Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Review

A comparative review of cell culture systems for the study of microglial biology in Alzheimer’s disease

Authors: Branden Stansley, Jan Post, Kenneth Hensley

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Over the past two decades, it has become increasingly apparent that Alzheimer’s disease neuropathology is characterized by activated microglia (brain resident macrophages) as well as the classic features of amyloid plaques and neurofibrillary tangles. The intricacy of microglial biology has also become apparent, leading to a heightened research interest in this particular cell type. Over the years a number of different microglial cell culturing techniques have been developed to study either primary mammalian microglia, or immortalized cell lines. Each microglial system has advantages and disadvantages and should be selected for its appropriateness in a particular research context. This review summarizes several of the most common microglial cell culture systems currently being employed in Alzheimer’s research including primary microglia; BV2 and N9 retroviral immortalized microglia; human immortalized microglia (HMO6); and spontaneously immortalized rodent microglial lines (EOC lines and HAPI cells). Particularities of cell culture requirements and characteristics of microglial behavior, especially in response to applied inflammogen stimuli, are compared and discussed across these cell types.
Literature
1.
go back to reference Giulian D: Microglia and the immune pathology of Alzheimer’s disease. Am J Hum Gen 1999, 65:13–18.CrossRef Giulian D: Microglia and the immune pathology of Alzheimer’s disease. Am J Hum Gen 1999, 65:13–18.CrossRef
2.
go back to reference Gao H, Liu W, Zhang W, Hong JH, Liu B, Zhang W, Hong J: Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol Sci 2003, 24:395–401.CrossRefPubMed Gao H, Liu W, Zhang W, Hong JH, Liu B, Zhang W, Hong J: Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol Sci 2003, 24:395–401.CrossRefPubMed
3.
go back to reference West M, Mhatre M, Ceballos A, Floyd R, Grammas P, Gabbita S, Hamdheydari L, Mai T, Mou S, Pye Q, Stewart C, West K, Williamson K, Zemlan F, Hensley K: The arachidonic acid 5-lipoxygenase inhibitor nordihydroguaiaretic acid inhibts tumor necrosis factor-alpha activation of microglia and extends survival of G93A-SOD1 transgenic mice. J Neurochem 2004, 91:133–143.CrossRefPubMed West M, Mhatre M, Ceballos A, Floyd R, Grammas P, Gabbita S, Hamdheydari L, Mai T, Mou S, Pye Q, Stewart C, West K, Williamson K, Zemlan F, Hensley K: The arachidonic acid 5-lipoxygenase inhibitor nordihydroguaiaretic acid inhibts tumor necrosis factor-alpha activation of microglia and extends survival of G93A-SOD1 transgenic mice. J Neurochem 2004, 91:133–143.CrossRefPubMed
4.
go back to reference Del Rio-Hortega P: Microglia. In Cytology and Cellular Pathology of the Nervous System. Edited by: Penfield W. Hober, New York; 1932:481–584. Del Rio-Hortega P: Microglia. In Cytology and Cellular Pathology of the Nervous System. Edited by: Penfield W. Hober, New York; 1932:481–584.
5.
go back to reference Asheuer M, Pflumino F, Benhamida S, Dubart-Kupperschmitt A, Fouquet F, Imai Y, Aubourg P, Cartier N: Human CD34+ Cells Differentiate into Microglia and express recombinant therapeutic protein. Proc Natl Acad Sci U S A 2004, 101:3557–3562.CrossRefPubMedPubMedCentral Asheuer M, Pflumino F, Benhamida S, Dubart-Kupperschmitt A, Fouquet F, Imai Y, Aubourg P, Cartier N: Human CD34+ Cells Differentiate into Microglia and express recombinant therapeutic protein. Proc Natl Acad Sci U S A 2004, 101:3557–3562.CrossRefPubMedPubMedCentral
6.
go back to reference Razaie P: Microglia in the human nervous system during development. Neuroembryol 2003, 1:29–31.CrossRef Razaie P: Microglia in the human nervous system during development. Neuroembryol 2003, 1:29–31.CrossRef
7.
