Skip to main content
Top
Published in: Nutrition & Metabolism 1/2006

Open Access 01-12-2006 | Research

Determinants of bone mass and bone size in a large cohort of physically active young adult men

Authors: JA Ruffing, F Cosman, M Zion, Susan Tendy, P Garrett, R Lindsay, JW Nieves

Published in: Nutrition & Metabolism | Issue 1/2006

Login to get access

Abstract

The determinants of bone mineral density (BMD) at multiple sites were examined in a fit college population. Subjects were 755 males (mean age = 18.7 years) entering the United States Military Academy. A questionnaire assessed exercise frequency and milk, caffeine, and alcohol consumption and tobacco use. Academy staff measured height, weight, and fitness. Calcaneal BMD was measured by peripheral dual-energy x-ray absorptiometry (pDXA). Peripheral-quantitative computed tomography (pQCT) was used to measure tibial mineral content, circumference and cortical thickness. Spine and hip BMD were measured by DXA in a subset (n = 159). Mean BMD at all sites was approximately one standard deviation above young normal (p < 0.05). African Americans had significantly higher hip, spine and heel BMD and greater tibial mineral content and cortical thickness than Caucasians and Asians. In Caucasians (n = 653), weight was a significant determinant of BMD at every skeletal site. Prior exercise levels and milk intake positively related to bone density and size, while caffeine had a negative impact. There was an apparent interaction between milk and exercise in BMD at the heel, spine, hip and tibial mineral content and cortical thickness. Our data confirm the importance of race, body size, milk intake and duration of weekly exercise as determinants of BMD and bone size.
Appendix
Available only for authorised users
Literature
1.
go back to reference US Dept of Health and Human Services: Bone Health and Osteoporosis: A Report of the Surgeon General. 2004, Rockville, MD: U.S. Department of Health and Human Services, Office of the Surgeon General US Dept of Health and Human Services: Bone Health and Osteoporosis: A Report of the Surgeon General. 2004, Rockville, MD: U.S. Department of Health and Human Services, Office of the Surgeon General
2.
go back to reference Seeman E: Osteoporosis in men. Baillieres Clin Rheumatol. 1997, 11: 613-29. 10.1016/S0950-3579(97)80023-4.CrossRef Seeman E: Osteoporosis in men. Baillieres Clin Rheumatol. 1997, 11: 613-29. 10.1016/S0950-3579(97)80023-4.CrossRef
3.
go back to reference Melton LJ, Crowson CS, O'Fallon WM: Relative contributions of bone density, bone turnover, and clinical risk factors to long-term fracture prediction. J Bone Miner Res. 2003, 18: 312-8.CrossRef Melton LJ, Crowson CS, O'Fallon WM: Relative contributions of bone density, bone turnover, and clinical risk factors to long-term fracture prediction. J Bone Miner Res. 2003, 18: 312-8.CrossRef
4.
go back to reference Goulding A, Jones IE, Taylor RW: Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr. 2001, 139: 509-15. 10.1067/mpd.2001.116297.CrossRef Goulding A, Jones IE, Taylor RW: Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr. 2001, 139: 509-15. 10.1067/mpd.2001.116297.CrossRef
5.
go back to reference Myburgh KH, Hutckins J, Fataar AM: Low bone density is an etiologic factor for stress fractures in athletes. Ann Intern Med. 1990, 113: 754-759.CrossRef Myburgh KH, Hutckins J, Fataar AM: Low bone density is an etiologic factor for stress fractures in athletes. Ann Intern Med. 1990, 113: 754-759.CrossRef
6.
go back to reference Marx RG, Saint-Phard D, Callahan LR: Stress fracture sites related to underlying bone health in athletic females. Clin J Sport Med. 2001, 11: 73-6. 10.1097/00042752-200104000-00002.CrossRef Marx RG, Saint-Phard D, Callahan LR: Stress fracture sites related to underlying bone health in athletic females. Clin J Sport Med. 2001, 11: 73-6. 10.1097/00042752-200104000-00002.CrossRef
7.
