Skip to main content
Top
Published in: Virology Journal 1/2010

Open Access 01-12-2010 | Short report

Origin of measles virus: divergence from rinderpest virus between the 11th and 12th centuries

Authors: Yuki Furuse, Akira Suzuki, Hitoshi Oshitani

Published in: Virology Journal | Issue 1/2010

Login to get access

Abstract

Measles, caused by measles virus (MeV), is a common infection in children. MeV is a member of the genus Morbillivirus and is most closely related to rinderpest virus (RPV), which is a pathogen of cattle. MeV is thought to have evolved in an environment where cattle and humans lived in close proximity. Understanding the evolutionary history of MeV could answer questions related to divergence times of MeV and RPV.
We investigated divergence times using relaxed clock Bayesian phylogenetics. Our estimates reveal that MeV had an evolutionary rate of 6.0 - 6.5 × 10-4 substitutions/site/year. It was concluded that the divergence time of the most recent common ancestor of current MeV was the early 20th century. And, divergence between MeV and RPV occurred around the 11th to 12th centuries. The result was unexpected because emergence of MeV was previously considered to have occurred in the prehistoric age.
MeV may have originated from virus of non-human species and caused emerging infectious diseases around the 11th to 12th centuries. In such cases, investigating measles would give important information about the course of emerging infectious diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO/UNICEF: WHO/UNICEF Joint Annual Measles Report 2008. 2009. WHO/UNICEF: WHO/UNICEF Joint Annual Measles Report 2008. 2009.
2.
go back to reference Langmuir AD: Medical importance of measles. American Journal of Diseases of Children 1962, 103: 224-226.PubMed Langmuir AD: Medical importance of measles. American Journal of Diseases of Children 1962, 103: 224-226.PubMed
3.
go back to reference Black FL, Rosen L: Patterns of measles antibodies in residents of Tahiti and their stability in the absence of re-exposure. Journal of Immunology 1962, 88: 725-731. Black FL, Rosen L: Patterns of measles antibodies in residents of Tahiti and their stability in the absence of re-exposure. Journal of Immunology 1962, 88: 725-731.
4.
go back to reference Nanan R, Rauch A, Kampgen E, Niewiesk S, Kreth HW: A novel sensitive approach for frequency analysis of measles virus-specific memory T-lymphocytes in healthy adults with a childhood history of natural measles. Journal of General Virology 2000, 81: 1313-1319.PubMedCrossRef Nanan R, Rauch A, Kampgen E, Niewiesk S, Kreth HW: A novel sensitive approach for frequency analysis of measles virus-specific memory T-lymphocytes in healthy adults with a childhood history of natural measles. Journal of General Virology 2000, 81: 1313-1319.PubMedCrossRef
5.
go back to reference Black FL: Infectious diseases in primitive societies. Science 1975, 187: 515-518. 10.1126/science.163483PubMedCrossRef Black FL: Infectious diseases in primitive societies. Science 1975, 187: 515-518. 10.1126/science.163483PubMedCrossRef
6.
go back to reference Black FL: Measles endemicity in insular populations: critical community size and its evolutionary implication. Journal of Theoretical Biology 1966, 11: 207-211. 10.1016/0022-5193(66)90161-5PubMedCrossRef Black FL: Measles endemicity in insular populations: critical community size and its evolutionary implication. Journal of Theoretical Biology 1966, 11: 207-211. 10.1016/0022-5193(66)90161-5PubMedCrossRef
7.
go back to reference Keeling MJ: Modelling the persistence of measles[see comment]. Trends in Microbiology 1997, 5: 513-518. 10.1016/S0966-842X(97)01147-5PubMedCrossRef Keeling MJ: Modelling the persistence of measles[see comment]. Trends in Microbiology 1997, 5: 513-518. 10.1016/S0966-842X(97)01147-5PubMedCrossRef
8.