8.
go back to reference Giulian D, Baker T: Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 1986, 6:2163–2178.PubMed Giulian D, Baker T: Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 1986, 6:2163–2178.PubMed
9.
go back to reference Henkel J: Microglia in ALS: the good, the bad, and the resting. J Neuroimmune Pharmacol 2009, 4:389–398.CrossRefPubMed Henkel J: Microglia in ALS: the good, the bad, and the resting. J Neuroimmune Pharmacol 2009, 4:389–398.CrossRefPubMed
10.
go back to reference Castero J: Estudie del compotemento de la microglia cultivade on vetro. Datos concernientes a su histogenesis. Mem R Soc Cep Hist Nat 1930, 14:125–182. Castero J: Estudie del compotemento de la microglia cultivade on vetro. Datos concernientes a su histogenesis. Mem R Soc Cep Hist Nat 1930, 14:125–182.
11.
go back to reference Boje K, Arora P: Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 1992, 587:250–256.CrossRefPubMed Boje K, Arora P: Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 1992, 587:250–256.CrossRefPubMed
12.
go back to reference Colton C, Gilbert D: Production of superoxide anions by CNS macrophage, the microglia. Fed Eur Biochem Soc Lett 1987, 223:284–288.CrossRef Colton C, Gilbert D: Production of superoxide anions by CNS macrophage, the microglia. Fed Eur Biochem Soc Lett 1987, 223:284–288.CrossRef
13.
go back to reference Maezawa I, Zimin P, Wulff H, Jin LW: Amyloid-β protein oligomer at low nanomolar concentrations activates macroglia and induces microglial neurotoxicity. J Biol Chem 2011, 286:3693–3706.CrossRefPubMed Maezawa I, Zimin P, Wulff H, Jin LW: Amyloid-β protein oligomer at low nanomolar concentrations activates macroglia and induces microglial neurotoxicity. J Biol Chem 2011, 286:3693–3706.CrossRefPubMed
14.
go back to reference Takata K, Kitamura Y, Saeki M, Terada M, Kagitani S, Kitamura R, Fujikawa Y, Maelicke A, Tomimoto H, Taniguchi T, Shimohama S: Galantamine-induced amyloid-β clearance mediated via stimulation of microglial nicotinic acetylcholine receptors. J Biol Chem 2010, 285:40180–40191.CrossRefPubMedPubMedCentral Takata K, Kitamura Y, Saeki M, Terada M, Kagitani S, Kitamura R, Fujikawa Y, Maelicke A, Tomimoto H, Taniguchi T, Shimohama S: Galantamine-induced amyloid-β clearance mediated via stimulation of microglial nicotinic acetylcholine receptors. J Biol Chem 2010, 285:40180–40191.CrossRefPubMedPubMedCentral
15.
go back to reference Koenigsknecht-Talboo J, Landreth G: Microglial phagocytosis induced by fibrillar β-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci 2005, 25:8240–8249.CrossRefPubMed Koenigsknecht-Talboo J, Landreth G: Microglial phagocytosis induced by fibrillar β-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci 2005, 25:8240–8249.CrossRefPubMed
16.
go back to reference Blasi E, Mathieson BJ, Varesio L, Cleveland PA, Borchert PA, Rapp UR: Selective immortalization of murine macrophages from fresh bone marrow by a raf/myc recombinant murine retrovirus. Nature 1985, 318:667–670.CrossRefPubMed Blasi E, Mathieson BJ, Varesio L, Cleveland PA, Borchert PA, Rapp UR: Selective immortalization of murine macrophages from fresh bone marrow by a raf/myc recombinant murine retrovirus. Nature 1985, 318:667–670.CrossRefPubMed
17.
go back to reference Blasi E, Barluzi R, Bocchini V, Mazolla R, Bistoni F: Immortalization of murine microglia cells by a v-raf/v-myc carrying retrovirus. J Neuroimmun 1990, 27:229–237.CrossRef Blasi E, Barluzi R, Bocchini V, Mazolla R, Bistoni F: Immortalization of murine microglia cells by a v-raf/v-myc carrying retrovirus. J Neuroimmun 1990, 27:229–237.CrossRef
18.
