Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2013

Open Access 01-12-2013 | Research

Does use of a virtual environment change reaching while standing in patients with traumatic brain injury?

Authors: Amanda Y Schafer, Ksenia I Ustinova

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Background

Although numerous virtual reality applications have been developed for sensorimotor retraining in neurologically impaired individuals, it is unclear whether the virtual environment (VE) changes motor performance, especially in patients with brain injuries. To address this question, the movement characteristics of forward arm reaches during standing were compared in physical and virtual environments, presented at different viewing angles.

Methods

Fifteen patients with traumatic brain injuries (TBI) and 15 sex- and age-matched healthy individuals performed virtual reaches in a computer-generated courtyard with a flower-topped hedge. The hedge was projected on a flat screen and viewed in 3D format in 1 of 3 angles: 10° above horizon (resembling a real-world viewing angle), 50° above horizon, or 90° above horizon (directly overhead). Participants were instructed to reach with their dominant hand avatar and to touch the farthest flower possible without losing their balance or stepping. Virtual reaches were compared with reaches-to-point to a target in an equivalent physical environment. A set of kinematic parameters was used.

Results

Reaches by patients with TBI were characterized by shorter distances, lower peak velocities, and smaller postural displacements than reaches by control individuals. All participants reached ~9% farther in the VE presented at a 50° angle than they did in the physical environment. Arm displacement in the more natural 10° angle VE was reduced by the same 9-10% compared to physical reaches. Virtual reaches had smaller velocity peaks and took longer than physical reaches.