go back to reference Torgerson DJ, Campbell MK, Thomas RE: Prediction of perimenopausal fractures by bone mineral density and other risk factors. J Bone Miner Res. 1996, 11: 293-7.CrossRef Torgerson DJ, Campbell MK, Thomas RE: Prediction of perimenopausal fractures by bone mineral density and other risk factors. J Bone Miner Res. 1996, 11: 293-7.CrossRef
8.
go back to reference Melton LJ, Atkinson EJ, O'Connor MK: Bone density and fracture risk in men. J Bone Miner Res. 1998, 13: 1915-23.CrossRef Melton LJ, Atkinson EJ, O'Connor MK: Bone density and fracture risk in men. J Bone Miner Res. 1998, 13: 1915-23.CrossRef
9.
go back to reference Tommasini SM, Nasser P, Schaffler MB: Relationship between bone morphology and bone quality in male tibias: implications for stress fracture risk. J Bone Miner Res. 2005, 20: 1372-80.CrossRef Tommasini SM, Nasser P, Schaffler MB: Relationship between bone morphology and bone quality in male tibias: implications for stress fracture risk. J Bone Miner Res. 2005, 20: 1372-80.CrossRef
10.
go back to reference Seeman E: Periosteal bone formation – a neglected determinant of bone strength. N Engl J Med. 2003, 349: 320-3. 10.1056/NEJMp038101.CrossRef Seeman E: Periosteal bone formation – a neglected determinant of bone strength. N Engl J Med. 2003, 349: 320-3. 10.1056/NEJMp038101.CrossRef
11.
go back to reference Orwoll ES, Belknap JK, Klein RF: Gender specificity in the genetic determinants of peak bone mass. J Bone Miner Res. 2001, 16: 1962-71.CrossRef Orwoll ES, Belknap JK, Klein RF: Gender specificity in the genetic determinants of peak bone mass. J Bone Miner Res. 2001, 16: 1962-71.CrossRef
12.
go back to reference Mitchell BD, Kammerer CM, Schneider JL, Perez R, Bauer RL: Genetic and environmental determinants of bone mineral density in Mexican Americans: results from the San Antonio Family Osteoporosis Study. Bone. 2003, 33: 839-46. 10.1016/S8756-3282(03)00246-1.CrossRef Mitchell BD, Kammerer CM, Schneider JL, Perez R, Bauer RL: Genetic and environmental determinants of bone mineral density in Mexican Americans: results from the San Antonio Family Osteoporosis Study. Bone. 2003, 33: 839-46. 10.1016/S8756-3282(03)00246-1.CrossRef
13.
go back to reference McGuigan FE, Murray L, Gallagher A, Davey-Smith G, Neville CE, Van't Hof R, Boreham C, Ralston SH: Genetic and environmental determinants of peak bone mass in young men and women. J Bone Miner Res. 2002, 17: 1273-9.CrossRef McGuigan FE, Murray L, Gallagher A, Davey-Smith G, Neville CE, Van't Hof R, Boreham C, Ralston SH: Genetic and environmental determinants of peak bone mass in young men and women. J Bone Miner Res. 2002, 17: 1273-9.CrossRef
14.
go back to reference Nguyen TV, Livshits G, Center JR: Genetic determination of bone mineral density: evidence for a major gene. J Clin Endocrinol Metab. 2003, 88: 3614-20. 10.1210/jc.2002-030026.CrossRef Nguyen TV, Livshits G, Center JR: Genetic determination of bone mineral density: evidence for a major gene. J Clin Endocrinol Metab. 2003, 88: 3614-20. 10.1210/jc.2002-030026.CrossRef
15.
go back to reference Moiso KC, Hurwitz DE, Sumner DR: Dynamic loads are determinants of peak bone mass. J Orthop Res. 2004, 22: 339-45. 10.1016/j.orthres.2003.08.002.CrossRef Moiso KC, Hurwitz DE, Sumner DR: Dynamic loads are determinants of peak bone mass. J Orthop Res. 2004, 22: 339-45. 10.1016/j.orthres.2003.08.002.CrossRef
16.
go back to reference Klesges RC, Ward KD, Shelton ML: Changes in bone mineral content in male athletes. Mechanisms of action and intervention effects. JAMA. 1996, 276: 226-30. 10.1001/jama.276.3.226.CrossRef Klesges RC, Ward KD, Shelton ML: Changes in bone mineral content in male athletes. Mechanisms of action and intervention effects. JAMA. 1996, 276: 226-30. 10.1001/jama.276.3.226.CrossRef
17.
go back to reference Molgaard C, Thomsen BL, Michaelsen KF: The influence of calcium intake and physical activity on bone mineral content and bone size in healthy children and adolescents. Osteoporos Int. 2001, 12: 887-94. 10.1007/s001980170042.CrossRef Molgaard C, Thomsen BL, Michaelsen KF: The influence of calcium intake and physical activity on bone mineral content and bone size in healthy children and adolescents. Osteoporos Int. 2001, 12: 887-94. 10.1007/s001980170042.CrossRef
18.
go back to reference Valimaki M, Karkkainen M, Lamberg-Allardt C: Exercise, smoking and calcium intake during adolescence and early adulthood as determinants of peak bone mass. BMJ. 1994, 309: 230-5.CrossRef Valimaki M, Karkkainen M, Lamberg-Allardt C: Exercise, smoking and calcium intake during adolescence and early adulthood as determinants of peak bone mass. BMJ. 1994, 309: 230-5.CrossRef
19.
go back to reference Szulc P, Garnero P, Claustrat B, Marchand F, Duboeuf F, Delmas PD: Increased bone resorption in moderate smokers with low body weight: the Minos Study. J Clin Endocrinol Metab. 2002, 87: 666-74. 10.1210/jc.87.2.666.CrossRef Szulc P, Garnero P, Claustrat B, Marchand F, Duboeuf F, Delmas PD: Increased bone resorption in moderate smokers with low body weight: the Minos Study. J Clin Endocrinol Metab. 2002, 87: 666-74. 10.1210/jc.87.2.666.CrossRef
20.
go back to reference Grainge MJ, Coupland CA, Cliffe SJ, Chilvers CE, Hosking DJ: Cigarette smoking, alcohol and caffeine consumption, and bone mineral density in postmenopausal women. The Nottingham EPIC Study Group. Osteoporos Int. 1998, 8: 355-63. 10.1007/s001980050075.CrossRef Grainge MJ, Coupland CA, Cliffe SJ, Chilvers CE, Hosking DJ: Cigarette smoking, alcohol and caffeine consumption, and bone mineral density in postmenopausal women. The Nottingham EPIC Study Group. Osteoporos Int. 1998, 8: 355-63. 10.1007/s001980050075.CrossRef
21.
go back to reference Massey LK, Whiting SJ: Dietary salt, urinary calcium and bone loss. J Bone Miner Res. 1996, 11: 731-6.CrossRef Massey LK, Whiting SJ: Dietary salt, urinary calcium and bone loss. J Bone Miner Res. 1996, 11: 731-6.CrossRef
22.
go back to reference Diamond T, Stiel D, Lunzer M, Wilkinson M, Posen S: Ethanol reduces bone formation and may cause osteoporosis. Am J Med. 1989, 86: 282-8. 10.1016/0002-9343(89)90297-0.CrossRef Diamond T, Stiel D, Lunzer M, Wilkinson M, Posen S: Ethanol reduces bone formation and may cause osteoporosis. Am J Med. 1989, 86: 282-8. 10.1016/0002-9343(89)90297-0.CrossRef
23.
go back to reference Izumotani K, Hagiwara S, Izumotani T, Miki T, Morii H, Nishizawa Y: Risk factors for osteoporosis in men. J Bone Miner Metab. 2003, 21: 86-90. 10.1007/s007740300014.CrossRef Izumotani K, Hagiwara S, Izumotani T, Miki T, Morii H, Nishizawa Y: Risk factors for osteoporosis in men. J Bone Miner Metab. 2003, 21: 86-90. 10.1007/s007740300014.CrossRef
24.
go back to reference Martini LA, Cuppari L, Colugnati FA, Sigulem DM, Szejnfeld VL, Schor N, Heilberg IP: High sodium chloride intake is associated with low bone density in calcium stone-forming patients. Clin Nephrol. 2000, 54: 85-93. Martini LA, Cuppari L, Colugnati FA, Sigulem DM, Szejnfeld VL, Schor N, Heilberg IP: High sodium chloride intake is associated with low bone density in calcium stone-forming patients. Clin Nephrol. 2000, 54: 85-93.
25.
go back to reference GE Corporation, LUNAR PIXI [manufacturer reference] Madison, WI. 1999 GE Corporation, LUNAR PIXI [manufacturer reference] Madison, WI. 1999
26.
go back to reference Finkelstein JS, Lee ML, Sowers M: Ethnic variation in bone density in premenopausal and early perimenopausal women: effects of anthropometric and lifestyle factors. J Clin Endocrinol Metab. 2002, 87: 3057-67. 10.1210/jc.87.7.3057.CrossRef Finkelstein JS, Lee ML, Sowers M: Ethnic variation in bone density in premenopausal and early perimenopausal women: effects of anthropometric and lifestyle factors. J Clin Endocrinol Metab. 2002, 87: 3057-67. 10.1210/jc.87.7.3057.CrossRef
27.
go back to reference Gilsanz V, Skaggs DL, Kovanlikaya A, Sayre J, Loro ML, Kaufman F, Korenman SG: Differential effect of race on the axial and appendicular skeletons of children. J Clin Endocrinol Metab. 1998, 84: 1420-7. 10.1210/jc.83.5.1420. Gilsanz V, Skaggs DL, Kovanlikaya A, Sayre J, Loro ML, Kaufman F, Korenman SG: Differential effect of race on the axial and appendicular skeletons of children. J Clin Endocrinol Metab. 1998, 84: 1420-7. 10.1210/jc.83.5.1420.
28.
go back to reference Nelson DA, Jacobsen G, Barondess DA: Ethnic differences in regional bone density, hip axis length, and lifestyle variables among healthy black and white men. J Bone Miner Res. 1995, 10: 782-7.CrossRef Nelson DA, Jacobsen G, Barondess DA: Ethnic differences in regional bone density, hip axis length, and lifestyle variables among healthy black and white men. J Bone Miner Res. 1995, 10: 782-7.CrossRef
29.
go back to reference Looker AC, Beck TJ, Orwoll ES: Does body size account for gender differences in femur bone density and geometry?. J Bone Miner Res. 2001, 16: 1291-9.CrossRef Looker AC, Beck TJ, Orwoll ES: Does body size account for gender differences in femur bone density and geometry?. J Bone Miner Res. 2001, 16: 1291-9.CrossRef
30.
go back to reference George A, Tracy JK, Meyer WA: Racial differences in bone mineral density in older men. J Bone Miner Res. 2003, 18: 2238-44.CrossRef George A, Tracy JK, Meyer WA: Racial differences in bone mineral density in older men. J Bone Miner Res. 2003, 18: 2238-44.CrossRef
31.
go back to reference Douchi T, Kuwahata R, Matsuo T, Uto H, Oki T, Nagata Y: Relative contribution of lean and fat mass component to bone mineral density in males. J Bone Miner Metab. 2003, 21: 17-21. 10.1007/s007740300003.CrossRef Douchi T, Kuwahata R, Matsuo T, Uto H, Oki T, Nagata Y: Relative contribution of lean and fat mass component to bone mineral density in males. J Bone Miner Metab. 2003, 21: 17-21. 10.1007/s007740300003.CrossRef
32.
go back to reference Magnusson PK, Rasmussen F: Familial resemblance of body mass index and familial risk of high and low body mass index. A study of young men in Sweden. Int J Obes Relat Metab Disord. 2002, 26: 1225-31. 10.1038/sj.ijo.0802041.CrossRef Magnusson PK, Rasmussen F: Familial resemblance of body mass index and familial risk of high and low body mass index. A study of young men in Sweden. Int J Obes Relat Metab Disord. 2002, 26: 1225-31. 10.1038/sj.ijo.0802041.CrossRef
33.
go back to reference Maes HH, Neale MC, Eaves LJ: Genetic and environmental factors in relative body weight and human adiposity. Behav Genet. 1997, 27: 325-51. 10.1023/A:1025635913927.CrossRef Maes HH, Neale MC, Eaves LJ: Genetic and environmental factors in relative body weight and human adiposity. Behav Genet. 1997, 27: 325-51. 10.1023/A:1025635913927.CrossRef
34.
go back to reference MacKelvie KJ, Petit MA, Khan KM, Beck TJ, McKay HA: Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. Bone. 2004, 34: 755-64. 10.1016/j.bone.2003.12.017.CrossRef MacKelvie KJ, Petit MA, Khan KM, Beck TJ, McKay HA: Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. Bone. 2004, 34: 755-64. 10.1016/j.bone.2003.12.017.CrossRef
35.
go back to reference Wittich A, Mautalen CA, Oliveri MB, Bagur A, Somoza F, Rotemberg E: Professional football (soccer) players have a markedly greater skeletal mineralcontent, density and size than age- and BMI-matched controls. Calcif Tissue Int. 1998, 63: 112-7. 10.1007/s002239900499.CrossRef Wittich A, Mautalen CA, Oliveri MB, Bagur A, Somoza F, Rotemberg E: Professional football (soccer) players have a markedly greater skeletal mineralcontent, density and size than age- and BMI-matched controls. Calcif Tissue Int. 1998, 63: 112-7. 10.1007/s002239900499.CrossRef
36.
go back to reference Nurmi-Lawton JA, Baxter-Jones AD, Mirwald RL, Bishop JA, Taylor P, Cooper C, New SA: Evidence of sustained skeletal benefits from impact-loading exercise in young females: a 3-year longitudinal study. J Bone Miner Res. 2004, 19: 314-22.CrossRef Nurmi-Lawton JA, Baxter-Jones AD, Mirwald RL, Bishop JA, Taylor P, Cooper C, New SA: Evidence of sustained skeletal benefits from impact-loading exercise in young females: a 3-year longitudinal study. J Bone Miner Res. 2004, 19: 314-22.CrossRef
37.
go back to reference Cadogan J, Eastall R, Jones N, Barker ME: Milk intake and bone mineral acquisition in adolescent girls: Randomized, controlled intervention trail. BMJ. 1997, 315: 1255-1260.CrossRef Cadogan J, Eastall R, Jones N, Barker ME: Milk intake and bone mineral acquisition in adolescent girls: Randomized, controlled intervention trail. BMJ. 1997, 315: 1255-1260.CrossRef
38.
go back to reference Lau EM, Lynn H, Chan YH, Lau W, Woo J: Benefits of milk powder supplementation on bone accretion in Chinese children. Osteoporos Int. 2004, 15: 654-8. 10.1007/s00198-004-1593-6.CrossRef Lau EM, Lynn H, Chan YH, Lau W, Woo J: Benefits of milk powder supplementation on bone accretion in Chinese children. Osteoporos Int. 2004, 15: 654-8. 10.1007/s00198-004-1593-6.CrossRef
39.
go back to reference Barrett-Connor E, Chang JC, Edelstein SL: Coffee-associated osteoporosis offset by daily milk consumption. The Rancho Bernardo Study. JAMA. 1994, 271: 280-3. 10.1001/jama.271.4.280.CrossRef Barrett-Connor E, Chang JC, Edelstein SL: Coffee-associated osteoporosis offset by daily milk consumption. The Rancho Bernardo Study. JAMA. 1994, 271: 280-3. 10.1001/jama.271.4.280.CrossRef
40.