go back to reference Bignami E, Eng LF, Dahl D, Uyeda CT: Localization of the glial fibrillary acidic protein in astrocytes by immunoflourescence. Brain Res 1972, 43:429–435.CrossRefPubMed Bignami E, Eng LF, Dahl D, Uyeda CT: Localization of the glial fibrillary acidic protein in astrocytes by immunoflourescence. Brain Res 1972, 43:429–435.CrossRefPubMed
19.
go back to reference Kopec K, Caroll R: Alzheimer’s β-Amyloid peptide 1–42 induces a phagocytic response in murine microglia. J Neurochem 1998, 71:2123–2131.CrossRefPubMed Kopec K, Caroll R: Alzheimer’s β-Amyloid peptide 1–42 induces a phagocytic response in murine microglia. J Neurochem 1998, 71:2123–2131.CrossRefPubMed
20.
go back to reference Horvath R, McMenemy N, Alkaitis M, DeLeo J: Differential migration, LPS-induced cytokine, chemokine, and NO expression in immortalized BV-2 and HAPI cell lines and primary microglial cultures. J Neurochem 2008, 107:557–569.CrossRefPubMedPubMedCentral Horvath R, McMenemy N, Alkaitis M, DeLeo J: Differential migration, LPS-induced cytokine, chemokine, and NO expression in immortalized BV-2 and HAPI cell lines and primary microglial cultures. J Neurochem 2008, 107:557–569.CrossRefPubMedPubMedCentral
21.
go back to reference Henn A, Lund S, Hedtjarn M, Schrattenholz A, Porzgen P, Leist M: The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX 2009, 26:83–94.PubMed Henn A, Lund S, Hedtjarn M, Schrattenholz A, Porzgen P, Leist M: The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX 2009, 26:83–94.PubMed
22.
go back to reference Hickman S, Allison E, Khoury J: Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 2008, 28:8354–8360.CrossRefPubMedPubMedCentral Hickman S, Allison E, Khoury J: Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 2008, 28:8354–8360.CrossRefPubMedPubMedCentral
23.
go back to reference Righi M, Mori L, De Libero G, Sironi M, Biondi A, Mantovani A, Donini S, Ricciardi-Castagnoli P: Monokine production by microglial cell clones. Eur J Immunol 1989, 19:1443–1448.CrossRefPubMed Righi M, Mori L, De Libero G, Sironi M, Biondi A, Mantovani A, Donini S, Ricciardi-Castagnoli P: Monokine production by microglial cell clones. Eur J Immunol 1989, 19:1443–1448.CrossRefPubMed
24.
go back to reference Ferrari D, Villalba M, Chiozzi P, Falzoni S, Castagnoli P, Virgilio F: Mouse microglial cells express a plasma membrane pore gated by extracellular ATP. J Immunol 1996, 156:1531–1539.PubMed Ferrari D, Villalba M, Chiozzi P, Falzoni S, Castagnoli P, Virgilio F: Mouse microglial cells express a plasma membrane pore gated by extracellular ATP. J Immunol 1996, 156:1531–1539.PubMed
25.
go back to reference Fleisher-Berkovich S, Filipovich-Rimon T, Ben-Shmuel S, Hulsmann C, Kummer M, Heneka M: Distinct modulation of microglial amyloid β phagocytosis and migration by neuropeptides. J Neuroinflammation 2010, 7:61.CrossRefPubMedPubMedCentral Fleisher-Berkovich S, Filipovich-Rimon T, Ben-Shmuel S, Hulsmann C, Kummer M, Heneka M: Distinct modulation of microglial amyloid β phagocytosis and migration by neuropeptides. J Neuroinflammation 2010, 7:61.CrossRefPubMedPubMedCentral
26.