Conclusion

The results suggest that visual perception in the VE differs from real-world perception and the performance of functional tasks (e.g., reaching while standing) can be changed in TBI patients, depending on the viewing angle. Accordingly, the viewing angle is a critical parameter that should be adjusted carefully to achieve maximal therapeutic effect during practice in the VE.
Appendix
Available only for authorised users
Literature
1.
go back to reference Levin MF, Knaut LA, Magdalon EC, Subramanian S: Virtual reality environments to enhance upper limb functional recovery in patients with hemiparesis. Stud Health Technol Inform 2009, 145: 94-108.PubMed Levin MF, Knaut LA, Magdalon EC, Subramanian S: Virtual reality environments to enhance upper limb functional recovery in patients with hemiparesis. Stud Health Technol Inform 2009, 145: 94-108.PubMed
2.
go back to reference Adamovich SV, Fluet GG, Mathai A, Qiu Q, Lewis J, Merians AS: Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study. J Neuroeng Rehabil 2009, 17: 6-28. Adamovich SV, Fluet GG, Mathai A, Qiu Q, Lewis J, Merians AS: Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study. J Neuroeng Rehabil 2009, 17: 6-28.
3.
go back to reference Thornton M, Marshall S, McComas J, Finestone H, McCormick A, Sveistrup H: Benefits of activity and virtual reality based balance exercise programmes for adults with traumatic brain injury: perceptions of participants and their caregivers. Brain Inj 2005, 19: 989-1000. 10.1080/02699050500109944CrossRefPubMed Thornton M, Marshall S, McComas J, Finestone H, McCormick A, Sveistrup H: Benefits of activity and virtual reality based balance exercise programmes for adults with traumatic brain injury: perceptions of participants and their caregivers. Brain Inj 2005, 19: 989-1000. 10.1080/02699050500109944CrossRefPubMed
4.
go back to reference Kizony R, Raz L, Katz N, Weingarden H, Weiss PL: Video-capture virtual reality system for patients with paraplegic spinal cord injury. J Rehabil Res Dev 2005, 42: 595-608. 10.1682/JRRD.2005.01.0023CrossRefPubMed Kizony R, Raz L, Katz N, Weingarden H, Weiss PL: Video-capture virtual reality system for patients with paraplegic spinal cord injury. J Rehabil Res Dev 2005, 42: 595-608. 10.1682/JRRD.2005.01.0023CrossRefPubMed
5.
go back to reference Bryanton C, Bossé J, Brien M, McLean J, McCormick A, Sveistrup H: Feasibility, motivation, and selective motor control: virtual reality compared to conventional home exercise in children with cerebral palsy. Cyberpsychology & Behavior 2006, 9: 123-128. 10.1089/cpb.2006.9.123CrossRef Bryanton C, Bossé J, Brien M, McLean J, McCormick A, Sveistrup H: Feasibility, motivation, and selective motor control: virtual reality compared to conventional home exercise in children with cerebral palsy. Cyberpsychology & Behavior 2006, 9: 123-128. 10.1089/cpb.2006.9.123CrossRef
6.
go back to reference Deutsch JE, Borbely M, Filler J, Huhn K, Guarrera-Bowlby P: Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy. Physical Therapy 2008, 88: 1196-1207. 10.2522/ptj.20080062CrossRefPubMed Deutsch JE, Borbely M, Filler J, Huhn K, Guarrera-Bowlby P: Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy. Physical Therapy 2008, 88: 1196-1207. 10.2522/ptj.20080062CrossRefPubMed
7.
go back to reference Mirelman A, Maidan I, Herman T, Deutsch JE, Giladi N, Hausdorff JM: Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson's disease? J Gerontol A Biol Sci Med Sci 2011, 66: 234-240.CrossRefPubMed Mirelman A, Maidan I, Herman T, Deutsch JE, Giladi N, Hausdorff JM: Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson's disease? J Gerontol A Biol Sci Med Sci 2011, 66: 234-240.CrossRefPubMed
8.
go back to reference Corrigan JD, Selassie AW, Orman JA: The epidemiology of traumatic brain injury. J Head Trauma Rehabil 2010, 25: 72-80. 10.1097/HTR.0b013e3181ccc8b4CrossRefPubMed Corrigan JD, Selassie AW, Orman JA: The epidemiology of traumatic brain injury. J Head Trauma Rehabil 2010, 25: 72-80. 10.1097/HTR.0b013e3181ccc8b4CrossRefPubMed
9.
