Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2013

Open Access 01-12-2013 | Research

Walking speed related joint kinetic alterations in trans-tibial amputees: impact of hydraulic 'ankle’ damping

Authors: Alan R De Asha, Ramesh Munjal, Jai Kulkarni, John G Buckley

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Background

Passive prosthetic devices are set up to provide optimal function at customary walking speed and thus may function less effectively at other speeds. This partly explains why joint kinetic adaptations become more apparent in lower-limb amputees when walking at speeds other than customary. The present study determined whether a trans-tibial prosthesis incorporating a dynamic-response foot that was attached to the shank via an articulating hydraulic device (hy A-F) lessened speed-related adaptations in joint kinetics compared to when the foot was attached via a rigid, non-articulating attachment (rig F).

Methods

Eight active unilateral trans-tibial amputees completed walking trials at their customary walking speed, and at speeds they deemed to be slow-comfortable and fast-comfortable whilst using each type of foot attachment. Moments and powers at the distal end of the prosthetic shank and at the intact joints of both limbs were compared between attachment conditions.

Results

There was no change in the amount of intact-limb ankle work across speed or attachment conditions. As speed level increased there was an increase on both limbs in the amount of hip and knee joint work done, and increases on the prosthetic side were greater when using the hy A-F. However, because all walking speed levels were higher when using the hy A-F, the intact-limb ankle and combined joints work per meter travelled were significantly lower; particularly so at the customary speed level. This was the case despite the hy A-F dissipating more energy during stance. In addition, the amount of eccentric work done per meter travelled became increased at the residual knee when using the hy A-F, with increases again greatest at customary speed.