go back to reference He F, Qiu B, Li T, Xie Q, Cui D, Huang X, Gan H: Tetrandrine suppresses amyloid-β-induced inflammatory cytokines by inhibiting NF-KB pathway in murine BV2 microglial cells. Int Immunopharmacol 2011, 11:1220–1225.CrossRefPubMed He F, Qiu B, Li T, Xie Q, Cui D, Huang X, Gan H: Tetrandrine suppresses amyloid-β-induced inflammatory cytokines by inhibiting NF-KB pathway in murine BV2 microglial cells. Int Immunopharmacol 2011, 11:1220–1225.CrossRefPubMed
27.
go back to reference Fu H, Liu B, Frost JJ, Hong S, Jin M, Ostaszewski B, Shankar GM, Costantino IM, Carroll MC, Mayadas TN, Lemere CA: Complement component C3 and complement receptor type 3 contribute to the phagocytosis and clearanace of fibrillar Aβ by microglia. Glia 2012, 60:993–1003.CrossRefPubMedPubMedCentral Fu H, Liu B, Frost JJ, Hong S, Jin M, Ostaszewski B, Shankar GM, Costantino IM, Carroll MC, Mayadas TN, Lemere CA: Complement component C3 and complement receptor type 3 contribute to the phagocytosis and clearanace of fibrillar Aβ by microglia. Glia 2012, 60:993–1003.CrossRefPubMedPubMedCentral
28.
go back to reference Nagai A, Nakagawa E, Hatori K, Choi HB, McLarnon JG, Lee MA, Kim SU: Generation and characterization of immortalized human microglial cell lines: expression of cytokines and chemokines. Neurobiol Dis 2001, 8:1057–1068.CrossRefPubMed Nagai A, Nakagawa E, Hatori K, Choi HB, McLarnon JG, Lee MA, Kim SU: Generation and characterization of immortalized human microglial cell lines: expression of cytokines and chemokines. Neurobiol Dis 2001, 8:1057–1068.CrossRefPubMed
29.
go back to reference Ahn S-M, Byun K, Cho K, Kim J, Yoo J, Kim D, Paek S, Kim S, Simpson R, Lee B: Human microglial cells synthesize albumin in brain. PLoS One 2008, 3:e2829.CrossRefPubMedPubMedCentral Ahn S-M, Byun K, Cho K, Kim J, Yoo J, Kim D, Paek S, Kim S, Simpson R, Lee B: Human microglial cells synthesize albumin in brain. PLoS One 2008, 3:e2829.CrossRefPubMedPubMedCentral
30.
go back to reference Walker W, Gatewood J, Olivas E, Askew D, Havenith C: Mouse microglial cell lines differing in constitutive and interferon-γ-inducible antigen-presenting activities for naïve and memory CD4+ and CD8+ T cells. J Neuroimmunol 1995, 63:163–174.CrossRefPubMed Walker W, Gatewood J, Olivas E, Askew D, Havenith C: Mouse microglial cell lines differing in constitutive and interferon-γ-inducible antigen-presenting activities for naïve and memory CD4+ and CD8+ T cells. J Neuroimmunol 1995, 63:163–174.CrossRefPubMed
31.
go back to reference Cheepsunthorn P, Radov L, Menzies S, Reid J, Connor J: Characterization of a novel brain derived microglial cell line isolated from neonatal rat brain. Glia 2001, 35:53–62.CrossRefPubMed Cheepsunthorn P, Radov L, Menzies S, Reid J, Connor J: Characterization of a novel brain derived microglial cell line isolated from neonatal rat brain. Glia 2001, 35:53–62.CrossRefPubMed
32.
go back to reference Masayuki L, Mie S, Koji O, Yuzo I: β-amyloid protein-dependant nitric oxide production from microglial cells and neurotoxicity. Brain Res 1996, 720:93–100.CrossRef Masayuki L, Mie S, Koji O, Yuzo I: β-amyloid protein-dependant nitric oxide production from microglial cells and neurotoxicity. Brain Res 1996, 720:93–100.CrossRef
33.