go back to reference Mumford N, Duckworth J, Thomas PR, Shum D, Williams G, Wilson PH: Upper limb virtual rehabilitation for traumatic brain injury: initial evaluation of the elements system. Brain Inj 2010, 24: 780-791. 10.3109/02699051003652807CrossRefPubMed Mumford N, Duckworth J, Thomas PR, Shum D, Williams G, Wilson PH: Upper limb virtual rehabilitation for traumatic brain injury: initial evaluation of the elements system. Brain Inj 2010, 24: 780-791. 10.3109/02699051003652807CrossRefPubMed
10.
go back to reference Mysiw WJ, Corrigan JD, Gribble MW: The ataxic subgroup: a discrete outcome after traumatic brain injury. Brain Inj 1990, 4: 247-255. 10.3109/02699059009026174CrossRefPubMed Mysiw WJ, Corrigan JD, Gribble MW: The ataxic subgroup: a discrete outcome after traumatic brain injury. Brain Inj 1990, 4: 247-255. 10.3109/02699059009026174CrossRefPubMed
12.
go back to reference Allison L: Imbalance following traumatic brain injury in adults: causes and characteristics. J Neurol Phys Ther 1993, 23: 13-18. Allison L: Imbalance following traumatic brain injury in adults: causes and characteristics. J Neurol Phys Ther 1993, 23: 13-18.
13.
go back to reference Iwadate Y, Saeki N, Namba H, Odaki M, Oka N, Yamaura A: Post-traumatic intention tremor—clinical features and CT findings. Neurosurg Rev 1989, 12: 500-507. 10.1007/BF01790695CrossRefPubMed Iwadate Y, Saeki N, Namba H, Odaki M, Oka N, Yamaura A: Post-traumatic intention tremor—clinical features and CT findings. Neurosurg Rev 1989, 12: 500-507. 10.1007/BF01790695CrossRefPubMed
14.
go back to reference Kersel DA, Marsh NV, Havill JH, Sleigh JW: Neuropsychological functioning during the year following severe traumatic brain injury. Brain Injury 2001, 15: 283-296.CrossRefPubMed Kersel DA, Marsh NV, Havill JH, Sleigh JW: Neuropsychological functioning during the year following severe traumatic brain injury. Brain Injury 2001, 15: 283-296.CrossRefPubMed
15.
go back to reference Hulse P, Dudley L: Visual perceptual deficiencies in the brain injury population: management from start to finish. Neuro Rehabilitation 2010, 27: 269-274.PubMed Hulse P, Dudley L: Visual perceptual deficiencies in the brain injury population: management from start to finish. Neuro Rehabilitation 2010, 27: 269-274.PubMed
16.
go back to reference Scheiman M, Rouse M: Optometric management of Learning Related vision problems. 2nd edition. St. Louis, MO: Mosby-Elsevier; 2006. Scheiman M, Rouse M: Optometric management of Learning Related vision problems. 2nd edition. St. Louis, MO: Mosby-Elsevier; 2006.
17.
go back to reference Viau A, Feldman AG, McFadyen BJ, Levin MF: Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis. J Neuroeng Rehabil 2004,14(1):11.CrossRef Viau A, Feldman AG, McFadyen BJ, Levin MF: Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis. J Neuroeng Rehabil 2004,14(1):11.CrossRef
18.
go back to reference Knaut LA, Subramanian SK, McFadyen BJ, Bourbonnais D, Levin MF: Kinematics of pointing movements made in a virtual versus a physical 3-dimensional environment in healthy and stroke subjects. Arch Phys Med Rehabil 2009, 90: 793-802. 10.1016/j.apmr.2008.10.030CrossRefPubMed Knaut LA, Subramanian SK, McFadyen BJ, Bourbonnais D, Levin MF: Kinematics of pointing movements made in a virtual versus a physical 3-dimensional environment in healthy and stroke subjects. Arch Phys Med Rehabil 2009, 90: 793-802. 10.1016/j.apmr.2008.10.030CrossRefPubMed
19.
go back to reference Lott A, Bisson E, Lajoie Y, McComas J, Sveistrup H: The effect of two types of virtual reality on voluntary center of pressure displacement. Cyberpsychol Behav 2003, 6: 477-485. 10.1089/109493103769710505CrossRefPubMed Lott A, Bisson E, Lajoie Y, McComas J, Sveistrup H: The effect of two types of virtual reality on voluntary center of pressure displacement. Cyberpsychol Behav 2003, 6: 477-485. 10.1089/109493103769710505CrossRefPubMed
20.
go back to reference Ustinova KI, Perkins J, Szostakowski L, Tamkei LS, Leonard WA: Effect of viewing angle on arm reaching while standing in a virtual environment: potential for virtual rehabilitation. Acta Psych 2010, 133: 180-190. 10.1016/j.actpsy.2009.11.006CrossRef Ustinova KI, Perkins J, Szostakowski L, Tamkei LS, Leonard WA: Effect of viewing angle on arm reaching while standing in a virtual environment: potential for virtual rehabilitation. Acta Psych 2010, 133: 180-190. 10.1016/j.actpsy.2009.11.006CrossRef
