Skip to main content
Top
Published in: Nutrition & Metabolism 1/2006

Open Access 01-12-2006 | Research

Differential effects of curcumin on vasoactive factors in the diabetic rat heart

Authors: Hana Farhangkhoee, Zia A Khan, Shali Chen, Subrata Chakrabarti

Published in: Nutrition & Metabolism | Issue 1/2006

Login to get access

Abstract

Background

Increased oxidative stress has been associated with the pathogenesis of chronic diabetic complications, including cardiomyopathy. Recent studies indicate that curcumin, a potent antioxidant, may be beneficial in preventing diabetes-induced oxidative stress and subsequent secondary complications. We have investigated the effects of curcumin on the nitric oxide (NO) pathway in cardiac tissues and cultured cells.

Methods

Streptozotocin-induced diabetic rats were treated with curcumin for a period of one month. Heart tissues were then analyzed for endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) mRNA expression. Oxidative protein and DNA damage were assessed by immunohistochemical analysis of nitrotyrosine and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Heart tissues were further subjected to endothelin-1 (ET-1) mRNA expression. In order to further characterize the effects of curcumin, we assayed microvascular endothelial cells (MVECs). Cultured MVECs, exposed either to glucose or glucose and varying concentrations of curcumin, were assessed for alterations of NOS expression and activation of nuclear factor-κB (NF-κB) and activating protein-1 (AP-1). Oxidative stress and ET-1 expression levels were also assayed.

Results

Our results indicate that one month of diabetes causes an upregulation of both eNOS and iNOS mRNA levels, and nitrotyrosine and 8-OHdG immunoreactivity in the heart. Treatment of diabetic rats with curcumin reduced eNOS and iNOS levels in association with reduced oxidative DNA and protein damage. Interestingly, curcumin further increased vasoconstrictor ET-1 in the heart. Exposure of MVECs to high glucose increased both eNOS and iNOS levels and oxidative stress. Curcumin prevented NOS alteration and oxidative stress in a dose-dependent manner which was mediated by nuclear factor-κB and activating protein-1. Exposure to curcumin also increased ET-1 levels in the MVECs.