Conclusions

Findings indicate that a trans-tibial prosthesis incorporating a dynamic-response foot reduced speed-related changes in compensatory intact-limb joint kinetics when the foot was attached via an articulating hydraulic device compared to rigid attachment. As differences between attachment conditions were greatest at customary speed, findings indicate a hydraulic ankle-foot device is most effectual at the speed it is set-up for.
Appendix
Available only for authorised users
Literature
1.
go back to reference Winter DA, Ishac M, Eng JJ, Prince F: The foot as an energy absorber and generator during stance phase of walking. Gait and Posture 1995,3(2):80.CrossRef Winter DA, Ishac M, Eng JJ, Prince F: The foot as an energy absorber and generator during stance phase of walking. Gait and Posture 1995,3(2):80.CrossRef
2.
go back to reference Neptune RR, Zajac FE, Kautz SA: Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J Biomech 2001,34(11):1387-1398. 10.1016/S0021-9290(01)00105-1CrossRefPubMed Neptune RR, Zajac FE, Kautz SA: Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J Biomech 2001,34(11):1387-1398. 10.1016/S0021-9290(01)00105-1CrossRefPubMed
3.
go back to reference Kirtley C: Clinical Gait Analysis: Theory and Practice. Oxford: Churchill Livingstone; 2006. Kirtley C: Clinical Gait Analysis: Theory and Practice. Oxford: Churchill Livingstone; 2006.
4.
go back to reference Paul JP: The effect of walking speed on the force actions transmitted at the hip and knee joints. Proc R Soc Med 1970,63(2):200-202.PubMedCentralPubMed Paul JP: The effect of walking speed on the force actions transmitted at the hip and knee joints. Proc R Soc Med 1970,63(2):200-202.PubMedCentralPubMed
5.
go back to reference Silverman AK, Fey NP, Portillo A, Walden JG, Bosker G, Neptune RR: Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds. Gait and Posture 2008,28(5):602-609.CrossRefPubMed Silverman AK, Fey NP, Portillo A, Walden JG, Bosker G, Neptune RR: Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds. Gait and Posture 2008,28(5):602-609.CrossRefPubMed
6.
go back to reference Siegel KL, Kepple TM, Stanhope SJ: Joint moment control of mechanical energy flow during normal gait. Gait and Posture 2004,19(1):69-75. 10.1016/S0966-6362(03)00010-9CrossRefPubMed Siegel KL, Kepple TM, Stanhope SJ: Joint moment control of mechanical energy flow during normal gait. Gait and Posture 2004,19(1):69-75. 10.1016/S0966-6362(03)00010-9CrossRefPubMed
7.
go back to reference Gitter MD, Czerniecki JM, DeGroot DM: Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking. Am J Phys Med Rehabil 1991,70(3):142-148. 10.1097/00002060-199106000-00006CrossRefPubMed Gitter MD, Czerniecki JM, DeGroot DM: Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking. Am J Phys Med Rehabil 1991,70(3):142-148. 10.1097/00002060-199106000-00006CrossRefPubMed
8.
go back to reference Seroussi RE, Gitter A, Czerniecki JM, Weaver K: Mechanical work adaptions of above-knee amputee ambulation. Arch Phys Med Rehabil 1996,77(11):1209-14. 10.1016/S0003-9993(96)90151-3CrossRefPubMed Seroussi RE, Gitter A, Czerniecki JM, Weaver K: Mechanical work adaptions of above-knee amputee ambulation. Arch Phys Med Rehabil 1996,77(11):1209-14. 10.1016/S0003-9993(96)90151-3CrossRefPubMed
9.
go back to reference Sanderson DJ, Martin PE: Lower extremity kinematic and kinetic adaptations in unilateral below-knee amputees during walking. Gait and Posture 1997,6(2):126-136. 10.1016/S0966-6362(97)01112-0CrossRef Sanderson DJ, Martin PE: Lower extremity kinematic and kinetic adaptations in unilateral below-knee amputees during walking. Gait and Posture 1997,6(2):126-136. 10.1016/S0966-6362(97)01112-0CrossRef
10.