21.
go back to reference Duncan PW, Weiner DK, Chandler J, Studenski S: Functional reach: a new clinical measure of balance. Journal of Gerontology 1990, 45: 192-197.CrossRef Duncan PW, Weiner DK, Chandler J, Studenski S: Functional reach: a new clinical measure of balance. Journal of Gerontology 1990, 45: 192-197.CrossRef
22.
go back to reference Takahashi T, Ishida K, Yamamoto H, Takata J, Nishinaga M, Doi Y, Yamamoto H: Modification of the functional reach test: analysis of lateral and anterior functional reach in community-dwelling older people. Arch Gerontol Geriatr 2006, 42: 167-173. 10.1016/j.archger.2005.06.010CrossRefPubMed Takahashi T, Ishida K, Yamamoto H, Takata J, Nishinaga M, Doi Y, Yamamoto H: Modification of the functional reach test: analysis of lateral and anterior functional reach in community-dwelling older people. Arch Gerontol Geriatr 2006, 42: 167-173. 10.1016/j.archger.2005.06.010CrossRefPubMed
23.
go back to reference Klockgether T, Schroth G, Diener HC, Dichgans J: Idiopathic cerebellar ataxia of late onset: natural history and MRI morphology. J Neurol Neurosurg Psychiatr 1990, 53: 297-305. 10.1136/jnnp.53.4.297PubMedCentralCrossRefPubMed Klockgether T, Schroth G, Diener HC, Dichgans J: Idiopathic cerebellar ataxia of late onset: natural history and MRI morphology. J Neurol Neurosurg Psychiatr 1990, 53: 297-305. 10.1136/jnnp.53.4.297PubMedCentralCrossRefPubMed
24.
go back to reference Berg KO, Wood-Dauphinee SL, Williams JI, Gayton D: Measuring balance in the elderly: preliminary development of an instrument. Physiother Can 1989, 41: 304-311. 10.3138/ptc.41.6.304CrossRef Berg KO, Wood-Dauphinee SL, Williams JI, Gayton D: Measuring balance in the elderly: preliminary development of an instrument. Physiother Can 1989, 41: 304-311. 10.3138/ptc.41.6.304CrossRef
25.
go back to reference Wrisley DM, Marchetti GF, Kuharsky DK, Whitney SL: Reliability, internal consistency, and validity of data obtained with the functional gait assessment. Phys Ther 2004, 84: 906-918.PubMed Wrisley DM, Marchetti GF, Kuharsky DK, Whitney SL: Reliability, internal consistency, and validity of data obtained with the functional gait assessment. Phys Ther 2004, 84: 906-918.PubMed
26.
go back to reference Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S: The post-stroke hemiplegic patient. I. A method for evaluation of physical performance. Scand J Rehab Med 1975, 7: 13-31. Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S: The post-stroke hemiplegic patient. I. A method for evaluation of physical performance. Scand J Rehab Med 1975, 7: 13-31.
27.
go back to reference Colarusso R, Hammill D: MotorFree visual perceptual test. 3rd edition. Novato, CA: Academic Therapy Publications, Inc; 1996. Colarusso R, Hammill D: MotorFree visual perceptual test. 3rd edition. Novato, CA: Academic Therapy Publications, Inc; 1996.
28.
go back to reference Meyers JE, Meyers KR: Rey complex figure test and recognition trial: professional manual. Odessa, FL: Psychological Assessment Resources, Inc; 1995. Meyers JE, Meyers KR: Rey complex figure test and recognition trial: professional manual. Odessa, FL: Psychological Assessment Resources, Inc; 1995.
29.
go back to reference Engler SA, Lilly KA, Perkins J, Ustinova KI: A pointing task to improve reaching performance in older adults. Am J Phys Med Rehabil 1995, 90: 217-225.CrossRef Engler SA, Lilly KA, Perkins J, Ustinova KI: A pointing task to improve reaching performance in older adults. Am J Phys Med Rehabil 1995, 90: 217-225.CrossRef
30.
go back to reference Spreitzer L, Perkins J, Ustinova KI: Challenging stability limits in old and young individuals with a functional reaching task. Am J Rehab Medicine 2013, 92: 36-44. 10.1097/PHM.0b013e318269d8f9CrossRef Spreitzer L, Perkins J, Ustinova KI: Challenging stability limits in old and young individuals with a functional reaching task. Am J Rehab Medicine 2013, 92: 36-44. 10.1097/PHM.0b013e318269d8f9CrossRef
31.
go back to reference Holbein-Jenny M, McDermott K, Shaw C, Demchak J: Validity of functional stability limits as a measure of balance in adults aged 23–73 years. Ergonomics 2007, 50: 631-646. 10.1080/00140130601154814CrossRefPubMed Holbein-Jenny M, McDermott K, Shaw C, Demchak J: Validity of functional stability limits as a measure of balance in adults aged 23–73 years. Ergonomics 2007, 50: 631-646. 10.1080/00140130601154814CrossRefPubMed
32.
go back to reference Lord S, Ward J: Age-associated differences in sensori-motor function and balance in community dwelling women. Age Ageing 1994, 23: 452-460. 10.1093/ageing/23.6.452CrossRefPubMed Lord S, Ward J: Age-associated differences in sensori-motor function and balance in community dwelling women. Age Ageing 1994, 23: 452-460. 10.1093/ageing/23.6.452CrossRefPubMed
33.
go back to reference Shaffer S, Harrison A: Aging of the somatosensory system: a translational perspective. Phys Ther 2007, 87: 193-207. 10.2522/ptj.20060083CrossRefPubMed Shaffer S, Harrison A: Aging of the somatosensory system: a translational perspective. Phys Ther 2007, 87: 193-207. 10.2522/ptj.20060083CrossRefPubMed
34.
go back to reference Basford JR, Chou LS, Kaufman KR, Brey RH, Walker A, Malec JF, Moessner AM, Brown AW: An assessment of gait and balance deficits after traumatic brain injury. Arch Phys Med Rehabil 2003, 84: 343-349. 10.1053/apmr.2003.50034CrossRefPubMed Basford JR, Chou LS, Kaufman KR, Brey RH, Walker A, Malec JF, Moessner AM, Brown AW: An assessment of gait and balance deficits after traumatic brain injury. Arch Phys Med Rehabil 2003, 84: 343-349. 10.1053/apmr.2003.50034CrossRefPubMed
35.
go back to reference Chen HC, Lin KC, Chen CL, Wu CY: The beneficial effects of a functional task target on reaching and postural balance in patients with right cerebral vascular accidents. Motor Control 2008, 12: 122-135.PubMed Chen HC, Lin KC, Chen CL, Wu CY: The beneficial effects of a functional task target on reaching and postural balance in patients with right cerebral vascular accidents. Motor Control 2008, 12: 122-135.PubMed
36.
go back to reference Frzovic D, Morris ME, Vowels L: Clinical tests of standing balance: performance of persons with multiple sclerosis. Arch Phys Med Rehabil 2000, 81: 215-221.CrossRefPubMed Frzovic D, Morris ME, Vowels L: Clinical tests of standing balance: performance of persons with multiple sclerosis. Arch Phys Med Rehabil 2000, 81: 215-221.CrossRefPubMed
37.
go back to reference Katz-Leurer M, Rotem H, Lewitus H, Keren O, Meyer S: Functional balance tests for children with traumatic brain injury: within-session reliability. Pediatr Phys Ther 2008, 20: 254-258. 10.1097/PEP.0b013e3181820dd8CrossRefPubMed Katz-Leurer M, Rotem H, Lewitus H, Keren O, Meyer S: Functional balance tests for children with traumatic brain injury: within-session reliability. Pediatr Phys Ther 2008, 20: 254-258. 10.1097/PEP.0b013e3181820dd8CrossRefPubMed
38.
go back to reference Hibbard PB, Bradshaw MF: Reaching for virtual objects: binocular disparity and the control of prehension. Exp Brain Res 2003, 148: 196-201.PubMed Hibbard PB, Bradshaw MF: Reaching for virtual objects: binocular disparity and the control of prehension. Exp Brain Res 2003, 148: 196-201.PubMed
39.
go back to reference Magdalon EC, Michaelsen SM, Quevedo AA, Levin MF: Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment. Acta Psychologica 2011, 138: 126-134. 10.1016/j.actpsy.2011.05.015CrossRefPubMed Magdalon EC, Michaelsen SM, Quevedo AA, Levin MF: Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment. Acta Psychologica 2011, 138: 126-134. 10.1016/j.actpsy.2011.05.015CrossRefPubMed
40.
go back to reference Fidopiastis CM, Furhman C, Meyer C, Rolland JP: Methodology for the iterative evaluation of prototype head-mounted displays in virtual environments: visual acuity metrics. Presence 2005, 14: 550-562. 10.1162/105474605774918697CrossRef Fidopiastis CM, Furhman C, Meyer C, Rolland JP: Methodology for the iterative evaluation of prototype head-mounted displays in virtual environments: visual acuity metrics. Presence 2005, 14: 550-562. 10.1162/105474605774918697CrossRef
41.
go back to reference Wann JP, Rushton S, Mon-Williams M: Natural problems for stereoscopic depth perception in virtual environments. Vision Research 1995, 35: 2731-2736. 10.1016/0042-6989(95)00018-UCrossRefPubMed Wann JP, Rushton S, Mon-Williams M: Natural problems for stereoscopic depth perception in virtual environments. Vision Research 1995, 35: 2731-2736. 10.1016/0042-6989(95)00018-UCrossRefPubMed
42.
go back to reference Creem-Regehr SH, Willemsen P, Gooch AA, Thompson WB: The influence of restricted viewing conditions on egocentric distance perception: implications for real and virtual environments. Perception 2005, 34: 191-204. 10.1068/p5144CrossRefPubMed Creem-Regehr SH, Willemsen P, Gooch AA, Thompson WB: The influence of restricted viewing conditions on egocentric distance perception: implications for real and virtual environments. Perception 2005, 34: 191-204. 10.1068/p5144CrossRefPubMed
43.
go back to reference Geuss MN, Stefanucci JK, Creem-Regehr SH, Thompson WB: Effect of viewing plane on perceived distances in real and virtual environments. J Exp Psychol Hum Percept Perform 2012, 38: 1242-1253. Published aheadCrossRefPubMed Geuss MN, Stefanucci JK, Creem-Regehr SH, Thompson WB: Effect of viewing plane on perceived distances in real and virtual environments. J Exp Psychol Hum Percept Perform 2012, 38: 1242-1253. Published aheadCrossRefPubMed
44.
go back to reference Subramanian SK, Levin MF: Viewing medium affects arm motor performance in 3D virtual environments. J Neuroeng Rehabil 2011,30(8):36.CrossRef Subramanian SK, Levin MF: Viewing medium affects arm motor performance in 3D virtual environments. J Neuroeng Rehabil 2011,30(8):36.CrossRef
45.
go back to reference Bingham GP, Coats R, Mon-Williams M: Natural prehension in trials without haptic feedback but only when calibration is allowed. Neurophyschologia 2007, 45: 288-294. 10.1016/j.neuropsychologia.2006.07.011CrossRef Bingham GP, Coats R, Mon-Williams M: Natural prehension in trials without haptic feedback but only when calibration is allowed. Neurophyschologia 2007, 45: 288-294. 10.1016/j.neuropsychologia.2006.07.011CrossRef
46.
go back to reference Johnson SH: The neural bases of complex tool use in humans. Trends Cogn Sci 2004, 8: 71-78. 10.1016/j.tics.2003.12.002CrossRef Johnson SH: The neural bases of complex tool use in humans. Trends Cogn Sci 2004, 8: 71-78. 10.1016/j.tics.2003.12.002CrossRef
47.
go back to reference Steffen T, Seney M: Test-retest reliability and minimal detectable change on balance and ambulation tests, the 36-item short-form health survey, and the unified parkinson disease rating scale in people with parkinsonism. Phys Ther 2008, 88: 733-738. 10.2522/ptj.20070214CrossRefPubMed Steffen T, Seney M: Test-retest reliability and minimal detectable change on balance and ambulation tests, the 36-item short-form health survey, and the unified parkinson disease rating scale in people with parkinsonism. Phys Ther 2008, 88: 733-738. 10.2522/ptj.20070214CrossRefPubMed
48.
go back to reference Katz-Leurer M, Fisher I, Neeb M, Schwartz I, Carmeli E: Reliability and validity of the modified functional reach test at the sub-acute stage post-stroke. Disabil Rehabil 2009, 31: 243-248. 10.1080/09638280801927830CrossRefPubMed Katz-Leurer M, Fisher I, Neeb M, Schwartz I, Carmeli E: Reliability and validity of the modified functional reach test at the sub-acute stage post-stroke. Disabil Rehabil 2009, 31: 243-248. 10.1080/09638280801927830CrossRefPubMed
49.
go back to reference Schmidt RA, Lee TD: Motor control and learning. 3rd edition. Champaign, IL: Human Kinetics; 1999. Schmidt RA, Lee TD: Motor control and learning. 3rd edition. Champaign, IL: Human Kinetics; 1999.
50.
go back to reference Holden MK, Dettwiler A, Dyar T, Niemann G, Bizzi E: Retraining movement in patients with acquired brain injury using a virtual environment. Stud Health Technol Inform 2001, 81: 192-198.PubMed Holden MK, Dettwiler A, Dyar T, Niemann G, Bizzi E: Retraining movement in patients with acquired brain injury using a virtual environment. Stud Health Technol Inform 2001, 81: 192-198.PubMed