Conclusion

Our studies indicate the differential effects of curcumin in vasoactive factor expression in the heart and indicate the importance of tissue microenvironment in the treatment of diabetic complications.
Appendix
Available only for authorised users
Literature
1.
go back to reference Garcia MJ, McNamara PM, Gordon T, Kannel WB: Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow-up study. Diabetes. 1974, 23 (2): 105-111.CrossRef Garcia MJ, McNamara PM, Gordon T, Kannel WB: Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow-up study. Diabetes. 1974, 23 (2): 105-111.CrossRef
2.
go back to reference Role of cardiovascular risk factors in prevention and treatment of macrovascular disease in diabetes. American Diabetes Association. Diabetes Care. 1989, 12 (8): 573-579. Role of cardiovascular risk factors in prevention and treatment of macrovascular disease in diabetes. American Diabetes Association. Diabetes Care. 1989, 12 (8): 573-579.
3.
go back to reference Hayat SA, Patel B, Khattar RS, Malik RA: Diabetic cardiomyopathy: mechanisms, diagnosis and treatment. Clin Sci (Lond). 2004, 107 (6): 539-557.CrossRef Hayat SA, Patel B, Khattar RS, Malik RA: Diabetic cardiomyopathy: mechanisms, diagnosis and treatment. Clin Sci (Lond). 2004, 107 (6): 539-557.CrossRef
4.
go back to reference The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993, 329 (14): 977-986. 10.1056/NEJM199309303291401. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993, 329 (14): 977-986. 10.1056/NEJM199309303291401.
5.
go back to reference United Kingdom Prospective Diabetes Study (UKPDS). 13: Relative efficacy of randomly allocated diet, sulphonylurea, insulin, or metformin in patients with newly diagnosed non-insulin dependent diabetes followed for three years. Bmj. 1995, 310 (6972): 83-88. United Kingdom Prospective Diabetes Study (UKPDS). 13: Relative efficacy of randomly allocated diet, sulphonylurea, insulin, or metformin in patients with newly diagnosed non-insulin dependent diabetes followed for three years. Bmj. 1995, 310 (6972): 83-88.
6.
go back to reference Brownlee M: Biochemistry and molecular cell biology of diabetic complications. Nature. 2001, 414 (6865): 813-820. 10.1038/414813a.CrossRef Brownlee M: Biochemistry and molecular cell biology of diabetic complications. Nature. 2001, 414 (6865): 813-820. 10.1038/414813a.CrossRef
7.
go back to reference Sheetz MJ, King GL: Molecular understanding of hyperglycemia's adverse effects for diabetic complications. Jama. 2002, 288 (20): 2579-2588. 10.1001/jama.288.20.2579.CrossRef Sheetz MJ, King GL: Molecular understanding of hyperglycemia's adverse effects for diabetic complications. Jama. 2002, 288 (20): 2579-2588. 10.1001/jama.288.20.2579.CrossRef
8.
go back to reference Farhangkhoee H, Khan ZA, Kaur H, Xin X, Chen S, Chakrabarti S: Vascular endothelial dysfunction in diabetic cardiomyopathy: Pathogenesis and potential treatment targets. Pharmacol Ther. 2005 Farhangkhoee H, Khan ZA, Kaur H, Xin X, Chen S, Chakrabarti S: Vascular endothelial dysfunction in diabetic cardiomyopathy: Pathogenesis and potential treatment targets. Pharmacol Ther. 2005
9.
go back to reference Khan ZA, Farhangkhoee H, Chakrabarti S: Towards newer molecular targets for chronic diabetic complications. Curr Vasc Pharmacol. 2006, 4 (1): 45-57. 10.2174/157016106775203081.CrossRef Khan ZA, Farhangkhoee H, Chakrabarti S: Towards newer molecular targets for chronic diabetic complications. Curr Vasc Pharmacol. 2006, 4 (1): 45-57. 10.2174/157016106775203081.CrossRef
10.
go back to reference Bonnefont-Rousselot D: Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care. 2002, 5 (5): 561-568. 10.1097/00075197-200209000-00016.CrossRef Bonnefont-Rousselot D: Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care. 2002, 5 (5): 561-568. 10.1097/00075197-200209000-00016.CrossRef
11.
go back to reference Stadler K, Jenei V, von Bolcshazy G, Somogyi A, Jakus J: Increased nitric oxide levels as an early sign of premature aging in diabetes. Free Radic Biol Med. 2003, 35 (10): 1240-1251. 10.1016/S0891-5849(03)00499-4.CrossRef Stadler K, Jenei V, von Bolcshazy G, Somogyi A, Jakus J: Increased nitric oxide levels as an early sign of premature aging in diabetes. Free Radic Biol Med. 2003, 35 (10): 1240-1251. 10.1016/S0891-5849(03)00499-4.CrossRef
12.
go back to reference Hattori R, Sase K, Eizawa H, Kosuga K, Aoyama T, Inoue R, Sasayama S, Kawai C, Yui Y, Miyahara K: Structure and function of nitric oxide synthases. Int J Cardiol. 1994, 47 (1 Suppl): S71-5. 10.1016/0167-5273(94)90329-8.CrossRef Hattori R, Sase K, Eizawa H, Kosuga K, Aoyama T, Inoue R, Sasayama S, Kawai C, Yui Y, Miyahara K: Structure and function of nitric oxide synthases. Int J Cardiol. 1994, 47 (1 Suppl): S71-5. 10.1016/0167-5273(94)90329-8.CrossRef
13.
go back to reference Sessa WC: The nitric oxide synthase family of proteins. J Vasc Res. 1994, 31 (3): 131-143.CrossRef Sessa WC: The nitric oxide synthase family of proteins. J Vasc Res. 1994, 31 (3): 131-143.CrossRef
14.
go back to reference Andrew PJ, Mayer B: Enzymatic function of nitric oxide synthases. Cardiovasc Res. 1999, 43 (3): 521-531. 10.1016/S0008-6363(99)00115-7.CrossRef Andrew PJ, Mayer B: Enzymatic function of nitric oxide synthases. Cardiovasc Res. 1999, 43 (3): 521-531. 10.1016/S0008-6363(99)00115-7.CrossRef
15.
go back to reference Beckman JS, Koppenol WH: Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996, 271 (5 Pt 1): C1424-37. Beckman JS, Koppenol WH: Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996, 271 (5 Pt 1): C1424-37.
16.
go back to reference Santilli F, Cipollone F, Mezzetti A, Chiarelli F: The role of nitric oxide in the development of diabetic angiopathy. Horm Metab Res. 2004, 36 (5): 319-335. 10.1055/s-2004-814489.CrossRef Santilli F, Cipollone F, Mezzetti A, Chiarelli F: The role of nitric oxide in the development of diabetic angiopathy. Horm Metab Res. 2004, 36 (5): 319-335. 10.1055/s-2004-814489.CrossRef
17.
go back to reference Li H, Forstermann U: Nitric oxide in the pathogenesis of vascular disease. J Pathol. 2000, 190 (3): 244-254. 10.1002/(SICI)1096-9896(200002)190:3<244::AID-PATH575>3.0.CO;2-8.CrossRef Li H, Forstermann U: Nitric oxide in the pathogenesis of vascular disease. J Pathol. 2000, 190 (3): 244-254. 10.1002/(SICI)1096-9896(200002)190:3<244::AID-PATH575>3.0.CO;2-8.CrossRef
18.
go back to reference Farhangkhoee H, Khan ZA, Mukherjee S, Cukiernik M, Barbin YP, Karmazyn M, Chakrabarti S: Heme oxygenase in diabetes-induced oxidative stress in the heart. J Mol Cell Cardiol. 2003, 35 (12): 1439-1448. 10.1016/j.yjmcc.2003.09.007.CrossRef Farhangkhoee H, Khan ZA, Mukherjee S, Cukiernik M, Barbin YP, Karmazyn M, Chakrabarti S: Heme oxygenase in diabetes-induced oxidative stress in the heart. J Mol Cell Cardiol. 2003, 35 (12): 1439-1448. 10.1016/j.yjmcc.2003.09.007.CrossRef
19.
go back to reference Ammon HP, Wahl MA: Pharmacology of Curcuma longa. Planta Med. 1991, 57 (1): 1-7.CrossRef Ammon HP, Wahl MA: Pharmacology of Curcuma longa. Planta Med. 1991, 57 (1): 1-7.CrossRef
20.
go back to reference Bengmark S: Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. JPEN J Parenter Enteral Nutr. 2006, 30 (1): 45-51.CrossRef Bengmark S: Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. JPEN J Parenter Enteral Nutr. 2006, 30 (1): 45-51.CrossRef
21.
go back to reference Arun N, Nalini N: Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats. Plant Foods Hum Nutr. 2002, 57 (1): 41-52. 10.1023/A:1013106527829.CrossRef Arun N, Nalini N: Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats. Plant Foods Hum Nutr. 2002, 57 (1): 41-52. 10.1023/A:1013106527829.CrossRef
22.
go back to reference Balasubramanyam M, Koteswari AA, Kumar RS, Monickaraj SF, Maheswari JU, Mohan V: Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications. J Biosci. 2003, 28 (6): 715-721.CrossRef Balasubramanyam M, Koteswari AA, Kumar RS, Monickaraj SF, Maheswari JU, Mohan V: Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications. J Biosci. 2003, 28 (6): 715-721.CrossRef
23.
go back to reference Joe B, Vijaykumar M, Lokesh BR: Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr. 2004, 44 (2): 97-111. 10.1080/10408690490424702.CrossRef Joe B, Vijaykumar M, Lokesh BR: Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr. 2004, 44 (2): 97-111. 10.1080/10408690490424702.CrossRef
24.
go back to reference Singh S, Aggarwal BB: Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J Biol Chem. 1995, 270 (42): 24995-25000. 10.1074/jbc.270.42.24995.CrossRef Singh S, Aggarwal BB: Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J Biol Chem. 1995, 270 (42): 24995-25000. 10.1074/jbc.270.42.24995.CrossRef
25.
go back to reference Cai L, Chen S, Evans T, Cherian MG, Chakrabarti S: Endothelin-1-mediated alteration of metallothionein and trace metals in the liver and kidneys of chronically diabetic rats. Int J Exp Diabetes Res. 2002, 3 (3): 193-198. 10.1080/15604280214281.CrossRef Cai L, Chen S, Evans T, Cherian MG, Chakrabarti S: Endothelin-1-mediated alteration of metallothionein and trace metals in the liver and kidneys of chronically diabetic rats. Int J Exp Diabetes Res. 2002, 3 (3): 193-198. 10.1080/15604280214281.CrossRef
26.
go back to reference Chen S, Evans T, Deng D, Cukiernik M, Chakrabarti S: Hyperhexosemia induced functional and structural changes in the kidneys: role of endothelins. Nephron. 2002, 90 (1): 86-94. 10.1159/000046319.CrossRef Chen S, Evans T, Deng D, Cukiernik M, Chakrabarti S: Hyperhexosemia induced functional and structural changes in the kidneys: role of endothelins. Nephron. 2002, 90 (1): 86-94. 10.1159/000046319.CrossRef
27.
go back to reference Srimal RC, Dhawan BN: Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol. 1973, 25 (6): 447-452.CrossRef Srimal RC, Dhawan BN: Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol. 1973, 25 (6): 447-452.CrossRef
28.
go back to reference Arora RB, Kapoor V, Basu N, Jain AP: Anti-inflammatory studies on Curcuma longa (turmeric). Indian J Med Res. 1971, 59 (8): 1289-1295. Arora RB, Kapoor V, Basu N, Jain AP: Anti-inflammatory studies on Curcuma longa (turmeric). Indian J Med Res. 1971, 59 (8): 1289-1295.
29.
go back to reference Chen S, Mukherjee S, Chakraborty C, Chakrabarti S: High glucose-induced, endothelin-dependent fibronectin synthesis is mediated via NF-kappa B and AP-1. Am J Physiol Cell Physiol. 2003, 284 (2): C263-72.CrossRef Chen S, Mukherjee S, Chakraborty C, Chakrabarti S: High glucose-induced, endothelin-dependent fibronectin synthesis is mediated via NF-kappa B and AP-1. Am J Physiol Cell Physiol. 2003, 284 (2): C263-72.CrossRef
30.
go back to reference Pendurthi UR, Williams JT, Rao LV: Inhibition of tissue factor gene activation in cultured endothelial cells by curcumin. Suppression of activation of transcription factors Egr-1, AP-1, and NF-kappa B. Arterioscler Thromb Vasc Biol. 1997, 17 (12): 3406-3413.CrossRef Pendurthi UR, Williams JT, Rao LV: Inhibition of tissue factor gene activation in cultured endothelial cells by curcumin. Suppression of activation of transcription factors Egr-1, AP-1, and NF-kappa B. Arterioscler Thromb Vasc Biol. 1997, 17 (12): 3406-3413.CrossRef
31.
go back to reference Mahakunakorn P, Tohda M, Murakami Y, Matsumoto K, Watanabe H, Vajaragupta O: Cytoprotective and cytotoxic effects of curcumin: dual action on H2O2-induced oxidative cell damage in NG108-15 cells. Biol Pharm Bull. 2003, 26 (5): 725-728. 10.1248/bpb.26.725.CrossRef Mahakunakorn P, Tohda M, Murakami Y, Matsumoto K, Watanabe H, Vajaragupta O: Cytoprotective and cytotoxic effects of curcumin: dual action on H2O2-induced oxidative cell damage in NG108-15 cells. Biol Pharm Bull. 2003, 26 (5): 725-728. 10.1248/bpb.26.725.CrossRef
32.
go back to reference Farhangkhoee H, Khan ZA, Barbin Y, Chakrabarti S: Glucose-induced up-regulation of CD36 mediates oxidative stress and microvascular endothelial cell dysfunction. Diabetologia. 2005, 48 (7): 1401-1410. 10.1007/s00125-005-1801-8.CrossRef Farhangkhoee H, Khan ZA, Barbin Y, Chakrabarti S: Glucose-induced up-regulation of CD36 mediates oxidative stress and microvascular endothelial cell dysfunction. Diabetologia. 2005, 48 (7): 1401-1410. 10.1007/s00125-005-1801-8.CrossRef
33.
go back to reference Khan ZA, Barbin YP, Cukiernik M, Adams PC, Chakrabarti S: Heme-oxygenase-mediated iron accumulation in the liver. Can J Physiol Pharmacol. 2004, 82 (7): 448-456. 10.1139/y04-052.CrossRef Khan ZA, Barbin YP, Cukiernik M, Adams PC, Chakrabarti S: Heme-oxygenase-mediated iron accumulation in the liver. Can J Physiol Pharmacol. 2004, 82 (7): 448-456. 10.1139/y04-052.CrossRef
34.
go back to reference Chen S, Khan ZA, Cukiernik M, Chakrabarti S: Differential activation of NF-kappa B and AP-1 in increased fibronectin synthesis in target organs of diabetic complications. Am J Physiol Endocrinol Metab. 2003, 284 (6): E1089-97.CrossRef Chen S, Khan ZA, Cukiernik M, Chakrabarti S: Differential activation of NF-kappa B and AP-1 in increased fibronectin synthesis in target organs of diabetic complications. Am J Physiol Endocrinol Metab. 2003, 284 (6): E1089-97.CrossRef
35.
go back to reference Jay D, Hitomi H, Griendling KK: Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med. 2006, 40 (2): 183-192. 10.1016/j.freeradbiomed.2005.06.018.CrossRef Jay D, Hitomi H, Griendling KK: Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med. 2006, 40 (2): 183-192. 10.1016/j.freeradbiomed.2005.06.018.CrossRef
36.
go back to reference King GL, Loeken MR: Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol. 2004, 122 (4): 333-338. 10.1007/s00418-004-0678-9.CrossRef King GL, Loeken MR: Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol. 2004, 122 (4): 333-338. 10.1007/s00418-004-0678-9.CrossRef
37.
go back to reference Pricci F, Leto G, Amadio L, Iacobini C, Cordone S, Catalano S, Zicari A, Sorcini M, Di Mario U, Pugliese G: Oxidative stress in diabetes-induced endothelial dysfunction involvement of nitric oxide and protein kinase C. Free Radic Biol Med. 2003, 35 (6): 683-694. 10.1016/S0891-5849(03)00401-5.CrossRef Pricci F, Leto G, Amadio L, Iacobini C, Cordone S, Catalano S, Zicari A, Sorcini M, Di Mario U, Pugliese G: Oxidative stress in diabetes-induced endothelial dysfunction involvement of nitric oxide and protein kinase C. Free Radic Biol Med. 2003, 35 (6): 683-694. 10.1016/S0891-5849(03)00401-5.CrossRef
38.
go back to reference Aggarwal BB, Kumar A, Bharti AC: Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003, 23 (1A): 363-398. Aggarwal BB, Kumar A, Bharti AC: Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003, 23 (1A): 363-398.
39.
go back to reference Pan MH, Lin-Shiau SY, Lin JK: Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem Pharmacol. 2000, 60 (11): 1665-1676. 10.1016/S0006-2952(00)00489-5.CrossRef Pan MH, Lin-Shiau SY, Lin JK: Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem Pharmacol. 2000, 60 (11): 1665-1676. 10.1016/S0006-2952(00)00489-5.CrossRef
40.
go back to reference Brouet I, Ohshima H: Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem Biophys Res Commun. 1995, 206 (2): 533-540. 10.1006/bbrc.1995.1076.CrossRef Brouet I, Ohshima H: Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem Biophys Res Commun. 1995, 206 (2): 533-540. 10.1006/bbrc.1995.1076.CrossRef
41.
go back to reference Johnston BD, DeMaster EG: Suppression of nitric oxide oxidation to nitrite by curcumin is due to the sequestration of the reaction intermediate nitrogen dioxide, not nitric oxide. Nitric Oxide. 2003, 8 (4): 231-234. 10.1016/S1089-8603(03)00030-2.CrossRef Johnston BD, DeMaster EG: Suppression of nitric oxide oxidation to nitrite by curcumin is due to the sequestration of the reaction intermediate nitrogen dioxide, not nitric oxide. Nitric Oxide. 2003, 8 (4): 231-234. 10.1016/S1089-8603(03)00030-2.CrossRef
42.
go back to reference Quattrone S, Chiappini L, Scapagnini G, Bigazzi B, Bani D: Relaxin potentiates the expression of inducible nitric oxide synthase by endothelial cells from human umbilical vein in in vitro culture. Mol Hum Reprod. 2004, 10 (5): 325-330. 10.1093/molehr/gah040.CrossRef Quattrone S, Chiappini L, Scapagnini G, Bigazzi B, Bani D: Relaxin potentiates the expression of inducible nitric oxide synthase by endothelial cells from human umbilical vein in in vitro culture. Mol Hum Reprod. 2004, 10 (5): 325-330. 10.1093/molehr/gah040.CrossRef
43.
go back to reference McLean M, Bowman M, Clifton V, Smith R, Grossman AB: Expression of the heme oxygenase-carbon monoxide signalling system in human placenta. J Clin Endocrinol Metab. 2000, 85 (6): 2345-2349. 10.1210/jc.85.6.2345.CrossRef McLean M, Bowman M, Clifton V, Smith R, Grossman AB: Expression of the heme oxygenase-carbon monoxide signalling system in human placenta. J Clin Endocrinol Metab. 2000, 85 (6): 2345-2349. 10.1210/jc.85.6.2345.CrossRef
Metadata
Title
Differential effects of curcumin on vasoactive factors in the diabetic rat heart
Authors
Hana Farhangkhoee
Zia A Khan
Shali Chen
Subrata Chakrabarti
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Nutrition & Metabolism / Issue 1/2006
Electronic ISSN: 1743-7075
DOI
https://doi.org/10.1186/1743-7075-3-27

Other articles of this Issue 1/2006

Nutrition & Metabolism 1/2006 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.