Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2014

Open Access 01-12-2014 | Short report

Pathogenic polyglutamine expansion length correlates with polarity of the flanking sequences

Author: Meewhi Kim

Published in: Molecular Neurodegeneration | Issue 1/2014

Login to get access

Abstract

Background

Polyglutamine (polyQ) repeat expansion within coding sequence of a soluble protein is responsible for eight autosomal-dominant genetic neurodegenerative disorders. These disorders affect cerebellum, striatum, basal ganglia and other brain regions. The pathogenic polyQ-expansion threshold in these proteins varies from 32Q to 54Q. Understanding the reasons for variability in pathogenic polyQ threshold may provide insights into pathogenic mechanisms responsible for development of these disorders.

Findings

Here we established a quantitative correlation between the polarity of the flanking sequences and pathogenic polyQ-expansion threshold in this protein family. We introduced an “edge polarity index” (EPI) to quantify polarity effects of the flanking regions and established a strong correlation between EPI index and critical polyQ expansion length in this protein family. Based on this analysis we subdivided polyQ-expanded proteins into 2 groups – with strong and weak dependence of polyQ threshold on EPI index. The main difference between members of the first and the second group is a polarity profile of these proteins outside of polyQ and flanking regions. PolyQ proteins are known substrates for proteasome and most likely mechanistic explanation for the observed correlation is that proteasome may have an impaired ability to process continuous non-polar regions of proteins.

Conclusions

The proposed hypothesis provides a quantitative explanation for variability in pathogenic threshold among polyQ-expansion disorders, which we established to correlate with polarity of flanking regions. To explain these results we propose that proteasome is not efficient in processing continuous non-polar regions of proteins, resulting in release of undigested and partially digested fragments. If supported experimentally, our hypothesis may have wide implications for further understanding the pathogensis of polyglutamine expansion disorders.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gusella JF, MacDonald ME: Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nat Rev Neurosci. 2000, 1: 109-115.CrossRefPubMed Gusella JF, MacDonald ME: Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nat Rev Neurosci. 2000, 1: 109-115.CrossRefPubMed
2.
3.
go back to reference Banfi S, Chung MY, Kwiatkowski TJ, Ranum LP, McCall AE, Chinault AC, Orr HT, Zoghbi HY: Mapping and cloning of the critical region for the spinocerebellar ataxia type 1 gene (SCA1) in a yeast artificial chromosome contig spanning 1.2 Mb. Genomics. 1993, 18: 627-635. 10.1016/S0888-7543(05)80365-9.CrossRefPubMed Banfi S, Chung MY, Kwiatkowski TJ, Ranum LP, McCall AE, Chinault AC, Orr HT, Zoghbi HY: Mapping and cloning of the critical region for the spinocerebellar ataxia type 1 gene (SCA1) in a yeast artificial chromosome contig spanning 1.2 Mb. Genomics. 1993, 18: 627-635. 10.1016/S0888-7543(05)80365-9.CrossRefPubMed
4.
go back to reference Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, Pearlman S, Starkman S, Orozco-Diaz G, Lunkes A, DeJong P, Rouleau GA, Auburger G, Korenberg JR, Figueroa C, Sahba S: Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996, 14: 269-276. 10.1038/ng1196-269.CrossRefPubMed Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, Pearlman S, Starkman S, Orozco-Diaz G, Lunkes A, DeJong P, Rouleau GA, Auburger G, Korenberg JR, Figueroa C, Sahba S: Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996, 14: 269-276. 10.1038/ng1196-269.CrossRefPubMed
5.
go back to reference Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, Kimura J, Narumiya S, Kakizuka A: CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet. 1994, 8: 221-228. 10.1038/ng1194-221.CrossRefPubMed Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, Kimura J, Narumiya S, Kakizuka A: CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet. 1994, 8: 221-228. 10.1038/ng1194-221.CrossRefPubMed
6.
go back to reference Toru S, Murakoshi T, Ishikawa K, Saegusa H, Fujigasaki H, Uchihara T, Nagayama S, Osanai M, Mizusawa H, Tanabe T: Spinocerebellar ataxia type 6 mutation alters P-type calcium channel function. J Biol Chem. 2000, 275: 10893-10898. 10.1074/jbc.275.15.10893.CrossRefPubMed Toru S, Murakoshi T, Ishikawa K, Saegusa H, Fujigasaki H, Uchihara T, Nagayama S, Osanai M, Mizusawa H, Tanabe T: Spinocerebellar ataxia type 6 mutation alters P-type calcium channel function. J Biol Chem. 2000, 275: 10893-10898. 10.1074/jbc.275.15.10893.CrossRefPubMed
7.
go back to reference David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Wood N, Ruberg M, Agid Y, Mandel JL, Brice A: Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet. 1997, 17: 65-70. 10.1038/ng0997-65.CrossRefPubMed David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Wood N, Ruberg M, Agid Y, Mandel JL, Brice A: Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet. 1997, 17: 65-70. 10.1038/ng0997-65.CrossRefPubMed
8.
go back to reference Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I: SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet. 2001, 10: 1441-1448. 10.1093/hmg/10.14.1441.CrossRefPubMed Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I: SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet. 2001, 10: 1441-1448. 10.1093/hmg/10.14.1441.CrossRefPubMed
9.