go back to reference Hensley K, Christov A, Kamat S, Zhang X, Jackson K, Snow S, Post J: Proteomic identification of binding partners for the brain metabolite lanthionine ketimine (LK) and documentation of LK effects on microglia and motoneuron cell cultures. J Neurosci 2010, 30:2979–2988.CrossRefPubMedPubMedCentral Hensley K, Christov A, Kamat S, Zhang X, Jackson K, Snow S, Post J: Proteomic identification of binding partners for the brain metabolite lanthionine ketimine (LK) and documentation of LK effects on microglia and motoneuron cell cultures. J Neurosci 2010, 30:2979–2988.CrossRefPubMedPubMedCentral
34.
go back to reference Hensley K, Fedynyshyn J, Ferrell S, Floyd R, Gordon B, Grammas P, Hamdheydari L, Mhatre M, Mou S, Pye Q, Stewart C, West M, West S, Williamson K: Message and protein-level alteration of tumor necrosis factor alpha (TNF) and TNF-modulating cytokines in spinal cords of the G93A-SOD1 mouse model for amyotrophic lateral sclerosis. Neurobiol Dis 2003, 14:74–80.CrossRefPubMed Hensley K, Fedynyshyn J, Ferrell S, Floyd R, Gordon B, Grammas P, Hamdheydari L, Mhatre M, Mou S, Pye Q, Stewart C, West M, West S, Williamson K: Message and protein-level alteration of tumor necrosis factor alpha (TNF) and TNF-modulating cytokines in spinal cords of the G93A-SOD1 mouse model for amyotrophic lateral sclerosis. Neurobiol Dis 2003, 14:74–80.CrossRefPubMed
35.
go back to reference Tocharus J, Khonthun C, Chongthammakun S, Govitrapong P: Melatonin attenuates methamphetamine-induced overexpression of pro-inflammatory cytokines in microglial cell lines. J Pineal Res 2010, 48:347–352.CrossRefPubMed Tocharus J, Khonthun C, Chongthammakun S, Govitrapong P: Melatonin attenuates methamphetamine-induced overexpression of pro-inflammatory cytokines in microglial cell lines. J Pineal Res 2010, 48:347–352.CrossRefPubMed
36.
go back to reference Manzano-Leon N, Delgado-Coello B, Guaderrama-Diaz M, Mas-Oliva J: β-adaptin: key molecule for microglial scavenger receptor function under oxidative stress. Biochem Biophys Res Commun 2006, 351:588–594.CrossRefPubMed Manzano-Leon N, Delgado-Coello B, Guaderrama-Diaz M, Mas-Oliva J: β-adaptin: key molecule for microglial scavenger receptor function under oxidative stress. Biochem Biophys Res Commun 2006, 351:588–594.CrossRefPubMed
37.
go back to reference Wu S, Bodles A, Porter M, Griffin W, Basile A, Barger S: Induction of serine racemase expression and D-serine release from microglia by amyloid β-peptide. J Neuroinflammation 2004, 1:2.CrossRefPubMedPubMedCentral Wu S, Bodles A, Porter M, Griffin W, Basile A, Barger S: Induction of serine racemase expression and D-serine release from microglia by amyloid β-peptide. J Neuroinflammation 2004, 1:2.CrossRefPubMedPubMedCentral
38.
go back to reference Li Y, Liu L, Barger S, Griffin W: Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci 2003, 23:1605–1611.PubMed Li Y, Liu L, Barger S, Griffin W: Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci 2003, 23:1605–1611.PubMed
39.
go back to reference Zhao W, Xie W, Xiao Q, Beers DR, Appel SH: Protective effects of an anti-inflammatory cytokine, interleukin-4, on motoneuron toxicity induced by activated microglia. J Neurochem 2006, 99:1176–1187.CrossRefPubMed Zhao W, Xie W, Xiao Q, Beers DR, Appel SH: Protective effects of an anti-inflammatory cytokine, interleukin-4, on motoneuron toxicity induced by activated microglia. J Neurochem 2006, 99:1176–1187.CrossRefPubMed
Metadata
Title
A comparative review of cell culture systems for the study of microglial biology in Alzheimer’s disease
Authors
Branden Stansley
Jan Post
Kenneth Hensley
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-115

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue