Skip to main content
Top
Published in: Nutrition & Metabolism 1/2006

Open Access 01-12-2006 | Research

Effect of food deprivation and hormones of glucose homeostasis on the acetyl CoA carboxylase activity in mouse brain: a potential role of acc in the regulation of energy balance

Authors: Kristophe J Karami, John Coppola, Karthik Krishnamurthy, Domingo J Llanos, Amrita Mukherjee, KV Venkatachalam

Published in: Nutrition & Metabolism | Issue 1/2006

Login to get access

Abstract

We studied the regulation of brain acetyl CoA carboxylase (ACC) activity during food deprivation and under the influence of hormones of glucose homeostasis: glucagon and insulin. Mice were deprived of food and water for time periods of 1, 3, 6, 9, 12 and 24 hours and were then allowed to re-feed for 5, 30 and 60 minutes. Mice that were deprived for up to 6 h, and then re-fed for 60 min, consumed the same amount of food compared to the ad libitum (control) animals. However, after 9 h of deprivation, mice consumed only 50% of food present even after 1 h of re-feeding, compared to the controls. The ACC activity was measured in the whole mouse brain of controls and after 1, 3, 6, 9, 12, and 24 h of food deprivation. Brain extracts assayed from control mice expressed an ACC activity of 0.988 ± 0.158 fmol/min/mg tissue without citrate and 0.941 ± 0.175 fmol/min/mg tissue with citrate. After 1 h of food deprivation, the total ACC activity without citrate decreased to 0.575 ± 0.087 fmol/min/mg and in the presence of citrate, 0.703 ± 0.036 fmol/min/mg activity was measured. The citrate-dependent ACC activity decreased over time, with only 0.478 ± 0.117 fmol/min/mg of activity remaining after 24 h. Intraperitoneal (i.p.) injections of insulin, glucagon and phosphate buffered saline (PBS) were performed and whole brain ACC activity measured. After hormone administration, there were no significant differences in ACC activity in the presence of citrate. However, in the absence of citrate, there was a significant 20% decrease in ACC activity with glucagon (1.36 ± 0.09 fmol/min/mg) and a 33% increase with insulin (2.49 ± 0.11 fmol/min/mg) injections compared to PBS controls (1.67 ± 0.08 fmol/min/mg). Neuropeptide Y (NPY) levels of corresponding brain extracts were measured by ELISA (OD) using anti-NPY antibody and showed an 18% decrease upon insulin injection (0.093 ± 0.019) and a 50% increase upon glucagon injection (0.226 ± 0.084) as compared to controls injected with PBS (0.114 ± 0.040). Thus, we postulate that the changes in ACC levels under metabolic conditions would result in a fluctuation of malonyl CoA levels, and subsequent modulation of NPY levels and downstream signaling.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wakil SJ, Titchener EB, Gibson DB: Evidence for the participation of biotin in the enzymic synthesis of fatty acids. Biochim Biophys Acta. 1958, 29: 225-226. 10.1016/0006-3002(58)90177-X.CrossRef Wakil SJ, Titchener EB, Gibson DB: Evidence for the participation of biotin in the enzymic synthesis of fatty acids. Biochim Biophys Acta. 1958, 29: 225-226. 10.1016/0006-3002(58)90177-X.CrossRef
2.
go back to reference Mabrouk GM, Helmey IM, Thampy KG, Wakil SJ: Acute hormonal control of acetyl-CoA carboxylase: the roles of insulin, glucagon, and epinephrine. J Biol Chem. 1990, 265: 6330-6338. Mabrouk GM, Helmey IM, Thampy KG, Wakil SJ: Acute hormonal control of acetyl-CoA carboxylase: the roles of insulin, glucagon, and epinephrine. J Biol Chem. 1990, 265: 6330-6338.
3.
go back to reference Kim K-H: Regulation of mammalian acetyl-coenzyme A carboxylase. Annu Rev Nutr. 1997, 17: 77-99. 10.1146/annurev.nutr.17.1.77.CrossRef Kim K-H: Regulation of mammalian acetyl-coenzyme A carboxylase. Annu Rev Nutr. 1997, 17: 77-99. 10.1146/annurev.nutr.17.1.77.CrossRef
4.
go back to reference Monday MR, Hemingway CJ: The regulation of acetyl CoA carboxylase-A potential target for the action of hypolipidemic agents. Advan Enzyme Regul. 1999, 39: 205-234. 10.1016/S0065-2571(98)00016-8.CrossRef Monday MR, Hemingway CJ: The regulation of acetyl CoA carboxylase-A potential target for the action of hypolipidemic agents. Advan Enzyme Regul. 1999, 39: 205-234. 10.1016/S0065-2571(98)00016-8.CrossRef
5.
go back to reference Thampy KG, Wakil SJ: Activation of acetyl-CoA carboxylase: purification and properties of a Mn2+-dependent phosphatases. J Biol Chem. 1985, 260: 6318-6323. Thampy KG, Wakil SJ: Activation of acetyl-CoA carboxylase: purification and properties of a Mn2+-dependent phosphatases. J Biol Chem. 1985, 260: 6318-6323.
6.
go back to reference Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ: Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science. 2001, 291: 2613-2616. 10.1126/science.1056843.CrossRef Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ: Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science. 2001, 291: 2613-2616. 10.1126/science.1056843.CrossRef
7.
