Skip to main content
Top
Published in: Radiation Oncology 1/2011

Open Access 01-12-2011 | Research

Combination of suberoylanilide hydroxamic acid with heavy ion therapy shows promising effects in infantile sarcoma cell lines

Authors: Susanne Oertel, Markus Thiemann, Karsten Richter, Klaus-J Weber, Peter E Huber, Ramon Lopez Perez, Stephan Brons, Marc Bischof, Andreas E Kulozik, Volker Ehemann, Jürgen Debus, Claudia Blattmann

Published in: Radiation Oncology | Issue 1/2011

Login to get access

Abstract

Introduction

The pan-HDAC inhibitor (HDACI) suberoylanilide hydroxamic acid (SAHA) has previously shown to be a radio-sensitizer to conventional photon radiotherapy (XRT) in pediatric sarcoma cell lines. Here, we investigate its effect on the response of two sarcoma cell lines and a normal tissue cell line to heavy ion irradiation (HIT).

Materials and methods

Clonogenic assays after different doses of heavy ions were performed. DNA damage and repair were evaluated by measuring γH2AX via flow-cytometry. Apoptosis and cell cycle analysis were also measured via flow cytometry. Protein expression of repair proteins, p53 and p21 were measured using immunoblot analysis. Changes of nuclear architecture after treatment with SAHA and HIT were observed in one of the sarcoma cell lines via light microscopy after staining towards chromatin and γH2AX.

Results

Corresponding with previously reported photon data, SAHA lead to an increase of sensitivity to heavy ions along with an increase of DSB and apoptosis in the two sarcoma cell lines. In contrast, in the osteoblast cell line (hFOB 1.19), the combination of SAHA and HIT showed a significant radio-protective effect. Laser scanning microscopy revealed no significant morphologic changes after HIT compared to the combined treatment with SAHA. Immunoblot analysis revealed no significant up or down regulation of p53. However, p21 was significantly increased by SAHA and combination treatment as compared to HIT only in the two sarcoma cell lines - again in contrast to the osteoblast cell line. Changes in the repair kinetics of DSB p53-independent apoptosis with p21 involvement may be part of the underlying mechanisms for radio-sensitization by SAHA.