go back to reference Tobin AJ, Signer ER: Huntington's disease: the challenge for cell biologists. Trends Cell Biol. 2000, 10: 531-536. 10.1016/S0962-8924(00)01853-5.CrossRefPubMed Tobin AJ, Signer ER: Huntington's disease: the challenge for cell biologists. Trends Cell Biol. 2000, 10: 531-536. 10.1016/S0962-8924(00)01853-5.CrossRefPubMed
10.
go back to reference Ross CA: Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron. 2002, 35: 819-822. 10.1016/S0896-6273(02)00872-3.CrossRefPubMed Ross CA: Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron. 2002, 35: 819-822. 10.1016/S0896-6273(02)00872-3.CrossRefPubMed
11.
go back to reference Rubinsztein DC: Lessons from animal models of Huntington's disease. Trends Genet. 2002, 18: 202-209. 10.1016/S0168-9525(01)02625-7.CrossRefPubMed Rubinsztein DC: Lessons from animal models of Huntington's disease. Trends Genet. 2002, 18: 202-209. 10.1016/S0168-9525(01)02625-7.CrossRefPubMed
12.
go back to reference Li SH, Li XJ: Huntingtin-protein interactions and the pathogenesis of Huntington's disease. Trends Genet. 2004, 20: 146-154. 10.1016/j.tig.2004.01.008.CrossRefPubMed Li SH, Li XJ: Huntingtin-protein interactions and the pathogenesis of Huntington's disease. Trends Genet. 2004, 20: 146-154. 10.1016/j.tig.2004.01.008.CrossRefPubMed
15.
go back to reference Truant R, Atwal RS, Desmond C, Munsie L, Tran T: Huntington's disease: revisiting the aggregation hypothesis in polyglutamine neurodegenerative diseases. FEBS J. 2008, 275: 4252-4262. 10.1111/j.1742-4658.2008.06561.x.CrossRefPubMed Truant R, Atwal RS, Desmond C, Munsie L, Tran T: Huntington's disease: revisiting the aggregation hypothesis in polyglutamine neurodegenerative diseases. FEBS J. 2008, 275: 4252-4262. 10.1111/j.1742-4658.2008.06561.x.CrossRefPubMed
16.
go back to reference Takahashi T, Katada S, Onodera O: Polyglutamine diseases: where does toxicity come from? what is toxicity? where are we going?. J Mol Cell Biol. 2010, 2: 180-191. 10.1093/jmcb/mjq005.CrossRefPubMed Takahashi T, Katada S, Onodera O: Polyglutamine diseases: where does toxicity come from? what is toxicity? where are we going?. J Mol Cell Biol. 2010, 2: 180-191. 10.1093/jmcb/mjq005.CrossRefPubMed
17.
go back to reference Pennuto M, Palazzolo I, Poletti A: Post-translational modifications of expanded polyglutamine proteins: impact on neurotoxicity. Hum Mol Genet. 2009, 18: R40-R47. 10.1093/hmg/ddn412.CrossRefPubMed Pennuto M, Palazzolo I, Poletti A: Post-translational modifications of expanded polyglutamine proteins: impact on neurotoxicity. Hum Mol Genet. 2009, 18: R40-R47. 10.1093/hmg/ddn412.CrossRefPubMed
18.
go back to reference Zimmerman JM, Eliezer N, Simha R: The characterization of amino acid sequences in proteins by statistical methods. J Theor Biol. 1968, 21: 170-201. 10.1016/0022-5193(68)90069-6.CrossRefPubMed Zimmerman JM, Eliezer N, Simha R: The characterization of amino acid sequences in proteins by statistical methods. J Theor Biol. 1968, 21: 170-201. 10.1016/0022-5193(68)90069-6.CrossRefPubMed
19.
go back to reference Gasteiger EHC, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A: Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook. Edited by: John M, Walker JM. 2005, New York City, USA: Humana Press, 571-607.CrossRef Gasteiger EHC, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A: Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook. Edited by: John M, Walker JM. 2005, New York City, USA: Humana Press, 571-607.CrossRef
20.
go back to reference Kim MW, Chelliah Y, Kim SW, Otwinowski Z, Bezprozvanny I: Secondary structure of Huntingtin amino-terminal region. Structure. 2009, 17: 1205-1212. 10.1016/j.str.2009.08.002.PubMedCentralCrossRefPubMed Kim MW, Chelliah Y, Kim SW, Otwinowski Z, Bezprozvanny I: Secondary structure of Huntingtin amino-terminal region. Structure. 2009, 17: 1205-1212. 10.1016/j.str.2009.08.002.PubMedCentralCrossRefPubMed
21.
go back to reference Kim M: Beta conformation of polyglutamine track revealed by a crystal structure of Huntingtin N-terminal region with insertion of three histidine residues. Prion. 2013, 7: 221-228. 10.4161/pri.23807.PubMedCentralCrossRefPubMed Kim M: Beta conformation of polyglutamine track revealed by a crystal structure of Huntingtin N-terminal region with insertion of three histidine residues. Prion. 2013, 7: 221-228. 10.4161/pri.23807.PubMedCentralCrossRefPubMed