go back to reference Nolan L, Lees A: The functional demands on the intact limb during walking for active trans-femoral and trans-tibial amputees. Prosthet Orthot Int 2000,24(2):117-125. 10.1080/03093640008726534CrossRefPubMed Nolan L, Lees A: The functional demands on the intact limb during walking for active trans-femoral and trans-tibial amputees. Prosthet Orthot Int 2000,24(2):117-125. 10.1080/03093640008726534CrossRefPubMed
11.
go back to reference Sadeghi H, Allard P, Duhaime PM: Muscle power compensatory mechanisms in below-knee amputee gait. Am J Phys Med Rehabil 2001,80(1):25-32. 10.1097/00002060-200101000-00007CrossRefPubMed Sadeghi H, Allard P, Duhaime PM: Muscle power compensatory mechanisms in below-knee amputee gait. Am J Phys Med Rehabil 2001,80(1):25-32. 10.1097/00002060-200101000-00007CrossRefPubMed
12.
go back to reference Nolan L, Wit A, Dudzinski K, Lees A, Lake M, Wychowanski M: Adjustments in gait symmetry in trans-femoral and trans-tibial amputees. Gait and Posture 2003,17(2):142-151. 10.1016/S0966-6362(02)00066-8CrossRefPubMed Nolan L, Wit A, Dudzinski K, Lees A, Lake M, Wychowanski M: Adjustments in gait symmetry in trans-femoral and trans-tibial amputees. Gait and Posture 2003,17(2):142-151. 10.1016/S0966-6362(02)00066-8CrossRefPubMed
13.
go back to reference Czerniecki JM, Gitter AJ: Gait analysis in the amputee: has it helped the amputee or contributed to the development of improved prosthetic components? Gait and Posture 1996,4(3):258-268. 10.1016/0966-6362(96)01073-9CrossRef Czerniecki JM, Gitter AJ: Gait analysis in the amputee: has it helped the amputee or contributed to the development of improved prosthetic components? Gait and Posture 1996,4(3):258-268. 10.1016/0966-6362(96)01073-9CrossRef
14.
go back to reference Powers CM, Rao S, Perry J: Knee kinetics in trans-tibial amputee gait. Gait and Posture 1998,8(1):1-7. 10.1016/S0966-6362(98)00016-2CrossRefPubMed Powers CM, Rao S, Perry J: Knee kinetics in trans-tibial amputee gait. Gait and Posture 1998,8(1):1-7. 10.1016/S0966-6362(98)00016-2CrossRefPubMed
15.
go back to reference Chen IH, Kuo KN, Andriacchi TP: The influence of walking speed on mechanical joint power during gait. Gait and Posture 1997,6(3):171-176. 10.1016/S0966-6362(97)00009-XCrossRef Chen IH, Kuo KN, Andriacchi TP: The influence of walking speed on mechanical joint power during gait. Gait and Posture 1997,6(3):171-176. 10.1016/S0966-6362(97)00009-XCrossRef
16.
go back to reference Riley PO, Della Croce U, Kerrigan DC: Propulsive adaptation to changing gait speed. J Biomech 2001,34(2):197-202. 10.1016/S0021-9290(00)00174-3CrossRefPubMed Riley PO, Della Croce U, Kerrigan DC: Propulsive adaptation to changing gait speed. J Biomech 2001,34(2):197-202. 10.1016/S0021-9290(00)00174-3CrossRefPubMed
17.
go back to reference Underwood HA, Tokuno CD, Eng JJ: A comparison of two prosthetic feet on the multi-joint and multi-plane kinetic gait compensations in individuals with a unilateral trans-tibial amputation. Clinical Biomechanics 2001,19(6):609-616.CrossRef Underwood HA, Tokuno CD, Eng JJ: A comparison of two prosthetic feet on the multi-joint and multi-plane kinetic gait compensations in individuals with a unilateral trans-tibial amputation. Clinical Biomechanics 2001,19(6):609-616.CrossRef
18.
go back to reference Portnoy S, Kristal A, Gefen A, Siev-Ner I: Outdoor dynamic subject-specific evaluation of internal stresses in the residual limb: hydraulic energy-stored prosthetic foot compared to conventional energy-stored prosthetic feet. Gait and Posture 2012,35(1):121-125. 10.1016/j.gaitpost.2011.08.021CrossRefPubMed Portnoy S, Kristal A, Gefen A, Siev-Ner I: Outdoor dynamic subject-specific evaluation of internal stresses in the residual limb: hydraulic energy-stored prosthetic foot compared to conventional energy-stored prosthetic feet. Gait and Posture 2012,35(1):121-125. 10.1016/j.gaitpost.2011.08.021CrossRefPubMed
19.