go back to reference Ilich JZ, Brownbill RA, Tamborini L, Crncevic-Orlic Z: To drink or not to drink: how are alcohol, caffeine and past smoking related to bone mineral density in elderly women?. J Am Coll Nutr. 2002, 21: 536-44.CrossRef Ilich JZ, Brownbill RA, Tamborini L, Crncevic-Orlic Z: To drink or not to drink: how are alcohol, caffeine and past smoking related to bone mineral density in elderly women?. J Am Coll Nutr. 2002, 21: 536-44.CrossRef
41.
go back to reference Demirbag D, Ozdemir F, Ture M: Effects of coffee consumption and smoking habit on bone mineral density. Rheumatol Int. 2005, 16: 1-6. 10.1007/s00296-005-0020-4. Demirbag D, Ozdemir F, Ture M: Effects of coffee consumption and smoking habit on bone mineral density. Rheumatol Int. 2005, 16: 1-6. 10.1007/s00296-005-0020-4.
42.
go back to reference Baheiraei A, Pocock NA, Eisman JA, Nguyen ND, Nguyen TV: Bone mineral density, body mass index and cigarette smoking among Iranian women: implications for prevention. BMC Musculoskelet Disord. 2005, 6: 34-10.1186/1471-2474-6-34.CrossRef Baheiraei A, Pocock NA, Eisman JA, Nguyen ND, Nguyen TV: Bone mineral density, body mass index and cigarette smoking among Iranian women: implications for prevention. BMC Musculoskelet Disord. 2005, 6: 34-10.1186/1471-2474-6-34.CrossRef
43.
go back to reference Liu XD, Zhu YK, Umino T: Cigarette smoke inhibits osteogenic differentiation and proliferation of humanosteoprogenitor cells in monolayer and three-dimensional collagen gel culture. J Lab Clin Med. 2001, 137: 208-19. 10.1067/mlc.2001.113066.CrossRef Liu XD, Zhu YK, Umino T: Cigarette smoke inhibits osteogenic differentiation and proliferation of humanosteoprogenitor cells in monolayer and three-dimensional collagen gel culture. J Lab Clin Med. 2001, 137: 208-19. 10.1067/mlc.2001.113066.CrossRef
44.
go back to reference Tansavatdi K, McClain B, Herrington DM: The effects of smoking on estradiol metabolism. Minerva Ginecol. 2004, 56: 105-14. Tansavatdi K, McClain B, Herrington DM: The effects of smoking on estradiol metabolism. Minerva Ginecol. 2004, 56: 105-14.
45.
go back to reference Specker BL: Evidence for an interaction between calcium intake and physical activity on changes in bone mineral density. J Bone Miner Res. 1996, 11: 1539-44.CrossRef Specker BL: Evidence for an interaction between calcium intake and physical activity on changes in bone mineral density. J Bone Miner Res. 1996, 11: 1539-44.CrossRef
46.
go back to reference Murphy NM, Carroll P: The effect of physical activity and its interaction with nutrition on bone health. Proc Nutr Soc. 2003, 62: 829-38. 10.1079/PNS2003304.CrossRef Murphy NM, Carroll P: The effect of physical activity and its interaction with nutrition on bone health. Proc Nutr Soc. 2003, 62: 829-38. 10.1079/PNS2003304.CrossRef
47.
go back to reference Rowlands AV, Ingledew DK, Powell SM, Eston RG: Interactive effects of habitual physical activity and calcium intake on bone density in boys and girls. J Appl Physiol. 2004, 97: 1203-8. 10.1152/japplphysiol.00182.2004.CrossRef Rowlands AV, Ingledew DK, Powell SM, Eston RG: Interactive effects of habitual physical activity and calcium intake on bone density in boys and girls. J Appl Physiol. 2004, 97: 1203-8. 10.1152/japplphysiol.00182.2004.CrossRef
Metadata
Title
Determinants of bone mass and bone size in a large cohort of physically active young adult men
Authors
JA Ruffing
F Cosman
M Zion
Susan Tendy
P Garrett
R Lindsay
JW Nieves
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Nutrition & Metabolism / Issue 1/2006
Electronic ISSN: 1743-7075
DOI
https://doi.org/10.1186/1743-7075-3-14

Other articles of this Issue 1/2006

Nutrition & Metabolism 1/2006 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine