bartneck M, Huss S, Russeler V, Gassler N, Lira SA, Luedde T, Trautwein C, Tacke F: Hepatic macrophage migration and differentiation critical for liver fibrosis is mediated by the chemokine receptor C-C motif chemokine receptor 8 in mice. Hepatology. 2012, 55 (3): 898-909. 10.1002/hep.24764.PubMedCentralCrossRefPubMed
30.
go back to reference Auffray C, Sieweke MH, Geissmann F: Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009, 27: 669-692. 10.1146/annurev.immunol.021908.132557.CrossRefPubMed Auffray C, Sieweke MH, Geissmann F: Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009, 27: 669-692. 10.1146/annurev.immunol.021908.132557.CrossRefPubMed
31.
go back to reference Bosschaerts T, Guilliams M, Stijlemans B, Morias Y, Engel D, Tacke F, Herin M, De Baetselier P, Beschin A: Tip-DC development during parasitic infection is regulated by IL-10 and requires CCL2/CCR2, IFN-gamma and MyD88 signaling. PLoS Pathog. 2010, 6: e1001045-10.1371/journal.ppat.1001045.PubMedCentralCrossRefPubMed Bosschaerts T, Guilliams M, Stijlemans B, Morias Y, Engel D, Tacke F, Herin M, De Baetselier P, Beschin A: Tip-DC development during parasitic infection is regulated by IL-10 and requires CCL2/CCR2, IFN-gamma and MyD88 signaling. PLoS Pathog. 2010, 6: e1001045-10.1371/journal.ppat.1001045.PubMedCentralCrossRefPubMed
32.
go back to reference Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G, Geissmann F: Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science. 2007, 317: 666-670. 10.1126/science.1142883.CrossRefPubMed Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G, Geissmann F: Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science. 2007, 317: 666-670. 10.1126/science.1142883.CrossRefPubMed
33.
go back to reference Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ: The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007, 204: 3037-3047. 10.1084/jem.20070885.PubMedCentralCrossRefPubMed Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ: The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007, 204: 3037-3047. 10.1084/jem.20070885.PubMedCentralCrossRefPubMed
34.
go back to reference Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P: Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009, 325: 612-616. 10.1126/science.1175202.PubMedCentralCrossRefPubMed Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P: Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009, 325: 612-616. 10.1126/science.1175202.PubMedCentralCrossRefPubMed
35.
go back to reference Tacke F, Ginhoux F, Jakubzick C, van Rooijen N, Merad M, Randolph GJ: Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery. J Exp Med. 2006, 203: 583-597. 10.1084/jem.20052119.PubMedCentralCrossRefPubMed Tacke F, Ginhoux F, Jakubzick C, van Rooijen N, Merad M, Randolph GJ: Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery. J Exp Med. 2006, 203: 583-597. 10.1084/jem.20052119.PubMedCentralCrossRefPubMed
36.
go back to reference Varol C, Landsman L, Fogg DK, Greenshtein L, Gildor B, Margalit R, Kalchenko V, Geissmann F, Jung S: Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med. 2007, 204: 171-180. 10.1084/jem.20061011.PubMedCentralCrossRefPubMed Varol C, Landsman L, Fogg DK, Greenshtein L, Gildor B, Margalit R, Kalchenko V, Geissmann F, Jung S: Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med. 2007, 204: 171-180. 10.1084/jem.20061011.PubMedCentralCrossRefPubMed
37.
go back to reference Hanna RN, Carlin LM, Hubbeling HG, Nackiewicz D, Green AM, Punt JA, Geissmann F, Hedrick CC: The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat Immunol. 2011, 12: 778-785. 10.1038/ni.2063.PubMedCentralCrossRefPubMed Hanna RN, Carlin LM, Hubbeling HG, Nackiewicz D, Green AM, Punt JA, Geissmann F, Hedrick CC: The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat Immunol. 2011, 12: 778-785. 10.1038/ni.2063.PubMedCentralCrossRefPubMed
38.
go back to reference Tacke F, Kurts C: Infiltrating monocytes versus resident Kupffer cells - do alternatively activated macrophages need to be targeted alternatively?. Hepatology. 2011, 54 (6): 2267-2270.CrossRefPubMed Tacke F, Kurts C: Infiltrating monocytes versus resident Kupffer cells - do alternatively activated macrophages need to be targeted alternatively?. Hepatology. 2011, 54 (6): 2267-2270.CrossRefPubMed
39.
go back to reference Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF: TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 2007, 13: 1324-1332. 10.1038/nm1663.CrossRefPubMed Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF: TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 2007, 13: 1324-1332. 10.1038/nm1663.CrossRefPubMed
40.
go back to reference Tacke F, Weiskirchen R: Update on hepatic stellate cells: pathogenic role in liver fibrosis and novel isolation techniques. Expert Rev Gastroenterol Hepatol. 2012, 6: 67-80. 10.1586/egh.11.92.CrossRefPubMed Tacke F, Weiskirchen R: Update on hepatic stellate cells: pathogenic role in liver fibrosis and novel isolation techniques. Expert Rev Gastroenterol Hepatol. 2012, 6: 67-80. 10.1586/egh.11.92.CrossRefPubMed
41.
go back to reference Baeck C, Wehr A, Karlmark KR, Heymann F, Vucur M, Gassler N, Huss S, Klussmann S, Eulberg D, Luedde T: Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut. 2012, 61: 416-426. 10.1136/gutjnl-2011-300304.CrossRefPubMed Baeck C, Wehr A, Karlmark KR, Heymann F, Vucur M, Gassler N, Huss S, Klussmann S, Eulberg D, Luedde T: Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut. 2012, 61: 416-426. 10.1136/gutjnl-2011-300304.CrossRefPubMed
42.
go back to reference Efsen E, Grappone C, DeFranco RM, Milani S, Romanelli RG, Bonacchi A, Caligiuri A, Failli P, Annunziato F, Pagliai G: Up-regulated expression of fractalkine and its receptor CX3CR1 during liver injury in humans. J Hepatol. 2002, 37: 39-47. 10.1016/S0168-8278(02)00065-X.CrossRefPubMed Efsen E, Grappone C, DeFranco RM, Milani S, Romanelli RG, Bonacchi A, Caligiuri A, Failli P, Annunziato F, Pagliai G: Up-regulated expression of fractalkine and its receptor CX3CR1 during liver injury in humans. J Hepatol. 2002, 37: 39-47. 10.1016/S0168-8278(02)00065-X.CrossRefPubMed
43.
go back to reference Isse K, Harada K, Zen Y, Kamihira T, Shimoda S, Harada M, Nakanuma Y: Fractalkine and CX3CR1 are involved in the recruitment of intraepithelial lymphocytes of intrahepatic bile ducts. Hepatology. 2005, 41: 506-516. 10.1002/hep.20582.CrossRefPubMed Isse K, Harada K, Zen Y, Kamihira T, Shimoda S, Harada M, Nakanuma Y: Fractalkine and CX3CR1 are involved in the recruitment of intraepithelial lymphocytes of intrahepatic bile ducts. Hepatology. 2005, 41: 506-516. 10.1002/hep.20582.CrossRefPubMed
44.
go back to reference Shimoda S, Harada K, Niiro H, Taketomi A, Maehara Y, Tsuneyama K, Kikuchi K, Nakanuma Y, Mackay IR, Gershwin ME, Akashi K: CX3CL1 (fractalkine): a signpost for biliary inflammation in primary biliary cirrhosis. Hepatology. 2010, 51: 567-575. 10.1002/hep.23318.PubMedCentralCrossRefPubMed Shimoda S, Harada K, Niiro H, Taketomi A, Maehara Y, Tsuneyama K, Kikuchi K, Nakanuma Y, Mackay IR, Gershwin ME, Akashi K: CX3CL1 (fractalkine): a signpost for biliary inflammation in primary biliary cirrhosis. Hepatology. 2010, 51: 567-575. 10.1002/hep.23318.PubMedCentralCrossRefPubMed
45.
go back to reference Wasmuth HE, Zaldivar MM, Berres ML, Werth A, Scholten D, Hillebrandt S, Tacke F, Schmitz P, Dahl E, Wiederholt T: The fractalkine receptor CX3CR1 is involved in liver fibrosis due to chronic hepatitis C infection. J Hepatol. 2008, 48: 208-215. 10.1016/j.jhep.2007.09.008.CrossRefPubMed Wasmuth HE, Zaldivar MM, Berres ML, Werth A, Scholten D, Hillebrandt S, Tacke F, Schmitz P, Dahl E, Wiederholt T: The fractalkine receptor CX3CR1 is involved in liver fibrosis due to chronic hepatitis C infection. J Hepatol. 2008, 48: 208-215. 10.1016/j.jhep.2007.09.008.CrossRefPubMed
46.
go back to reference Bourd-Boittin K, Basset L, Bonnier D, L'Helgoualch A, Samson M, Theret N: CX3CL1/fractalkine shedding by human hepatic stellate cells: contribution to chronic inflammation in the liver. J Cell Mol Med. 2009, 13: 1526-1535. 10.1111/j.1582-4934.2009.00787.x.PubMedCentralCrossRefPubMed Bourd-Boittin K, Basset L, Bonnier D, L'Helgoualch A, Samson M, Theret N: CX3CL1/fractalkine shedding by human hepatic stellate cells: contribution to chronic inflammation in the liver. J Cell Mol Med. 2009, 13: 1526-1535. 10.1111/j.1582-4934.2009.00787.x.PubMedCentralCrossRefPubMed
47.
go back to reference Aspinall AI, Curbishley SM, Lalor PF, Weston CJ, Blahova M, Liaskou E, Adams RM, Holt AP, Adams DH: CX3CR1 and VAP-1 dependent recruitment of CD16+ monocytes across human liver sinusoidal endothelium. Hepatology. 2010, 51: 2030-2039. 10.1002/hep.23591.PubMedCentralCrossRefPubMed Aspinall AI, Curbishley SM, Lalor PF, Weston CJ, Blahova M, Liaskou E, Adams RM, Holt AP, Adams DH: CX3CR1 and VAP-1 dependent recruitment of CD16+ monocytes across human liver sinusoidal endothelium. Hepatology. 2010, 51: 2030-2039. 10.1002/hep.23591.PubMedCentralCrossRefPubMed
48.
go back to reference Karlmark KR, Zimmermann HW, Roderburg C, Gassler N, Wasmuth HE, Luedde T, Trautwein C, Tacke F: The fractalkine receptor CX3CR1 protects from liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. Hepatology. 2010, 52 (5): 1769-1782. 10.1002/hep.23894.CrossRefPubMed Karlmark KR, Zimmermann HW, Roderburg C, Gassler N, Wasmuth HE, Luedde T, Trautwein C, Tacke F: The fractalkine receptor CX3CR1 protects from liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. Hepatology. 2010, 52 (5): 1769-1782. 10.1002/hep.23894.CrossRefPubMed
49.
go back to reference Aoyama T, Inokuchi S, Brenner DA, Seki E: CX3CL1-CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice. Hepatology. 2010, 52: 1390-1400. 10.1002/hep.23795.PubMedCentralCrossRefPubMed Aoyama T, Inokuchi S, Brenner DA, Seki E: CX3CL1-CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice. Hepatology. 2010, 52: 1390-1400. 10.1002/hep.23795.PubMedCentralCrossRefPubMed
50.
go back to reference Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, Kakizaki M, Takagi S, Nomiyama H, Schall TJ, Yoshie O: Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell. 1997, 91: 521-530. 10.1016/S0092-8674(00)80438-9.CrossRefPubMed Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, Kakizaki M, Takagi S, Nomiyama H, Schall TJ, Yoshie O: Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell. 1997, 91: 521-530. 10.1016/S0092-8674(00)80438-9.CrossRefPubMed
51.
go back to reference Zimmermann HW, Tacke F: Modification of chemokine pathways and immune cell infiltration as a novel therapeutic approach in liver inflammation and fibrosis. Inflamm Allergy Drug Targets. 2011, 10: 509-536.CrossRefPubMed Zimmermann HW, Tacke F: Modification of chemokine pathways and immune cell infiltration as a novel therapeutic approach in liver inflammation and fibrosis. Inflamm Allergy Drug Targets. 2011, 10: 509-536.CrossRefPubMed
52.
go back to reference Fallowfield JA, Mizuno M, Kendall TJ, Constandinou CM, Benyon RC, Duffield JS, Iredale JP: Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol. 2007, 178: 5288-5295.CrossRefPubMed Fallowfield JA, Mizuno M, Kendall TJ, Constandinou CM, Benyon RC, Duffield JS, Iredale JP: Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol. 2007, 178: 5288-5295.CrossRefPubMed
53.
go back to reference Pellicoro A, Aucott RL, Ramachandran P, Robson AJ, Fallowfield JA, Snowdon VK, Hartland SN, Vernon M, Duffield JS, Benyon RC: Elastin accumulation is regulated at the level of degradation by macrophage metalloelastase (MMP-12) during experimental liver fibrosis. Hepatology. 2011. Pellicoro A, Aucott RL, Ramachandran P, Robson AJ, Fallowfield JA, Snowdon VK, Hartland SN, Vernon M, Duffield JS, Benyon RC: Elastin accumulation is regulated at the level of degradation by macrophage metalloelastase (MMP-12) during experimental liver fibrosis. Hepatology. 2011.
54.
go back to reference Thomas JA, Pope C, Wojtacha D, Robson AJ, Gordon-Walker TT, Hartland S, Ramachandran P, Van Deemter M, Hume DA, Iredale JP, Forbes SJ: Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology. 2011, 53: 2003-2015. 10.1002/hep.24315.CrossRefPubMed Thomas JA, Pope C, Wojtacha D, Robson AJ, Gordon-Walker TT, Hartland S, Ramachandran P, Van Deemter M, Hume DA, Iredale JP, Forbes SJ: Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology. 2011, 53: 2003-2015. 10.1002/hep.24315.CrossRefPubMed
55.
go back to reference Jiao J, Sastre D, Fiel MI, Lee UE, Ghiassi-Nejad Z, Ginhoux F, Vivier E, Friedman SL, Merad M, Aloman C: Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology. 2012, 55: 244-255. 10.1002/hep.24621.PubMedCentralCrossRefPubMed Jiao J, Sastre D, Fiel MI, Lee UE, Ghiassi-Nejad Z, Ginhoux F, Vivier E, Friedman SL, Merad M, Aloman C: Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology. 2012, 55: 244-255. 10.1002/hep.24621.PubMedCentralCrossRefPubMed
56.
go back to reference Marra F, DeFranco R, Grappone C, Milani S, Pastacaldi S, Pinzani M, Romanelli RG, Laffi G, Gentilini P: Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration. Am J Pathol. 1998, 152: 423-430.PubMedCentralPubMed Marra F, DeFranco R, Grappone C, Milani S, Pastacaldi S, Pinzani M, Romanelli RG, Laffi G, Gentilini P: Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration. Am J Pathol. 1998, 152: 423-430.PubMedCentralPubMed
57.
go back to reference Zimmermann HW, Seidler S, Nattermann J, Gassler N, Hellerbrand C, Zernecke A, Tischendorf JJ, Luedde T, Weiskirchen R, Trautwein C, Tacke F: Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis. PLoS One. 2010, 5: e11049-10.1371/journal.pone.0011049.PubMedCentralCrossRefPubMed Zimmermann HW, Seidler S, Nattermann J, Gassler N, Hellerbrand C, Zernecke A, Tischendorf JJ, Luedde T, Weiskirchen R, Trautwein C, Tacke F: Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis. PLoS One. 2010, 5: e11049-10.1371/journal.pone.0011049.PubMedCentralCrossRefPubMed
58.
go back to reference Zimmermann HW, Seidler S, Gassler N, Nattermann J, Luedde T, Trautwein C, Tacke F: Interleukin-8 is activated in patients with chronic liver diseases and associated with hepatic macrophage accumulation in human liver fibrosis. PLoS One. 2011, 6: e21381-10.1371/journal.pone.0021381.PubMedCentralCrossRefPubMed Zimmermann HW, Seidler S, Gassler N, Nattermann J, Luedde T, Trautwein C, Tacke F: Interleukin-8 is activated in patients with chronic liver diseases and associated with hepatic macrophage accumulation in human liver fibrosis. PLoS One. 2011, 6: e21381-10.1371/journal.pone.0021381.PubMedCentralCrossRefPubMed
Metadata
Title
Functional role of intrahepatic monocyte subsets for the progression of liver inflammation and liver fibrosis in vivo
Author
Frank Tacke
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Fibrogenesis & Tissue Repair / Issue Special Issue 1/2012
Electronic ISSN: 1755-1536
DOI
https://doi.org/10.1186/1755-1536-5-S1-S27

Other articles of this Special Issue 1/2012

Fibrogenesis & Tissue Repair 1/2012 Go to the issue