22.
go back to reference Raspe M, Gillis J, Krol H, Krom S, Bosch K, van Veen H, Reits E: Mimicking proteasomal release of polyglutamine peptides initiates aggregation and toxicity. J Cell Sci. 2009, 122: 3262-3271. 10.1242/jcs.045567.CrossRefPubMed Raspe M, Gillis J, Krol H, Krom S, Bosch K, van Veen H, Reits E: Mimicking proteasomal release of polyglutamine peptides initiates aggregation and toxicity. J Cell Sci. 2009, 122: 3262-3271. 10.1242/jcs.045567.CrossRefPubMed
23.
go back to reference Holmberg CI, Staniszewski KE, Mensah KN, Matouschek A, Morimoto RI: Inefficient degradation of truncated polyglutamine proteins by the proteasome. EMBO J. 2004, 23: 4307-4318. 10.1038/sj.emboj.7600426.PubMedCentralCrossRefPubMed Holmberg CI, Staniszewski KE, Mensah KN, Matouschek A, Morimoto RI: Inefficient degradation of truncated polyglutamine proteins by the proteasome. EMBO J. 2004, 23: 4307-4318. 10.1038/sj.emboj.7600426.PubMedCentralCrossRefPubMed
24.
go back to reference Venkatraman P, Wetzel R, Tanaka M, Nukina N, Goldberg AL: Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol Cell. 2004, 14: 95-104. 10.1016/S1097-2765(04)00151-0.CrossRefPubMed Venkatraman P, Wetzel R, Tanaka M, Nukina N, Goldberg AL: Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol Cell. 2004, 14: 95-104. 10.1016/S1097-2765(04)00151-0.CrossRefPubMed
25.
go back to reference Jana NR, Zemskov EA, Wang G, Nukina N: Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release. Hum Mol Genet. 2001, 10: 1049-1059. 10.1093/hmg/10.10.1049.CrossRefPubMed Jana NR, Zemskov EA, Wang G, Nukina N: Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release. Hum Mol Genet. 2001, 10: 1049-1059. 10.1093/hmg/10.10.1049.CrossRefPubMed
26.
go back to reference Ghoda L, van Daalen Wetters T, Macrae M, Ascherman D, Coffino P: Prevention of rapid intracellular degradation of ODC by a carboxyl-terminal truncation. Science. 1989, 243: 1493-1495. 10.1126/science.2928784.CrossRefPubMed Ghoda L, van Daalen Wetters T, Macrae M, Ascherman D, Coffino P: Prevention of rapid intracellular degradation of ODC by a carboxyl-terminal truncation. Science. 1989, 243: 1493-1495. 10.1126/science.2928784.CrossRefPubMed
27.
go back to reference Blake NW, Moghaddam A, Rao P, Kaur A, Glickman R, Cho YG, Marchini A, Haigh T, Johnson RP, Rickinson AB, Wang F: Inhibition of antigen presentation by the glycine/alanine repeat domain is not conserved in simian homologues of Epstein-Barr virus nuclear antigen 1. J Virol. 1999, 73: 7381-7389.PubMedCentralPubMed Blake NW, Moghaddam A, Rao P, Kaur A, Glickman R, Cho YG, Marchini A, Haigh T, Johnson RP, Rickinson AB, Wang F: Inhibition of antigen presentation by the glycine/alanine repeat domain is not conserved in simian homologues of Epstein-Barr virus nuclear antigen 1. J Virol. 1999, 73: 7381-7389.PubMedCentralPubMed
28.
go back to reference Lin L, Ghosh S: A glycine-rich region in NF-kappaB p105 functions as a processing signal for the generation of the p50 subunit. Mol Cell Biol. 1996, 16: 2248-2254.PubMedCentralCrossRefPubMed Lin L, Ghosh S: A glycine-rich region in NF-kappaB p105 functions as a processing signal for the generation of the p50 subunit. Mol Cell Biol. 1996, 16: 2248-2254.PubMedCentralCrossRefPubMed
29.
go back to reference Hoyt MA, Zich J, Takeuchi J, Zhang M, Govaerts C, Coffino P: Glycine-alanine repeats impair proper substrate unfolding by the proteasome. EMBO J. 2006, 25: 1720-1729. 10.1038/sj.emboj.7601058.PubMedCentralCrossRefPubMed Hoyt MA, Zich J, Takeuchi J, Zhang M, Govaerts C, Coffino P: Glycine-alanine repeats impair proper substrate unfolding by the proteasome. EMBO J. 2006, 25: 1720-1729. 10.1038/sj.emboj.7601058.PubMedCentralCrossRefPubMed
30.
go back to reference Tian L, Holmgren RA, Matouschek A: A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-kappaB. Nat Struct Mol Biol. 2005, 12: 1045-1053. 10.1038/nsmb1018.CrossRefPubMed Tian L, Holmgren RA, Matouschek A: A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-kappaB. Nat Struct Mol Biol. 2005, 12: 1045-1053. 10.1038/nsmb1018.CrossRefPubMed
31.
go back to reference DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N: Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 1997, 277: 1990-1993. 10.1126/science.277.5334.1990.CrossRefPubMed DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N: Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 1997, 277: 1990-1993. 10.1126/science.277.5334.1990.CrossRefPubMed
32.
go back to reference Haacke A, Broadley SA, Boteva R, Tzvetkov N, Hartl FU, Breuer P: Proteolytic cleavage of polyglutamine-expanded ataxin-3 is critical for aggregation and sequestration of non-expanded ataxin-3. Hum Mol Genet. 2006, 15: 555-568. 10.1093/hmg/ddi472.CrossRefPubMed Haacke A, Broadley SA, Boteva R, Tzvetkov N, Hartl FU, Breuer P: Proteolytic cleavage of polyglutamine-expanded ataxin-3 is critical for aggregation and sequestration of non-expanded ataxin-3. Hum Mol Genet. 2006, 15: 555-568. 10.1093/hmg/ddi472.CrossRefPubMed
33.
go back to reference Landles C, Sathasivam K, Weiss A, Woodman B, Moffitt H, Finkbeiner S, Sun B, Gafni J, Ellerby LM, Trottier Y, Richards WG, Osmand A, Paganetti P, Bates GP: Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease. J Biol Chem. 2010, 285: 8808-8823. 10.1074/jbc.M109.075028.PubMedCentralCrossRefPubMed Landles C, Sathasivam K, Weiss A, Woodman B, Moffitt H, Finkbeiner S, Sun B, Gafni J, Ellerby LM, Trottier Y, Richards WG, Osmand A, Paganetti P, Bates GP: Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease. J Biol Chem. 2010, 285: 8808-8823. 10.1074/jbc.M109.075028.PubMedCentralCrossRefPubMed
34.
go back to reference Young JE, Gouw L, Propp S, Sopher BL, Taylor J, Lin A, Hermel E, Logvinova A, Chen SF, Chen S, Bredesen DE, Truant R, Ptacek LJ, La Spada AR, Ellerby LM: Proteolytic cleavage of ataxin-7 by caspase-7 modulates cellular toxicity and transcriptional dysregulation. J Biol Chem. 2007, 282: 30150-30160. 10.1074/jbc.M705265200.CrossRefPubMed Young JE, Gouw L, Propp S, Sopher BL, Taylor J, Lin A, Hermel E, Logvinova A, Chen SF, Chen S, Bredesen DE, Truant R, Ptacek LJ, La Spada AR, Ellerby LM: Proteolytic cleavage of ataxin-7 by caspase-7 modulates cellular toxicity and transcriptional dysregulation. J Biol Chem. 2007, 282: 30150-30160. 10.1074/jbc.M705265200.CrossRefPubMed
35.
go back to reference Suzuki Y, Nakayama K, Hashimoto N, Yazawa I: Proteolytic processing regulates pathological accumulation in dentatorubral-pallidoluysian atrophy. FEBS J. 2010, 277: 4873-4887. 10.1111/j.1742-4658.2010.07893.x.CrossRefPubMed Suzuki Y, Nakayama K, Hashimoto N, Yazawa I: Proteolytic processing regulates pathological accumulation in dentatorubral-pallidoluysian atrophy. FEBS J. 2010, 277: 4873-4887. 10.1111/j.1742-4658.2010.07893.x.CrossRefPubMed
36.
go back to reference Verhoef LG, Lindsten K, Masucci MG, Dantuma NP: Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum Mol Genet. 2002, 11: 2689-2700. 10.1093/hmg/11.22.2689.CrossRefPubMed Verhoef LG, Lindsten K, Masucci MG, Dantuma NP: Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum Mol Genet. 2002, 11: 2689-2700. 10.1093/hmg/11.22.2689.CrossRefPubMed
37.
go back to reference Beitel LK, Elhaji YA, Lumbroso R, Wing SS, Panet-Raymond V, Gottlieb B, Pinsky L, Trifiro MA: Cloning and characterization of an androgen receptor N-terminal-interacting protein with ubiquitin-protein ligase activity. J Mol Endocrinol. 2002, 29: 41-60. 10.1677/jme.0.0290041.CrossRefPubMed Beitel LK, Elhaji YA, Lumbroso R, Wing SS, Panet-Raymond V, Gottlieb B, Pinsky L, Trifiro MA: Cloning and characterization of an androgen receptor N-terminal-interacting protein with ubiquitin-protein ligase activity. J Mol Endocrinol. 2002, 29: 41-60. 10.1677/jme.0.0290041.CrossRefPubMed
38.
go back to reference Poukka H, Karvonen U, Janne OA, Palvimo JJ: Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci U S A. 2000, 97: 14145-14150. 10.1073/pnas.97.26.14145.PubMedCentralCrossRefPubMed Poukka H, Karvonen U, Janne OA, Palvimo JJ: Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci U S A. 2000, 97: 14145-14150. 10.1073/pnas.97.26.14145.PubMedCentralCrossRefPubMed
39.
go back to reference Burnett B, Li F, Pittman RN: The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum Mol Genet. 2003, 12: 3195-3205. 10.1093/hmg/ddg344.CrossRefPubMed Burnett B, Li F, Pittman RN: The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum Mol Genet. 2003, 12: 3195-3205. 10.1093/hmg/ddg344.CrossRefPubMed
40.
go back to reference Kuhlbrodt K, Janiesch PC, Kevei E, Segref A, Barikbin R, Hoppe T: The Machado-Joseph disease deubiquitylase ATX-3 couples longevity and proteostasis. Nat Cell Biol. 2011, 13: 273-281. 10.1038/ncb2200.CrossRefPubMed Kuhlbrodt K, Janiesch PC, Kevei E, Segref A, Barikbin R, Hoppe T: The Machado-Joseph disease deubiquitylase ATX-3 couples longevity and proteostasis. Nat Cell Biol. 2011, 13: 273-281. 10.1038/ncb2200.CrossRefPubMed
41.
go back to reference Kalchman MA, Graham RK, Xia G, Koide HB, Hodgson JG, Graham KC, Goldberg YP, Gietz RD, Pickart CM, Hayden MR: Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J Biol Chem. 1996, 271: 19385-19394. 10.1074/jbc.271.32.19385.CrossRefPubMed Kalchman MA, Graham RK, Xia G, Koide HB, Hodgson JG, Graham KC, Goldberg YP, Gietz RD, Pickart CM, Hayden MR: Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J Biol Chem. 1996, 271: 19385-19394. 10.1074/jbc.271.32.19385.CrossRefPubMed
42.
go back to reference Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, Illes K, Lukacsovich T, Zhu YZ, Cattaneo E, Pandolfi PP, Thompson LM, Marsh JL: SUMO modification of Huntingtin and Huntington's disease pathology. Science. 2004, 304: 100-104. 10.1126/science.1092194.CrossRefPubMed Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, Illes K, Lukacsovich T, Zhu YZ, Cattaneo E, Pandolfi PP, Thompson LM, Marsh JL: SUMO modification of Huntingtin and Huntington's disease pathology. Science. 2004, 304: 100-104. 10.1126/science.1092194.CrossRefPubMed
43.
go back to reference Ansorge O, Giunti P, Michalik A, Van Broeckhoven C, Harding B, Wood N, Scaravilli F: Ataxin-7 aggregation and ubiquitination in infantile SCA7 with 180 CAG repeats. Ann Neurol. 2004, 56: 448-452. 10.1002/ana.20230.CrossRefPubMed Ansorge O, Giunti P, Michalik A, Van Broeckhoven C, Harding B, Wood N, Scaravilli F: Ataxin-7 aggregation and ubiquitination in infantile SCA7 with 180 CAG repeats. Ann Neurol. 2004, 56: 448-452. 10.1002/ana.20230.CrossRefPubMed
44.
go back to reference Matilla A, Gorbea C, Einum DD, Townsend J, Michalik A, van Broeckhoven C, Jensen CC, Murphy KJ, Ptacek LJ, Fu YH: Association of ataxin-7 with the proteasome subunit S4 of the 19S regulatory complex. Hum Mol Genet. 2001, 10: 2821-2831. 10.1093/hmg/10.24.2821.CrossRefPubMed Matilla A, Gorbea C, Einum DD, Townsend J, Michalik A, van Broeckhoven C, Jensen CC, Murphy KJ, Ptacek LJ, Fu YH: Association of ataxin-7 with the proteasome subunit S4 of the 19S regulatory complex. Hum Mol Genet. 2001, 10: 2821-2831. 10.1093/hmg/10.24.2821.CrossRefPubMed
45.
go back to reference Ferrell K, Wilkinson CR, Dubiel W, Gordon C: Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem Sci. 2000, 25: 83-88. 10.1016/S0968-0004(99)01529-7.CrossRefPubMed Ferrell K, Wilkinson CR, Dubiel W, Gordon C: Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem Sci. 2000, 25: 83-88. 10.1016/S0968-0004(99)01529-7.CrossRefPubMed
46.
go back to reference Chew BS, Siew WL, Xiao B, Lehming N: Transcriptional activation requires protection of the TATA-binding protein Tbp1 by the ubiquitin-specific protease Ubp3. Biochem J. 2010, 431: 391-399.CrossRefPubMed Chew BS, Siew WL, Xiao B, Lehming N: Transcriptional activation requires protection of the TATA-binding protein Tbp1 by the ubiquitin-specific protease Ubp3. Biochem J. 2010, 431: 391-399.CrossRefPubMed