go back to reference De Asha AR, Johnson L, Munjal R, Kulkarni J, Buckley JG: Attenuation of centre-of-pressure trajectory fluctuations under the prosthetic feet when using an articulating hydraulic ankle attachment compared to fixed attachment. Clinical Biomechanics 2013,28(2):218-224. 10.1016/j.clinbiomech.2012.11.013CrossRefPubMed De Asha AR, Johnson L, Munjal R, Kulkarni J, Buckley JG: Attenuation of centre-of-pressure trajectory fluctuations under the prosthetic feet when using an articulating hydraulic ankle attachment compared to fixed attachment. Clinical Biomechanics 2013,28(2):218-224. 10.1016/j.clinbiomech.2012.11.013CrossRefPubMed
20.
go back to reference Wilson JLA: Challenges in dealing with walking speed in knee osteoarthritis gait analyses. Clinical Biomechanics 2012,27(3):210-212. 10.1016/j.clinbiomech.2011.09.009CrossRef Wilson JLA: Challenges in dealing with walking speed in knee osteoarthritis gait analyses. Clinical Biomechanics 2012,27(3):210-212. 10.1016/j.clinbiomech.2011.09.009CrossRef
21.
go back to reference Cappozzo A, Catini F, Croce UD, Leardini A: Position and orientation in space of bones during movement: anatomical frame definition and determination. Clinical Biomechanics 1995,10(4):171-178. 10.1016/0268-0033(95)91394-TCrossRefPubMed Cappozzo A, Catini F, Croce UD, Leardini A: Position and orientation in space of bones during movement: anatomical frame definition and determination. Clinical Biomechanics 1995,10(4):171-178. 10.1016/0268-0033(95)91394-TCrossRefPubMed
22.
go back to reference Karlsson D, Tranberg R: On skin movement artefact – resonant frequencies of skin markers attached to the leg. Hum Mov Sci 1999,18(5):627-635. 10.1016/S0167-9457(99)00025-1CrossRef Karlsson D, Tranberg R: On skin movement artefact – resonant frequencies of skin markers attached to the leg. Hum Mov Sci 1999,18(5):627-635. 10.1016/S0167-9457(99)00025-1CrossRef
23.
go back to reference Gao B, Zheng N: Investigation of soft tissue movement during level walking. Translations and rotations of skin markers. J Biomech 2008,41(15):3189-3195. 10.1016/j.jbiomech.2008.08.028CrossRefPubMed Gao B, Zheng N: Investigation of soft tissue movement during level walking. Translations and rotations of skin markers. J Biomech 2008,41(15):3189-3195. 10.1016/j.jbiomech.2008.08.028CrossRefPubMed
24.
go back to reference Winter DA: Biomechanics and Motor Control of Human Movement. 4th edition. John Wiley and sons: Hoboken; 2009.CrossRef Winter DA: Biomechanics and Motor Control of Human Movement. 4th edition. John Wiley and sons: Hoboken; 2009.CrossRef
25.
go back to reference Geil MD, Parnianpour M, Quesada P, Berme N, Simon S: Comparison of methods for the calculation of energy storage and return in dynamic elastic response prostheses. J Biomech 2000,33(12):1745-1750. 10.1016/S0021-9290(00)00102-0CrossRefPubMed Geil MD, Parnianpour M, Quesada P, Berme N, Simon S: Comparison of methods for the calculation of energy storage and return in dynamic elastic response prostheses. J Biomech 2000,33(12):1745-1750. 10.1016/S0021-9290(00)00102-0CrossRefPubMed
26.
go back to reference Miller LA, Childress DS: Problems associated with the use of inverse dynamics in prosthetic applications: an example using a polycentric prosthetic knee. Robotica 2005,23(3):329-335. 10.1017/S0263574704001353CrossRef Miller LA, Childress DS: Problems associated with the use of inverse dynamics in prosthetic applications: an example using a polycentric prosthetic knee. Robotica 2005,23(3):329-335. 10.1017/S0263574704001353CrossRef
27.
go back to reference Sagawa Y Jr, Turcot K, Armans S, Thevenon A, Vuillerme N, Watelain E: Biomechanics and physiological parameters during gait in unilateral below-knee amputees. Gait and Posture 2011,33(4):511-526. 10.1016/j.gaitpost.2011.02.003CrossRefPubMed Sagawa Y Jr, Turcot K, Armans S, Thevenon A, Vuillerme N, Watelain E: Biomechanics and physiological parameters during gait in unilateral below-knee amputees. Gait and Posture 2011,33(4):511-526. 10.1016/j.gaitpost.2011.02.003CrossRefPubMed
28.
go back to reference Prince F, Winter DA, Sjoonnsen G, Wheeldon K: A new technique for the calculation of the energy stored, dissipated and recovered in different ankle-foot prostheses. IEEE Trans Rehabil Eng 1994,3(4):247-255.CrossRef Prince F, Winter DA, Sjoonnsen G, Wheeldon K: A new technique for the calculation of the energy stored, dissipated and recovered in different ankle-foot prostheses. IEEE Trans Rehabil Eng 1994,3(4):247-255.CrossRef
29.
go back to reference Prince F, Winter DA, Powell C, Wheeldon RK: Mechanical efficiency during gait of adults with transtibial amputation: a pilot study comparing the SACH, Seattle and golden-ankle prosthetic feet. J Rehabil Res Dev 1998,35(2):177-185.PubMed Prince F, Winter DA, Powell C, Wheeldon RK: Mechanical efficiency during gait of adults with transtibial amputation: a pilot study comparing the SACH, Seattle and golden-ankle prosthetic feet. J Rehabil Res Dev 1998,35(2):177-185.PubMed
30.
go back to reference Morgenroth DC, Segal AD, Zelik KE, Czerniecki JM, Klute GK, Adamczyk PG, Orenduff MS, Hahn ME, Collins SH, Kuo AD: The effect of prosthetic push-off on mechanical loading associated with knee osteoarthritis in lower extremity amputees. Gait and Posture 2011,34(4):502-507. 10.1016/j.gaitpost.2011.07.001PubMedCentralCrossRefPubMed Morgenroth DC, Segal AD, Zelik KE, Czerniecki JM, Klute GK, Adamczyk PG, Orenduff MS, Hahn ME, Collins SH, Kuo AD: The effect of prosthetic push-off on mechanical loading associated with knee osteoarthritis in lower extremity amputees. Gait and Posture 2011,34(4):502-507. 10.1016/j.gaitpost.2011.07.001PubMedCentralCrossRefPubMed
31.
go back to reference Segal AD, Zelik KE, Klute GK, Morgenroth DC, Hahn ME, Orenduff MS, Adamczyk PG, Collins SH, Kuo AD, Czerniecki JM: The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation. Hum Mov Sci 2012,31(4):918-931. 10.1016/j.humov.2011.08.005PubMedCentralCrossRefPubMed Segal AD, Zelik KE, Klute GK, Morgenroth DC, Hahn ME, Orenduff MS, Adamczyk PG, Collins SH, Kuo AD, Czerniecki JM: The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation. Hum Mov Sci 2012,31(4):918-931. 10.1016/j.humov.2011.08.005PubMedCentralCrossRefPubMed
32.
go back to reference Zelik KE, Collins SH, Adamczyk PG, Segal AD, Klute GK, Morgenroth DC, Hahn ME, Orenduff MS, Czerniecki JM, Kuo AD, SH: Systematic variation of prosthetic foot spring affects centre-of-mass- mechanics and metabolic cost during walking. IEEE Trans Neural Syst Rehabil Eng 2011,19(4):411-419.PubMedCentralCrossRefPubMed Zelik KE, Collins SH, Adamczyk PG, Segal AD, Klute GK, Morgenroth DC, Hahn ME, Orenduff MS, Czerniecki JM, Kuo AD, SH: Systematic variation of prosthetic foot spring affects centre-of-mass- mechanics and metabolic cost during walking. IEEE Trans Neural Syst Rehabil Eng 2011,19(4):411-419.PubMedCentralCrossRefPubMed
33.
go back to reference Schwartz MH, Rosumalski A: A new method for estimating joint parameters from motion data. J Biomech 2005,38(1):107-116. 10.1016/j.jbiomech.2004.03.009CrossRefPubMed Schwartz MH, Rosumalski A: A new method for estimating joint parameters from motion data. J Biomech 2005,38(1):107-116. 10.1016/j.jbiomech.2004.03.009CrossRefPubMed
34.
go back to reference Dumas R, Cheze L, Frossard L: Loading applied on prosthetic knee of transfemoral amputee: comparison of inverse dynamics and direct measurement. Gait and Posture 2009,30(4):560-562. 10.1016/j.gaitpost.2009.07.126CrossRefPubMed Dumas R, Cheze L, Frossard L: Loading applied on prosthetic knee of transfemoral amputee: comparison of inverse dynamics and direct measurement. Gait and Posture 2009,30(4):560-562. 10.1016/j.gaitpost.2009.07.126CrossRefPubMed
35.
go back to reference Stansfield BW, Hillman SJ, Hazelwood ME, Robb JE: Regression analysis of gait parameters with speed in normal children walking at self-selected speeds. Gait and Posture 2006,23(3):288-294. 10.1016/j.gaitpost.2005.03.005CrossRefPubMed Stansfield BW, Hillman SJ, Hazelwood ME, Robb JE: Regression analysis of gait parameters with speed in normal children walking at self-selected speeds. Gait and Posture 2006,23(3):288-294. 10.1016/j.gaitpost.2005.03.005CrossRefPubMed