go back to reference Spencer EB, Bianchi A, Widmer J, Witters LA: Brain acetyl-CoA carboxylase: isozymic identification and studies of its regulation during development and altered nutrition. Biochem Biophys Res Comm. 1993, 192: 820-825. 10.1006/bbrc.1993.1488.CrossRef Spencer EB, Bianchi A, Widmer J, Witters LA: Brain acetyl-CoA carboxylase: isozymic identification and studies of its regulation during development and altered nutrition. Biochem Biophys Res Comm. 1993, 192: 820-825. 10.1006/bbrc.1993.1488.CrossRef
8.
go back to reference Beaty NB, Lane MD: Kinetics of activation of acetyl-CoA carboxylase by citrate: relationship to the rate of polymerization of the enzyme. J Biol Chem. 1983, 258: 13043-13050. Beaty NB, Lane MD: Kinetics of activation of acetyl-CoA carboxylase by citrate: relationship to the rate of polymerization of the enzyme. J Biol Chem. 1983, 258: 13043-13050.
9.
go back to reference Louter-van de Haar J, Wielinga PY, Scheurink AJ, Nieuwenhuizen AG: Comparison of the effects of three different (-)-hydroxycitric acid preparations on food intake in rats. Nutr Metab. 2005, 13: 23-10.1186/1743-7075-2-23.CrossRef Louter-van de Haar J, Wielinga PY, Scheurink AJ, Nieuwenhuizen AG: Comparison of the effects of three different (-)-hydroxycitric acid preparations on food intake in rats. Nutr Metab. 2005, 13: 23-10.1186/1743-7075-2-23.CrossRef
10.
go back to reference Hillebrand JJG, de Wied D, Adan RAH: Neuropeptides, food intake and body weight regulation: a hypothalamic focus. Peptides. 2002, 23: 2283-2306. 10.1016/S0196-9781(02)00269-3.CrossRef Hillebrand JJG, de Wied D, Adan RAH: Neuropeptides, food intake and body weight regulation: a hypothalamic focus. Peptides. 2002, 23: 2283-2306. 10.1016/S0196-9781(02)00269-3.CrossRef
11.
go back to reference Shimokawa T, Kumar MV, Lane MD: Effect of a fatty acid synthase inhibitor on food intake and expression of hypothalamic neuropeptides. Proc Natl Acad Sci USA. 2002, 99: 66-71. 10.1073/pnas.012606199.CrossRef Shimokawa T, Kumar MV, Lane MD: Effect of a fatty acid synthase inhibitor on food intake and expression of hypothalamic neuropeptides. Proc Natl Acad Sci USA. 2002, 99: 66-71. 10.1073/pnas.012606199.CrossRef
12.
go back to reference Coppola J, Krishnamurthy K, Venkatachalam KV: Role of acetyl CoA carboxylase on the production of malonyl CoA, the hunger signal, that controls neuropeptide Y synthesis in brain [abstract]. Eastern Atlantic Student Research Forum. 2003, 1: 38- Coppola J, Krishnamurthy K, Venkatachalam KV: Role of acetyl CoA carboxylase on the production of malonyl CoA, the hunger signal, that controls neuropeptide Y synthesis in brain [abstract]. Eastern Atlantic Student Research Forum. 2003, 1: 38-
13.
go back to reference Hu Z, Cha SH, Chohnan S, Lane MD: Hypothalamic malonyl-CoA as a mediator of feeding behavior. Proc Natl Acad Sci USA. 2003, 100: 12624-12629. 10.1073/pnas.1834402100.CrossRef Hu Z, Cha SH, Chohnan S, Lane MD: Hypothalamic malonyl-CoA as a mediator of feeding behavior. Proc Natl Acad Sci USA. 2003, 100: 12624-12629. 10.1073/pnas.1834402100.CrossRef
14.
go back to reference Loftus TM, Jaworsky DE, Frehywot GL, Townsend CA, Ronnett GV, Lane MD, Kuhajda FC: Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science. 2000, 288: 2379-2381. 10.1126/science.288.5475.2379.CrossRef Loftus TM, Jaworsky DE, Frehywot GL, Townsend CA, Ronnett GV, Lane MD, Kuhajda FC: Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science. 2000, 288: 2379-2381. 10.1126/science.288.5475.2379.CrossRef
15.
go back to reference Ruderman N, Flier JS: Chewing the fat-ACC and energy balance. Science. 2001, 291: 2558-2559. 10.1126/science.1060277.CrossRef Ruderman N, Flier JS: Chewing the fat-ACC and energy balance. Science. 2001, 291: 2558-2559. 10.1126/science.1060277.CrossRef
16.
go back to reference El-Hassan A, Zubairu S, Hothersall JS, Greenbaum AL: Age related changes in enzymes of rat brain. Enzyme. 1981, 26: 107-112. El-Hassan A, Zubairu S, Hothersall JS, Greenbaum AL: Age related changes in enzymes of rat brain. Enzyme. 1981, 26: 107-112.
17.
go back to reference Yu-Yan Y, Ginsburg JR, Tso TB: Changes in lipolytic capacity and activities of ketolytic and lipogenic enzymes in brain regions of developing rats. J Neurochem. 1983, 40: 99-105.CrossRef Yu-Yan Y, Ginsburg JR, Tso TB: Changes in lipolytic capacity and activities of ketolytic and lipogenic enzymes in brain regions of developing rats. J Neurochem. 1983, 40: 99-105.CrossRef
Metadata
Title
Effect of food deprivation and hormones of glucose homeostasis on the acetyl CoA carboxylase activity in mouse brain: a potential role of acc in the regulation of energy balance
Authors
Kristophe J Karami
John Coppola
Karthik Krishnamurthy
Domingo J Llanos
Amrita Mukherjee
KV Venkatachalam
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Nutrition & Metabolism / Issue 1/2006
Electronic ISSN: 1743-7075
DOI
https://doi.org/10.1186/1743-7075-3-15

Other articles of this Issue 1/2006

Nutrition & Metabolism 1/2006 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.