47.
go back to reference Trachtulec Z, Hamvas RM, Forejt J, Lehrach HR, Vincek V, Klein J: Linkage of TATA-binding protein and proteasome subunit C5 genes in mice and humans reveals synteny conserved between mammals and invertebrates. Genomics. 1997, 44: 1-7. 10.1006/geno.1997.4839.CrossRefPubMed Trachtulec Z, Hamvas RM, Forejt J, Lehrach HR, Vincek V, Klein J: Linkage of TATA-binding protein and proteasome subunit C5 genes in mice and humans reveals synteny conserved between mammals and invertebrates. Genomics. 1997, 44: 1-7. 10.1006/geno.1997.4839.CrossRefPubMed
48.
go back to reference Al-Ramahi I, Lam YC, Chen HK, de Gouyon B, Zhang M, Perez AM, Branco J, de Haro M, Patterson C, Zoghbi HY, Botas J: CHIP protects from the neurotoxicity of expanded and wild-type ataxin-1 and promotes their ubiquitination and degradation. J Biol Chem. 2006, 281: 26714-26724. 10.1074/jbc.M601603200.CrossRefPubMed Al-Ramahi I, Lam YC, Chen HK, de Gouyon B, Zhang M, Perez AM, Branco J, de Haro M, Patterson C, Zoghbi HY, Botas J: CHIP protects from the neurotoxicity of expanded and wild-type ataxin-1 and promotes their ubiquitination and degradation. J Biol Chem. 2006, 281: 26714-26724. 10.1074/jbc.M601603200.CrossRefPubMed
49.
go back to reference Choi JY, Ryu JH, Kim HS, Park SG, Bae KH, Kang S, Myung PK, Cho S, Park BC, do Lee H: Co-chaperone CHIP promotes aggregation of ataxin-1. Mol Cell Neurosci. 2007, 34: 69-79. 10.1016/j.mcn.2006.10.002.CrossRefPubMed Choi JY, Ryu JH, Kim HS, Park SG, Bae KH, Kang S, Myung PK, Cho S, Park BC, do Lee H: Co-chaperone CHIP promotes aggregation of ataxin-1. Mol Cell Neurosci. 2007, 34: 69-79. 10.1016/j.mcn.2006.10.002.CrossRefPubMed
50.
go back to reference Matsuyama Z, Izumi Y, Kameyama M, Kawakami H, Nakamura S: The effect of CAT trinucleotide interruptions on the age at onset of spinocerebellar ataxia type 1 (SCA1). J Med Genet. 1999, 36: 546-548.PubMedCentralPubMed Matsuyama Z, Izumi Y, Kameyama M, Kawakami H, Nakamura S: The effect of CAT trinucleotide interruptions on the age at onset of spinocerebellar ataxia type 1 (SCA1). J Med Genet. 1999, 36: 546-548.PubMedCentralPubMed
51.
go back to reference Jayaraman M, Kodali R, Wetzel R: The impact of ataxin-1-like histidine insertions on polyglutamine aggregation. Protein Eng Des Sel. 2009, 22: 469-478. 10.1093/protein/gzp023.PubMedCentralCrossRefPubMed Jayaraman M, Kodali R, Wetzel R: The impact of ataxin-1-like histidine insertions on polyglutamine aggregation. Protein Eng Des Sel. 2009, 22: 469-478. 10.1093/protein/gzp023.PubMedCentralCrossRefPubMed
52.
go back to reference Sharma D, Sharma S, Pasha S, Brahmachari SK: Peptide models for inherited neurodegenerative disorders: conformation and aggregation properties of long polyglutamine peptides with and without interruptions. FEBS Lett. 1999, 456: 181-185. 10.1016/S0014-5793(99)00933-3.CrossRefPubMed Sharma D, Sharma S, Pasha S, Brahmachari SK: Peptide models for inherited neurodegenerative disorders: conformation and aggregation properties of long polyglutamine peptides with and without interruptions. FEBS Lett. 1999, 456: 181-185. 10.1016/S0014-5793(99)00933-3.CrossRefPubMed
53.
go back to reference Sen S, Dash D, Pasha S, Brahmachari SK: Role of histidine interruption in mitigating the pathological effects of long polyglutamine stretches in SCA1: a molecular approach. Protein Sci. 2003, 12: 953-962. 10.1110/ps.0224403.PubMedCentralCrossRefPubMed Sen S, Dash D, Pasha S, Brahmachari SK: Role of histidine interruption in mitigating the pathological effects of long polyglutamine stretches in SCA1: a molecular approach. Protein Sci. 2003, 12: 953-962. 10.1110/ps.0224403.PubMedCentralCrossRefPubMed
Metadata
Title
Pathogenic polyglutamine expansion length correlates with polarity of the flanking sequences
Author
Meewhi Kim
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2014
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-9-45

Other articles of this Issue 1/2014

Molecular Neurodegeneration 1/2014 Go to the issue