Conclusion

Our in vitro data suggest an increase of the therapeutic ratio by the combination of SAHA with HIT in infantile sarcoma cell lines.
Appendix
Available only for authorised users
Literature
1.
go back to reference Minucci S, Pelicci P: Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 2006, 6: 38-51. 10.1038/nrc1779CrossRefPubMed Minucci S, Pelicci P: Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 2006, 6: 38-51. 10.1038/nrc1779CrossRefPubMed
2.
go back to reference Wilson AJ, Chueh AC, Tögel L, et al.: Apoptotic sensitivity of colon cancer cells to histone deacetylase inhibitors is mediated by an Sp1/Sp3-activated transcriptional program involving immediate-early gene induction. Cancer Res 2010,70(2):609-620. 10.1158/0008-5472.CAN-09-2327PubMedCentralCrossRefPubMed Wilson AJ, Chueh AC, Tögel L, et al.: Apoptotic sensitivity of colon cancer cells to histone deacetylase inhibitors is mediated by an Sp1/Sp3-activated transcriptional program involving immediate-early gene induction. Cancer Res 2010,70(2):609-620. 10.1158/0008-5472.CAN-09-2327PubMedCentralCrossRefPubMed
3.
go back to reference Furchert SE, Lanvers-Kaminsky C, Jürgens H, et al.: Inhibitor of histone deacetylases as potential therapeutic tools for high-risk embryonal tumors of the nervous system of childhood. Int J Cancer 2007, 120: 1787-1794. 10.1002/ijc.22401CrossRefPubMed Furchert SE, Lanvers-Kaminsky C, Jürgens H, et al.: Inhibitor of histone deacetylases as potential therapeutic tools for high-risk embryonal tumors of the nervous system of childhood. Int J Cancer 2007, 120: 1787-1794. 10.1002/ijc.22401CrossRefPubMed
4.
go back to reference Lee M-J, Kim YS, Kummar S, et al.: Histone deacetylase inhibitors in cancer therapy. Curr Opin Oncol 2008, 20: 639-649. 10.1097/CCO.0b013e3283127095CrossRefPubMed Lee M-J, Kim YS, Kummar S, et al.: Histone deacetylase inhibitors in cancer therapy. Curr Opin Oncol 2008, 20: 639-649. 10.1097/CCO.0b013e3283127095CrossRefPubMed
5.
go back to reference Dalgard CL, Van Quil KR, O'Brien JM, et al.: Evaluation of the in vitro and in vivo antitumor activity of histone deacetylase inhibitors for the therapy of retinoblastoma. Clin Cancer Res 2008,14(10):3113-3123. 10.1158/1078-0432.CCR-07-4836CrossRefPubMed Dalgard CL, Van Quil KR, O'Brien JM, et al.: Evaluation of the in vitro and in vivo antitumor activity of histone deacetylase inhibitors for the therapy of retinoblastoma. Clin Cancer Res 2008,14(10):3113-3123. 10.1158/1078-0432.CCR-07-4836CrossRefPubMed
6.
go back to reference Yang C, Choy E, Hornicek FJ, et al.: Histone deacetylase inhibitor (HDACI) PCI-24781 potentiates cytotoxic effects of doxorubicin in bone sarcoma cells. Cancer Chemother Pharmacol 2011,67(2):439-46. 10.1007/s00280-010-1344-7CrossRefPubMed Yang C, Choy E, Hornicek FJ, et al.: Histone deacetylase inhibitor (HDACI) PCI-24781 potentiates cytotoxic effects of doxorubicin in bone sarcoma cells. Cancer Chemother Pharmacol 2011,67(2):439-46. 10.1007/s00280-010-1344-7CrossRefPubMed
7.
go back to reference Blattmann C, Oertel S, Ehemann V, et al.: Enhancement of radiation response in osteosarcoma and rhabdomyosarcoma cell lines by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys 2010,78(1):237-245. 10.1016/j.ijrobp.2010.03.010CrossRefPubMed Blattmann C, Oertel S, Ehemann V, et al.: Enhancement of radiation response in osteosarcoma and rhabdomyosarcoma cell lines by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys 2010,78(1):237-245. 10.1016/j.ijrobp.2010.03.010CrossRefPubMed
8.
go back to reference Camphausen K, Tofilon PJ: Inhibition of histone deacetylation: a strategy for tumor radiosensitization. J Clin Oncol 2007, 25: 4051-4056. 10.1200/JCO.2007.11.6202CrossRefPubMed Camphausen K, Tofilon PJ: Inhibition of histone deacetylation: a strategy for tumor radiosensitization. J Clin Oncol 2007, 25: 4051-4056. 10.1200/JCO.2007.11.6202CrossRefPubMed
9.
go back to reference Karagiannis TC, El Osta A: Modulation of cellular radiation response by histone deacetylase inhibitors. Oncogene 2006, 25: 3885-3893. 10.1038/sj.onc.1209417CrossRefPubMed Karagiannis TC, El Osta A: Modulation of cellular radiation response by histone deacetylase inhibitors. Oncogene 2006, 25: 3885-3893. 10.1038/sj.onc.1209417CrossRefPubMed
10.
go back to reference Munshi A, Tanaka T, Hobbs ML, et al.: Vorinostat, a histone deacetylase inhibitor, enhances the response of human tumor cells to ionizing radiation through prolongation of gamma-H2AX foci. Mol Cancer Ther 2006, 5: 1967-74. 10.1158/1535-7163.MCT-06-0022CrossRefPubMed Munshi A, Tanaka T, Hobbs ML, et al.: Vorinostat, a histone deacetylase inhibitor, enhances the response of human tumor cells to ionizing radiation through prolongation of gamma-H2AX foci. Mol Cancer Ther 2006, 5: 1967-74. 10.1158/1535-7163.MCT-06-0022CrossRefPubMed
12.
go back to reference Hada M, Sutherland BM: Spectrum of complex DNA damages depends on the incident radiation. Radiat Res 2006,165(2):223-30. 10.1667/RR3498.1CrossRefPubMed Hada M, Sutherland BM: Spectrum of complex DNA damages depends on the incident radiation. Radiat Res 2006,165(2):223-30. 10.1667/RR3498.1CrossRefPubMed
13.
go back to reference Blattmann C, Oertel S, Schulz-Ertner D, et al.: Non-randomized therapy trial to determine the safety and efficacy of heavy ion radiotherapy in patients with non-resectable osteosarcoma. BMC Cancer 2010, 10: 96. 10.1186/1471-2407-10-96PubMedCentralCrossRefPubMed Blattmann C, Oertel S, Schulz-Ertner D, et al.: Non-randomized therapy trial to determine the safety and efficacy of heavy ion radiotherapy in patients with non-resectable osteosarcoma. BMC Cancer 2010, 10: 96. 10.1186/1471-2407-10-96PubMedCentralCrossRefPubMed
14.
go back to reference Kano M, Yamada S, Hoshino I, et al.: Effects of carbon-ion radiotherapy combined with a novel histone deacetylase inhibitor, cyclic hydroxamic-acid-containing peptide 31 in human esophageal squamous cell carcinoma. Anticancer Res 2009,29(11):4433-8.PubMed Kano M, Yamada S, Hoshino I, et al.: Effects of carbon-ion radiotherapy combined with a novel histone deacetylase inhibitor, cyclic hydroxamic-acid-containing peptide 31 in human esophageal squamous cell carcinoma. Anticancer Res 2009,29(11):4433-8.PubMed
15.
go back to reference Steel GG, Peckham MJ: Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys 1979, 5: 85-91.CrossRefPubMed Steel GG, Peckham MJ: Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys 1979, 5: 85-91.CrossRefPubMed
16.
go back to reference O'Connor OA, Heaney ML, Schwartz L, et al.: Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J Clin Oncol 2006, 24: 166-73. 10.1200/JCO.2005.01.9679CrossRefPubMed O'Connor OA, Heaney ML, Schwartz L, et al.: Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J Clin Oncol 2006, 24: 166-73. 10.1200/JCO.2005.01.9679CrossRefPubMed
17.
go back to reference Baschnagel A, Russo A, Burgan WE, et al.: Vorinostat enhances the radiosensitivity of a breast cancer brain metastatic cell line grown in vitro and as intracranial xenografts. Mol Cancer Ther 2009,8(6):1589-95. 10.1158/1535-7163.MCT-09-0038PubMedCentralCrossRefPubMed Baschnagel A, Russo A, Burgan WE, et al.: Vorinostat enhances the radiosensitivity of a breast cancer brain metastatic cell line grown in vitro and as intracranial xenografts. Mol Cancer Ther 2009,8(6):1589-95. 10.1158/1535-7163.MCT-09-0038PubMedCentralCrossRefPubMed