36.
go back to reference Vanrenterghem J, Gormley D, Robinson MA, Lees A: Solutions for representing the whole-body centre of mass in side cutting manoeuvres based on data that is typically available for lower limb kinematics. Gait and Posture 2010,31(4):517-521. 10.1016/j.gaitpost.2010.02.014CrossRefPubMed Vanrenterghem J, Gormley D, Robinson MA, Lees A: Solutions for representing the whole-body centre of mass in side cutting manoeuvres based on data that is typically available for lower limb kinematics. Gait and Posture 2010,31(4):517-521. 10.1016/j.gaitpost.2010.02.014CrossRefPubMed
37.
go back to reference Isakov E, Burger H, Krajnik J, Gregoric M, Marincek C: Influence of speed on gait parameters and on symmetry in trans-tibial amputees. Prosthet Orthot Int 1996,20(3):153-158.PubMed Isakov E, Burger H, Krajnik J, Gregoric M, Marincek C: Influence of speed on gait parameters and on symmetry in trans-tibial amputees. Prosthet Orthot Int 1996,20(3):153-158.PubMed
38.
go back to reference Postema K, Hermens HJ, DeVries J, Koopman HF, Eisma WH: Energy storage and release of prosthetic feet. Part 2: Subjective ratings of 2 energy storing and 2 conventional feet, user choice of foot and deciding factor. Prosthet Orthot Int 1997,21(1):28-34.PubMed Postema K, Hermens HJ, DeVries J, Koopman HF, Eisma WH: Energy storage and release of prosthetic feet. Part 2: Subjective ratings of 2 energy storing and 2 conventional feet, user choice of foot and deciding factor. Prosthet Orthot Int 1997,21(1):28-34.PubMed
39.
go back to reference Schmalz T, Blumentritt S, Jarasch R: Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait and Posture 2002,16(3):255-263. 10.1016/S0966-6362(02)00008-5CrossRefPubMed Schmalz T, Blumentritt S, Jarasch R: Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait and Posture 2002,16(3):255-263. 10.1016/S0966-6362(02)00008-5CrossRefPubMed
40.
go back to reference Ventura J, Klute GK, Neptune RR: The effects of prosthetic ankle dorsiflexion and energy return on below-knee amputee leg loading. Clinical Biomechanics 2011,26(3):298-303. 10.1016/j.clinbiomech.2010.10.003CrossRefPubMed Ventura J, Klute GK, Neptune RR: The effects of prosthetic ankle dorsiflexion and energy return on below-knee amputee leg loading. Clinical Biomechanics 2011,26(3):298-303. 10.1016/j.clinbiomech.2010.10.003CrossRefPubMed
41.
go back to reference Takahashi KZ, Kepple TM, Stanhope SJ: A unified deformable (UD) segment model for quantifying total power of anatomical and prosthetic below-knee structures during stance in gait. J Biomech 2012,45(15):2662-2667. 10.1016/j.jbiomech.2012.08.017CrossRefPubMed Takahashi KZ, Kepple TM, Stanhope SJ: A unified deformable (UD) segment model for quantifying total power of anatomical and prosthetic below-knee structures during stance in gait. J Biomech 2012,45(15):2662-2667. 10.1016/j.jbiomech.2012.08.017CrossRefPubMed
42.
go back to reference Robertson DGE, Winter DA: Mechanical energy generation, absorption and transfer amongst segments during walking. J Biomech 1980,13(10):845-854. 10.1016/0021-9290(80)90172-4CrossRefPubMed Robertson DGE, Winter DA: Mechanical energy generation, absorption and transfer amongst segments during walking. J Biomech 1980,13(10):845-854. 10.1016/0021-9290(80)90172-4CrossRefPubMed
Metadata
Title
Walking speed related joint kinetic alterations in trans-tibial amputees: impact of hydraulic 'ankle’ damping
Authors
Alan R De Asha
Ramesh Munjal
Jai Kulkarni
John G Buckley
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2013
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-10-107

Other articles of this Issue 1/2013

Journal of NeuroEngineering and Rehabilitation 1/2013 Go to the issue