51.
go back to reference Trotter Y, Celebrini S: Gaze direction controls response gain in primary visual-cortex neurons. Nature 1999, 398: 239-242. 10.1038/18444CrossRefPubMed Trotter Y, Celebrini S: Gaze direction controls response gain in primary visual-cortex neurons. Nature 1999, 398: 239-242. 10.1038/18444CrossRefPubMed
52.
go back to reference Rosenbluth D, Allman JM: The effect of gaze angle and fixation distance on the responses of neurons in V1, V2, and V4. Neuron 2002, 33: 143-149. 10.1016/S0896-6273(01)00559-1CrossRefPubMed Rosenbluth D, Allman JM: The effect of gaze angle and fixation distance on the responses of neurons in V1, V2, and V4. Neuron 2002, 33: 143-149. 10.1016/S0896-6273(01)00559-1CrossRefPubMed
53.
go back to reference Levin CA, Haber RN: Visual angle as a determinant of perceived interobject distance. Perception and Psychophysics 1993, 54: 250-259. 10.3758/BF03211761CrossRefPubMed Levin CA, Haber RN: Visual angle as a determinant of perceived interobject distance. Perception and Psychophysics 1993, 54: 250-259. 10.3758/BF03211761CrossRefPubMed
54.
go back to reference Gardner PL, Mon-Williams M: Vertical gaze angle: absolute height-inscene information for the programming of prehension. Exp Brain Res 2001, 136: 379-385. 10.1007/s002210000590CrossRefPubMed Gardner PL, Mon-Williams M: Vertical gaze angle: absolute height-inscene information for the programming of prehension. Exp Brain Res 2001, 136: 379-385. 10.1007/s002210000590CrossRefPubMed
55.
go back to reference Vaillancourt DE, Haibach PS, Newell KM: Visual angle is the critical variable mediating gain-related effects in manual control. Exp Brain Res 2006, 173: 742-750. 10.1007/s00221-006-0454-2PubMedCentralCrossRefPubMed Vaillancourt DE, Haibach PS, Newell KM: Visual angle is the critical variable mediating gain-related effects in manual control. Exp Brain Res 2006, 173: 742-750. 10.1007/s00221-006-0454-2PubMedCentralCrossRefPubMed
56.
go back to reference Turville KL, Psihogios JP, Ulmer TR, Mirka GA: The effects of video display terminal height on the operator: a comparison of the 15_ and 40_recommendations. Applied Ergonomics 1998, 29: 239-246. 10.1016/S0003-6870(97)00048-3CrossRefPubMed Turville KL, Psihogios JP, Ulmer TR, Mirka GA: The effects of video display terminal height on the operator: a comparison of the 15_ and 40_recommendations. Applied Ergonomics 1998, 29: 239-246. 10.1016/S0003-6870(97)00048-3CrossRefPubMed
57.
go back to reference Shieh KK, Lee DS: Preferred viewing distance and screen angle of electronic paper displays. Applied Ergonomics 2007, 38: 601-608. 10.1016/j.apergo.2006.06.008CrossRefPubMed Shieh KK, Lee DS: Preferred viewing distance and screen angle of electronic paper displays. Applied Ergonomics 2007, 38: 601-608. 10.1016/j.apergo.2006.06.008CrossRefPubMed
58.
go back to reference Corneil BD, Olivier E, Munoz DP: Visual responses on neck muscles reveal selective gating that prevents express saccades. Neuron 2004, 42: 831-841. 10.1016/S0896-6273(04)00267-3CrossRefPubMed Corneil BD, Olivier E, Munoz DP: Visual responses on neck muscles reveal selective gating that prevents express saccades. Neuron 2004, 42: 831-841. 10.1016/S0896-6273(04)00267-3CrossRefPubMed
59.
go back to reference Kapoula Z, Lê TT: Effects of distance and gaze position on postural stability in young and old subjects. Exp Brain Res 2006, 173: 438-445. 10.1007/s00221-006-0382-1CrossRefPubMed Kapoula Z, Lê TT: Effects of distance and gaze position on postural stability in young and old subjects. Exp Brain Res 2006, 173: 438-445. 10.1007/s00221-006-0382-1CrossRefPubMed
60.
Metadata
Title
Does use of a virtual environment change reaching while standing in patients with traumatic brain injury?
Authors
Amanda Y Schafer
Ksenia I Ustinova
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2013
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-10-76

Other articles of this Issue 1/2013

Journal of NeuroEngineering and Rehabilitation 1/2013 Go to the issue