18.
go back to reference Vasirredy RS, Shung CN, Cempaka NL, et al.: H2AX phosphorylation screens from radiosensitive cancer patients reveals a novel DNA double-strand break repair cellular phenotype. Br J Cancer 2010,102(10):1511-1518. 10.1038/sj.bjc.6605666CrossRef Vasirredy RS, Shung CN, Cempaka NL, et al.: H2AX phosphorylation screens from radiosensitive cancer patients reveals a novel DNA double-strand break repair cellular phenotype. Br J Cancer 2010,102(10):1511-1518. 10.1038/sj.bjc.6605666CrossRef
19.
go back to reference Chung YL, Lee MY, Pui NN: Epigenetic therapy using the histone deacetylase inhibitor for increasing therapeutic gain in oral cancer: prevention of radiation-induced oral mucositis and inhibition of chemical-induced oral carcinogenesis. Carcinogenesis 2009,30(8):1387-1397. 10.1093/carcin/bgp079CrossRefPubMed Chung YL, Lee MY, Pui NN: Epigenetic therapy using the histone deacetylase inhibitor for increasing therapeutic gain in oral cancer: prevention of radiation-induced oral mucositis and inhibition of chemical-induced oral carcinogenesis. Carcinogenesis 2009,30(8):1387-1397. 10.1093/carcin/bgp079CrossRefPubMed
20.
go back to reference Chinnaiyan P, Vallabhaneni G, Armstrong E, et al.: Modulation of radiation response by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys 2005, 62: 223-9. 10.1016/j.ijrobp.2004.12.088CrossRefPubMed Chinnaiyan P, Vallabhaneni G, Armstrong E, et al.: Modulation of radiation response by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys 2005, 62: 223-9. 10.1016/j.ijrobp.2004.12.088CrossRefPubMed
21.
go back to reference Camphausen K, Burgan W, Cerra M, et al.: Enhanced radiation-induced cell killing and prolongation of χH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res 2004, 64: 316-21. 10.1158/0008-5472.CAN-03-2630CrossRefPubMed Camphausen K, Burgan W, Cerra M, et al.: Enhanced radiation-induced cell killing and prolongation of χH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res 2004, 64: 316-21. 10.1158/0008-5472.CAN-03-2630CrossRefPubMed
22.
go back to reference Storch K, Eke I, Borgmann K, et al.: Three-dimensional cell growth confers radioresistance by chromatin density modification. Cancer Res 2010, 70: 3925-34. 10.1158/0008-5472.CAN-09-3848CrossRefPubMed Storch K, Eke I, Borgmann K, et al.: Three-dimensional cell growth confers radioresistance by chromatin density modification. Cancer Res 2010, 70: 3925-34. 10.1158/0008-5472.CAN-09-3848CrossRefPubMed
23.
go back to reference Oishi T, et al.: Proliferation and cell death of human glioblastoma cells after carbon-ion beam exposure: morphologic and morphometric analyses. Neuropathology 2008, 28: 408-416. 10.1111/j.1440-1789.2008.00899.xCrossRefPubMed Oishi T, et al.: Proliferation and cell death of human glioblastoma cells after carbon-ion beam exposure: morphologic and morphometric analyses. Neuropathology 2008, 28: 408-416. 10.1111/j.1440-1789.2008.00899.xCrossRefPubMed
24.
go back to reference Hamada N, Tatsuhiko I, Masunaga S, et al.: Recent advances in the Biology of heavy-ion cancer therapy. J Radiat Res 2010, 51: 365-83. 10.1269/jrr.09137CrossRefPubMed Hamada N, Tatsuhiko I, Masunaga S, et al.: Recent advances in the Biology of heavy-ion cancer therapy. J Radiat Res 2010, 51: 365-83. 10.1269/jrr.09137CrossRefPubMed
25.
go back to reference Pawlik TM, Keyomarsi K: Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 2004,59(4):928-42. 10.1016/j.ijrobp.2004.03.005CrossRefPubMed Pawlik TM, Keyomarsi K: Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 2004,59(4):928-42. 10.1016/j.ijrobp.2004.03.005CrossRefPubMed
26.
go back to reference Hollstein M, et al.: p53 mutations in human cancers. Science 2001, 253: 49-53.CrossRef Hollstein M, et al.: p53 mutations in human cancers. Science 2001, 253: 49-53.CrossRef
28.
go back to reference Takahashi T, Fukawa T, Hirayama R, et al.: In vitro interaction of high-LET heavy-ion irradiation and chemotherapeutic agents in two cell lines with different radiosensitivities and different p53 status. Anticancer Res 2010,30(6):1961-7.PubMed Takahashi T, Fukawa T, Hirayama R, et al.: In vitro interaction of high-LET heavy-ion irradiation and chemotherapeutic agents in two cell lines with different radiosensitivities and different p53 status. Anticancer Res 2010,30(6):1961-7.PubMed
29.
go back to reference Singh TR, Shankar S, Srivastava RK: HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma. Oncogene 2005, 24: 4609-23. 10.1038/sj.onc.1208585CrossRefPubMed Singh TR, Shankar S, Srivastava RK: HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma. Oncogene 2005, 24: 4609-23. 10.1038/sj.onc.1208585CrossRefPubMed
30.
go back to reference Takahashi A, Matsumoto H, Furusawa Y, et al.: Apoptosis induced by high-LET radiations is not affected by cellular p53 gene status. Int J Radiat Biol 2005, 81: 581-6. 10.1080/09553000500280484CrossRefPubMed Takahashi A, Matsumoto H, Furusawa Y, et al.: Apoptosis induced by high-LET radiations is not affected by cellular p53 gene status. Int J Radiat Biol 2005, 81: 581-6. 10.1080/09553000500280484CrossRefPubMed
31.
go back to reference Blakely EA, Chang PY: Biology of charged particles. Cancer J 2009, 15: 271-84. 10.1097/PPO.0b013e3181b666c5CrossRefPubMed Blakely EA, Chang PY: Biology of charged particles. Cancer J 2009, 15: 271-84. 10.1097/PPO.0b013e3181b666c5CrossRefPubMed
32.
go back to reference Huo JX, Metz SA, Li GD: p53-independent induction of p21(waf1/cip1) contributes to the activation of caspases in GTP-depletion-induced apoptosis of insulin-secreting cells. Cell Death Differ 2004,11(1):99-109. 10.1038/sj.cdd.4401322CrossRefPubMed Huo JX, Metz SA, Li GD: p53-independent induction of p21(waf1/cip1) contributes to the activation of caspases in GTP-depletion-induced apoptosis of insulin-secreting cells. Cell Death Differ 2004,11(1):99-109. 10.1038/sj.cdd.4401322CrossRefPubMed
33.
go back to reference Banath J, MacPhail S, Olive P: Radiation Sensitivity, H2AX phosphorylation, and kinetics of repair of DNA strand breaks in irradiated cervical cancer cell cines. Cancer Res 2004, 64: 7144-9. 10.1158/0008-5472.CAN-04-1433CrossRefPubMed Banath J, MacPhail S, Olive P: Radiation Sensitivity, H2AX phosphorylation, and kinetics of repair of DNA strand breaks in irradiated cervical cancer cell cines. Cancer Res 2004, 64: 7144-9. 10.1158/0008-5472.CAN-04-1433CrossRefPubMed
34.
go back to reference Mills J, Hricik T, Siddiqi S, et al.: Chromatin structure predicts epigenetic therapy responsiveness in sarcoma. Mol Cancer Ther 2011, (10):313-323. Mills J, Hricik T, Siddiqi S, et al.: Chromatin structure predicts epigenetic therapy responsiveness in sarcoma. Mol Cancer Ther 2011, (10):313-323.
Metadata
Title
Combination of suberoylanilide hydroxamic acid with heavy ion therapy shows promising effects in infantile sarcoma cell lines
Authors
Susanne Oertel
Markus Thiemann
Karsten Richter
Klaus-J Weber
Peter E Huber
Ramon Lopez Perez
Stephan Brons
Marc Bischof
Andreas E Kulozik
Volker Ehemann
Jürgen Debus
Claudia Blattmann
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2011
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-6-119

Other articles of this Issue 1/2011

Radiation Oncology 1/2011 Go to the issue