go back to reference Conlan AJ, Rohani P, Lloyd AL, Keeling M, Grenfell BT: Resolving the impact of waiting time distributions on the persistence of measles. J R Soc Interface 2009. Conlan AJ, Rohani P, Lloyd AL, Keeling M, Grenfell BT: Resolving the impact of waiting time distributions on the persistence of measles. J R Soc Interface 2009.
9.
go back to reference Black FL: Measles. In Viral Infections of Humans: Epidemiology and Control. 4th edition. Edited by: Evans AS, Kaslow RA. New York: Plenum Publishing Corporation; 1997. Black FL: Measles. In Viral Infections of Humans: Epidemiology and Control. 4th edition. Edited by: Evans AS, Kaslow RA. New York: Plenum Publishing Corporation; 1997.
10.
go back to reference Griffin DE: Measles Virus. In Fields VIROLOGY. 5th edition. Edited by: Knipe DM, Howley PM. Lippincott Williams & Wilkins; 2007. Griffin DE: Measles Virus. In Fields VIROLOGY. 5th edition. Edited by: Knipe DM, Howley PM. Lippincott Williams & Wilkins; 2007.
11.
go back to reference McNeil W: Plagues and Peoples. New York: Anchor Press/Doubleday; 1976. McNeil W: Plagues and Peoples. New York: Anchor Press/Doubleday; 1976.
12.
go back to reference Barrett T: Morbillivirus infections, with special emphasis on morbilliviruses of carnivores. Veterinary Microbiology 1999, 69: 3-13. 10.1016/S0378-1135(99)00080-2PubMedCrossRef Barrett T: Morbillivirus infections, with special emphasis on morbilliviruses of carnivores. Veterinary Microbiology 1999, 69: 3-13. 10.1016/S0378-1135(99)00080-2PubMedCrossRef
13.
go back to reference McCarthy AJ, Goodman SJ: Reassessing conflicting evolutionary histories of the Paramyxoviridae and the origins of respiroviruses with Bayesian multigene phylogenies. Infect Genet Evol 10: 97-107. 10.1016/j.meegid.2009.11.002 McCarthy AJ, Goodman SJ: Reassessing conflicting evolutionary histories of the Paramyxoviridae and the origins of respiroviruses with Bayesian multigene phylogenies. Infect Genet Evol 10: 97-107. 10.1016/j.meegid.2009.11.002
14.
go back to reference Sheshberadaran H, Norrby E, McCullough KC, Carpenter WC, Orvell C: The antigenic relationship between measles, canine distemper and rinderpest viruses studied with monoclonal antibodies. Journal of General Virology 1986, 67: 1381-1392. 10.1099/0022-1317-67-7-1381PubMedCrossRef Sheshberadaran H, Norrby E, McCullough KC, Carpenter WC, Orvell C: The antigenic relationship between measles, canine distemper and rinderpest viruses studied with monoclonal antibodies. Journal of General Virology 1986, 67: 1381-1392. 10.1099/0022-1317-67-7-1381PubMedCrossRef
15.
go back to reference Gojobori T, Moriyama EN, Kimura M: Molecular clock of viral evolution, and the neutral theory. Proceedings of the National Academy of Sciences of the United States of America 1990, 87: 10015-10018. 10.1073/pnas.87.24.10015PubMedPubMedCentralCrossRef Gojobori T, Moriyama EN, Kimura M: Molecular clock of viral evolution, and the neutral theory. Proceedings of the National Academy of Sciences of the United States of America 1990, 87: 10015-10018. 10.1073/pnas.87.24.10015PubMedPubMedCentralCrossRef
16.
go back to reference Bromham L, Penny D: The modern molecular clock. Nature Reviews Genetics 2003, 4: 216-224. 10.1038/nrg1020PubMedCrossRef Bromham L, Penny D: The modern molecular clock. Nature Reviews Genetics 2003, 4: 216-224. 10.1038/nrg1020PubMedCrossRef
17.
go back to reference Pomeroy LW, Bjornstad ON, Holmes EC: The evolutionary and epidemiological dynamics of the paramyxoviridae. Journal of Molecular Evolution 2008, 66: 98-106. 10.1007/s00239-007-9040-xPubMedPubMedCentralCrossRef Pomeroy LW, Bjornstad ON, Holmes EC: The evolutionary and epidemiological dynamics of the paramyxoviridae. Journal of Molecular Evolution 2008, 66: 98-106. 10.1007/s00239-007-9040-xPubMedPubMedCentralCrossRef
18.
go back to reference Woelk CH, Pybus OG, Jin L, Brown DWG, Holmes EC: Increased positive selection pressure in persistent (SSPE) versus acute measles virus infections. Journal of General Virology 2002, 83: 1419-1430.PubMedCrossRef Woelk CH, Pybus OG, Jin L, Brown DWG, Holmes EC: Increased positive selection pressure in persistent (SSPE) versus acute measles virus infections. Journal of General Virology 2002, 83: 1419-1430.PubMedCrossRef
19.
go back to reference Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W: Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 2002, 161: 1307-1320.PubMedPubMedCentral Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W: Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 2002, 161: 1307-1320.PubMedPubMedCentral
20.
21.
go back to reference Posada D, Crandall KA: MODELTEST: testing the model of DNA substitution. Bioinformatics 1998, 14: 817-818. 10.1093/bioinformatics/14.9.817PubMedCrossRef Posada D, Crandall KA: MODELTEST: testing the model of DNA substitution. Bioinformatics 1998, 14: 817-818. 10.1093/bioinformatics/14.9.817PubMedCrossRef
22.
go back to reference Pond SLK, Frost SDW, Muse SV: HyPhy: hypothesis testing using phylogenies. Bioinformatics 2005, 21: 676-679. 10.1093/bioinformatics/bti079PubMedCrossRef Pond SLK, Frost SDW, Muse SV: HyPhy: hypothesis testing using phylogenies. Bioinformatics 2005, 21: 676-679. 10.1093/bioinformatics/bti079PubMedCrossRef
23.
24.
go back to reference Jenkins GM, Rambaut A, Pybus OG, Holmes EC: Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. Journal of Molecular Evolution 2002, 54: 156-165. 10.1007/s00239-001-0064-3PubMedCrossRef Jenkins GM, Rambaut A, Pybus OG, Holmes EC: Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. Journal of Molecular Evolution 2002, 54: 156-165. 10.1007/s00239-001-0064-3PubMedCrossRef
25.
go back to reference Hanada K, Suzuki Y, Gojobori T: A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes[erratum appears in Mol Biol Evol. 2004 Jul;21(7):1462]. Molecular Biology & Evolution 2004, 21: 1074-1080.CrossRef Hanada K, Suzuki Y, Gojobori T: A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes[erratum appears in Mol Biol Evol. 2004 Jul;21(7):1462]. Molecular Biology & Evolution 2004, 21: 1074-1080.CrossRef
26.
go back to reference Wolfe ND, Dunavan CP, Diamond J: Origins of major human infectious diseases. Nature 2007, 447: 279-283. 10.1038/nature05775PubMedCrossRef Wolfe ND, Dunavan CP, Diamond J: Origins of major human infectious diseases. Nature 2007, 447: 279-283. 10.1038/nature05775PubMedCrossRef
27.
go back to reference Hahn BH, Shaw GM, De Cock KM, Sharp PM: AIDS as a zoonosis: scientific and public health implications. Science 2000, 287: 607-614. 10.1126/science.287.5453.607PubMedCrossRef Hahn BH, Shaw GM, De Cock KM, Sharp PM: AIDS as a zoonosis: scientific and public health implications. Science 2000, 287: 607-614. 10.1126/science.287.5453.607PubMedCrossRef
28.
go back to reference Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, Wong SS, Leung SY, Chan KH, Yuen KY: Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proceedings of the National Academy of Sciences of the United States of America 2005, 102: 14040-14045. 10.1073/pnas.0506735102PubMedPubMedCentralCrossRef Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, Wong SS, Leung SY, Chan KH, Yuen KY: Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proceedings of the National Academy of Sciences of the United States of America 2005, 102: 14040-14045. 10.1073/pnas.0506735102PubMedPubMedCentralCrossRef
29.
go back to reference Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK, Cheung CL, Raghwani J, Bhatt S, et al.: Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009, 459: 1122-1125. 10.1038/nature08182PubMedCrossRef Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK, Cheung CL, Raghwani J, Bhatt S, et al.: Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009, 459: 1122-1125. 10.1038/nature08182PubMedCrossRef
Metadata
Title
Origin of measles virus: divergence from rinderpest virus between the 11th and 12th centuries
Authors
Yuki Furuse
Akira Suzuki
Hitoshi Oshitani
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2010
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-7-52

Other articles of this Issue 1/2010

Virology Journal 1/2010 Go to the issue