Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

IFN-γ-induced increase in the mobility of MHC class II compartments in astrocytes depends on intermediate filaments

Authors: Nina Vardjan, Mateja Gabrijel, Maja Potokar, Urban Švajger, Marko Kreft, Matjaž Jeras, Yolanda de Pablo, Maryam Faiz, Milos Pekny, Robert Zorec

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

In immune-mediated diseases of the central nervous system, astrocytes exposed to interferon-γ (IFN-γ) can express major histocompatibility complex (MHC) class II molecules and antigens on their surface. MHC class II molecules are thought to be delivered to the cell surface by membrane-bound vesicles. However, the characteristics and dynamics of this vesicular traffic are unclear, particularly in reactive astrocytes, which overexpress intermediate filament (IF) proteins that may affect trafficking. The aim of this study was to determine the mobility of MHC class II vesicles in wild-type (WT) astrocytes and in astrocytes devoid of IFs.

Methods

The identity of MHC class II compartments in WT and IF-deficient astrocytes 48 h after IFN-γ activation was determined immunocytochemically by using confocal microscopy. Time-lapse confocal imaging and Alexa Fluor546-dextran labeling of late endosomes/lysosomes in IFN-γ treated cells was used to characterize the motion of MHC class II vesicles. The mobility of vesicles was analyzed using ParticleTR software.

Results

Confocal imaging of primary cultures of WT and IF-deficient astrocytes revealed IFN-γ induced MHC class II expression in late endosomes/lysosomes, which were specifically labeled with Alexa Fluor546-conjugated dextran. Live imaging revealed faster movement of dextran-positive vesicles in IFN-γ-treated than in untreated astrocytes. Vesicle mobility was lower in IFN-γ-treated IF-deficient astrocytes than in WT astrocytes. Thus, the IFN-γ-induced increase in the mobility of MHC class II compartments is IF-dependent.

Conclusions

Since reactivity of astrocytes is a hallmark of many CNS pathologies, it is likely that the up-regulation of IFs under such conditions allows a faster and therefore a more efficient delivery of MHC class II molecules to the cell surface. In vivo, such regulatory mechanisms may enable antigen-presenting reactive astrocytes to respond rapidly and in a controlled manner to CNS inflammation.
Appendix
Available only for authorised users
Literature
3.
go back to reference Shrikant P, Benveniste EN: The central nervous system as an immunocompetent organ: role of glial cells in antigen presentation. J Immunol 1996, 157:1819–1822.PubMed Shrikant P, Benveniste EN: The central nervous system as an immunocompetent organ: role of glial cells in antigen presentation. J Immunol 1996, 157:1819–1822.PubMed
4.
go back to reference Hirsch MR, Wietzerbin J, Pierres M, Goridis C: Expression of Ia antigens by cultured astrocytes treated with gamma-interferon. Neurosci Lett 1983, 41:199–204.CrossRefPubMed Hirsch MR, Wietzerbin J, Pierres M, Goridis C: Expression of Ia antigens by cultured astrocytes treated with gamma-interferon. Neurosci Lett 1983, 41:199–204.CrossRefPubMed
5.
go back to reference Fontana A, Fierz W, Wekerle H: Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature 1984, 307:273–276.CrossRefPubMed Fontana A, Fierz W, Wekerle H: Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature 1984, 307:273–276.CrossRefPubMed
6.
go back to reference Soos JM, Morrow J, Ashley TA, Szente BE, Bikoff EK, Zamvil SS: Astrocytes express elements of the class II endocytic pathway and process central nervous system autoantigen for presentation to encephalitogenic T cells. J Immunol 1998, 161:5959–5966.PubMed Soos JM, Morrow J, Ashley TA, Szente BE, Bikoff EK, Zamvil SS: Astrocytes express elements of the class II endocytic pathway and process central nervous system autoantigen for presentation to encephalitogenic T cells. J Immunol 1998, 161:5959–5966.PubMed
7.
go back to reference Lee SC, Collins M, Vanguri P, Shin ML: Glutamate differentially inhibits the expression of class II MHC antigens on astrocytes and microglia. J Immunol 1992, 148:3391–3397.PubMed Lee SC, Collins M, Vanguri P, Shin ML: Glutamate differentially inhibits the expression of class II MHC antigens on astrocytes and microglia. J Immunol 1992, 148:3391–3397.PubMed
9.
go back to reference Nikcevich KM, Gordon KB, Tan L, Hurst SD, Kroepfl JF, Gardinier M, Barrett TA, Miller SD: IFN-gamma-activated primary murine astrocytes express B7 costimulatory molecules and prime naive antigen-specific T cells. J Immunol 1997, 158:614–621.PubMed Nikcevich KM, Gordon KB, Tan L, Hurst SD, Kroepfl JF, Gardinier M, Barrett TA, Miller SD: IFN-gamma-activated primary murine astrocytes express B7 costimulatory molecules and prime naive antigen-specific T cells. J Immunol 1997, 158:614–621.PubMed
10.
go back to reference Zeinstra E, Wilczak N, Chesik D, Glazenburg L, Kroese FG, De Keyser J: Simvastatin inhibits interferon-gamma-induced MHC class II up-regulation in cultured astrocytes. J Neuroinflammation 2006, 3:16.CrossRefPubMedPubMedCentral Zeinstra E, Wilczak N, Chesik D, Glazenburg L, Kroese FG, De Keyser J: Simvastatin inhibits interferon-gamma-induced MHC class II up-regulation in cultured astrocytes. J Neuroinflammation 2006, 3:16.CrossRefPubMedPubMedCentral
11.
go back to reference Barois N, Forquet F, Davoust J: Actin microfilaments control the MHC class II antigen presentation pathway in B cells. J Cell Sci 1998, 111:1791–1800.PubMed Barois N, Forquet F, Davoust J: Actin microfilaments control the MHC class II antigen presentation pathway in B cells. J Cell Sci 1998, 111:1791–1800.PubMed
12.
go back to reference Vascotto F, Lankar D, Faure-André G, Vargas P, Diaz J, Le Roux D, Yuseff MI, Sibarita JB, Boes M, Raposo G, Mougneau E, Glaichenhaus N, Bonnerot C, Manoury B, Lennon-Dumenil AM: The actin-based motor protein myosin II regulates MHC class II trafficking and BCR-driven antigen presentation. J Cell Biol 2007, 176:1007–1019.CrossRefPubMedPubMedCentral Vascotto F, Lankar D, Faure-André G, Vargas P, Diaz J, Le Roux D, Yuseff MI, Sibarita JB, Boes M, Raposo G, Mougneau E, Glaichenhaus N, Bonnerot C, Manoury B, Lennon-Dumenil AM: The actin-based motor protein myosin II regulates MHC class II trafficking and BCR-driven antigen presentation. J Cell Biol 2007, 176:1007–1019.CrossRefPubMedPubMedCentral
13.
go back to reference Wubbolts R, Fernandez-Borja M, Jordens I, Reits E, Dusseljee S, Echeverri C, Vallee RB, Neefjes J: Opposing motor activities of dynein and kinesin determine retention and transport of MHC class II-containing compartments. J Cell Sci 1999, 112:785–795.PubMed Wubbolts R, Fernandez-Borja M, Jordens I, Reits E, Dusseljee S, Echeverri C, Vallee RB, Neefjes J: Opposing motor activities of dynein and kinesin determine retention and transport of MHC class II-containing compartments. J Cell Sci 1999, 112:785–795.PubMed
14.
go back to reference Vyas JM, Kim YM, Artavanis-Tsakonas K, Love JC, Van der Veen AG, Ploegh HL: Tubulation of class II MHC compartments is microtubule dependent and involves multiple endolysosomal membrane proteins in primary dendritic cells. J Immunol 2007, 178:7199–7210.CrossRefPubMedPubMedCentral Vyas JM, Kim YM, Artavanis-Tsakonas K, Love JC, Van der Veen AG, Ploegh HL: Tubulation of class II MHC compartments is microtubule dependent and involves multiple endolysosomal membrane proteins in primary dendritic cells. J Immunol 2007, 178:7199–7210.CrossRefPubMedPubMedCentral
15.
go back to reference Kim S, Coulombe PA: Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev 2007, 21:1581–1597.CrossRefPubMed Kim S, Coulombe PA: Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev 2007, 21:1581–1597.CrossRefPubMed
16.
go back to reference Pekny M, Pekna M: Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol 2004, 204:428–437.CrossRefPubMed Pekny M, Pekna M: Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol 2004, 204:428–437.CrossRefPubMed
17.
18.
go back to reference Eliasson C, Sahlgren C, Berthold C, Stakeberg J, Celis J, Betsholtz C, Eriksson J, Pekny M: Intermediate filament protein partnership in astrocytes. J Biol Chem 1999, 274:23996–24006.CrossRefPubMed Eliasson C, Sahlgren C, Berthold C, Stakeberg J, Celis J, Betsholtz C, Eriksson J, Pekny M: Intermediate filament protein partnership in astrocytes. J Biol Chem 1999, 274:23996–24006.CrossRefPubMed
19.
go back to reference Potokar M, Kreft M, Li L, Daniel Andersson J, Pangrsic T, Chowdhury H, Pekny M, Zorec R: Cytoskeleton and vesicle mobility in astrocytes. Traffic 2007, 8:12–20.CrossRefPubMed Potokar M, Kreft M, Li L, Daniel Andersson J, Pangrsic T, Chowdhury H, Pekny M, Zorec R: Cytoskeleton and vesicle mobility in astrocytes. Traffic 2007, 8:12–20.CrossRefPubMed
20.
go back to reference Potokar M, Stenovec M, Gabrijel M, Li L, Kreft M, Grilc S, Pekny M, Zorec R: Intermediate filaments attenuate stimulation-dependent mobility of endosomes/lysosomes in astrocytes. Glia 2010, 58:1208–1219.PubMed Potokar M, Stenovec M, Gabrijel M, Li L, Kreft M, Grilc S, Pekny M, Zorec R: Intermediate filaments attenuate stimulation-dependent mobility of endosomes/lysosomes in astrocytes. Glia 2010, 58:1208–1219.PubMed
21.
go back to reference Schwartz J, Wilson D: Preparation and characterization of type 1 astrocytes cultured from adult rat cortex, cerebellum, and striatum. Glia 1992, 5:75–80.CrossRefPubMed Schwartz J, Wilson D: Preparation and characterization of type 1 astrocytes cultured from adult rat cortex, cerebellum, and striatum. Glia 1992, 5:75–80.CrossRefPubMed
22.
go back to reference Pekny M, Levéen P, Pekna M, Eliasson C, Berthold C, Westermark B, Betsholtz C: Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J 1995, 14:1590–1598.PubMedPubMedCentral Pekny M, Levéen P, Pekna M, Eliasson C, Berthold C, Westermark B, Betsholtz C: Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J 1995, 14:1590–1598.PubMedPubMedCentral
23.
go back to reference Potokar M, Kreft M, Pangrsic T, Zorec R: Vesicle mobility studied in cultured astrocytes. Biochem Biophys Res Commun 2005, 329:678–683.CrossRefPubMed Potokar M, Kreft M, Pangrsic T, Zorec R: Vesicle mobility studied in cultured astrocytes. Biochem Biophys Res Commun 2005, 329:678–683.CrossRefPubMed
24.
go back to reference Pekny M, Johansson C, Eliasson C, Stakeberg J, Wallén A, Perlmann T, Lendahl U, Betsholtz C, Berthold C, Frisén J: Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J Cell Biol 1999, 145:503–514.CrossRefPubMedPubMedCentral Pekny M, Johansson C, Eliasson C, Stakeberg J, Wallén A, Perlmann T, Lendahl U, Betsholtz C, Berthold C, Frisén J: Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J Cell Biol 1999, 145:503–514.CrossRefPubMedPubMedCentral
25.
go back to reference Colucci-Guyon E, Portier M, Dunia I, Paulin D, Pournin S, Babinet C: Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 1994, 79:679–694.CrossRefPubMed Colucci-Guyon E, Portier M, Dunia I, Paulin D, Pournin S, Babinet C: Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 1994, 79:679–694.CrossRefPubMed
27.
go back to reference van Niel G, Wubbolts R, Stoorvogel W: Endosomal sorting of MHC class II determines antigen presentation by dendritic cells. Curr Opin Cell Biol 2008, 20:437–444.CrossRefPubMed van Niel G, Wubbolts R, Stoorvogel W: Endosomal sorting of MHC class II determines antigen presentation by dendritic cells. Curr Opin Cell Biol 2008, 20:437–444.CrossRefPubMed
28.
go back to reference Jaiswal JK, Andrews NW, Simon SM: Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J Cell Biol 2002, 159:625–635.CrossRefPubMedPubMedCentral Jaiswal JK, Andrews NW, Simon SM: Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J Cell Biol 2002, 159:625–635.CrossRefPubMedPubMedCentral
29.
go back to reference Gabrijel M, Kreft M, Zorec R: Monitoring lysosomal fusion in electrofused hybridoma cells. Biochim Biophys Acta 2008, 1778:483–490.CrossRef Gabrijel M, Kreft M, Zorec R: Monitoring lysosomal fusion in electrofused hybridoma cells. Biochim Biophys Acta 2008, 1778:483–490.CrossRef
30.
go back to reference Jaiswal JK, Fix M, Takano T, Nedergaard M, Simon SM: Resolving vesicle fusion from lysis to monitor calcium-triggered lysosomal exocytosis in astrocytes. Proc Natl Acad Sci U S A 2007, 104:14151–14156.CrossRefPubMedPubMedCentral Jaiswal JK, Fix M, Takano T, Nedergaard M, Simon SM: Resolving vesicle fusion from lysis to monitor calcium-triggered lysosomal exocytosis in astrocytes. Proc Natl Acad Sci U S A 2007, 104:14151–14156.CrossRefPubMedPubMedCentral
31.
go back to reference Li D, Ropert N, Koulakoff A, Giaume C, Oheim M: Lysosomes are the major vesicular compartment undergoing Ca2 + -regulated exocytosis from cortical astrocytes. J Neurosci 2008, 28:7648–7658.CrossRefPubMed Li D, Ropert N, Koulakoff A, Giaume C, Oheim M: Lysosomes are the major vesicular compartment undergoing Ca2 + -regulated exocytosis from cortical astrocytes. J Neurosci 2008, 28:7648–7658.CrossRefPubMed
32.
go back to reference Jiang M, Chen G: Ca2+ regulation of dynamin-independent endocytosis in cortical astrocytes. J Neurosci 2009, 29:8063–8074.CrossRefPubMed Jiang M, Chen G: Ca2+ regulation of dynamin-independent endocytosis in cortical astrocytes. J Neurosci 2009, 29:8063–8074.CrossRefPubMed
33.
go back to reference Bennett MR, Farnell L, Gibson WG: A quantitative model of purinergic junctional transmission of calcium waves in astrocyte networks. Biophys J 2005, 89:2235–2250.CrossRefPubMedCentral Bennett MR, Farnell L, Gibson WG: A quantitative model of purinergic junctional transmission of calcium waves in astrocyte networks. Biophys J 2005, 89:2235–2250.CrossRefPubMedCentral
34.
go back to reference Stenovec M, Kreft M, Grilc S, Potokar M, Kreft M, Pangrsic T, Zorec R: Ca2+-dependent mobility of vesicles capturing anti-VGLUT1 antibodies. Exp Cell Res 2007, 313:3809–3818.CrossRefPubMed Stenovec M, Kreft M, Grilc S, Potokar M, Kreft M, Pangrsic T, Zorec R: Ca2+-dependent mobility of vesicles capturing anti-VGLUT1 antibodies. Exp Cell Res 2007, 313:3809–3818.CrossRefPubMed
35.
go back to reference Li L, Lundkvist A, Andersson D, Wilhelmsson U, Nagai N, Pardo AC, Nodin C, Ståhlberg A, Aprico K, Larsson K, Yabe T, Moons L, Fotheringham A, Davies I, Carmeliet P, Schwartz JP, Pekna M, Kubista M, Blomstrand F, Maragakis N, Nilsson M, Pekny M: Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 2008, 28:468–481.CrossRefPubMed Li L, Lundkvist A, Andersson D, Wilhelmsson U, Nagai N, Pardo AC, Nodin C, Ståhlberg A, Aprico K, Larsson K, Yabe T, Moons L, Fotheringham A, Davies I, Carmeliet P, Schwartz JP, Pekna M, Kubista M, Blomstrand F, Maragakis N, Nilsson M, Pekny M: Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 2008, 28:468–481.CrossRefPubMed
36.
go back to reference Nieminen M, Henttinen T, Merinen M, Marttila-Ichihara F, Eriksson JE, Jalkanen S: Vimentin function in lymphocyte adhesion and transcellular migration. Nat Cell Biol 2006, 8:156–162.CrossRefPubMed Nieminen M, Henttinen T, Merinen M, Marttila-Ichihara F, Eriksson JE, Jalkanen S: Vimentin function in lymphocyte adhesion and transcellular migration. Nat Cell Biol 2006, 8:156–162.CrossRefPubMed
37.
go back to reference Perlson E, Hanz S, Ben-Yaakov K, Segal-Ruder Y, Seger R, Fainzilber M: Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron 2005, 45:715–726.CrossRefPubMed Perlson E, Hanz S, Ben-Yaakov K, Segal-Ruder Y, Seger R, Fainzilber M: Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron 2005, 45:715–726.CrossRefPubMed
38.
go back to reference Styers ML, Salazar G, Love R, Peden AA, Kowalczyk AP, Faundez V: The endo-lysosomal sorting machinery interacts with the intermediate filament cytoskeleton. Mol Biol Cell 2004, 15:5369–5382.CrossRefPubMedPubMedCentral Styers ML, Salazar G, Love R, Peden AA, Kowalczyk AP, Faundez V: The endo-lysosomal sorting machinery interacts with the intermediate filament cytoskeleton. Mol Biol Cell 2004, 15:5369–5382.CrossRefPubMedPubMedCentral
39.
go back to reference Wagner OI, Lifshitz J, Janmey PA, Linden M, McIntosh TK, Leterrier JF: Mechanisms of mitochondria-neurofilament interactions. J Neurosci 2003, 23:9046–9058.PubMed Wagner OI, Lifshitz J, Janmey PA, Linden M, McIntosh TK, Leterrier JF: Mechanisms of mitochondria-neurofilament interactions. J Neurosci 2003, 23:9046–9058.PubMed
40.
go back to reference Gao YS, Vrielink A, MacKenzie R, Sztul E: A novel type of regulation of the vimentin intermediate filament cytoskeleton by a Golgi protein. Eur J Cell Biol 2002, 81:391–401.CrossRefPubMed Gao YS, Vrielink A, MacKenzie R, Sztul E: A novel type of regulation of the vimentin intermediate filament cytoskeleton by a Golgi protein. Eur J Cell Biol 2002, 81:391–401.CrossRefPubMed
41.
go back to reference Chang L, Barlan K, Chou YH, Grin B, Lakonishok M, Serpinskaya AS, Shumaker DK, Herrmann H, Gelfand VI, Goldman RD: The dynamic properties of intermediate filaments during organelle transport. J Cell Sci 2009, 122:2914–2923.CrossRefPubMedPubMedCentral Chang L, Barlan K, Chou YH, Grin B, Lakonishok M, Serpinskaya AS, Shumaker DK, Herrmann H, Gelfand VI, Goldman RD: The dynamic properties of intermediate filaments during organelle transport. J Cell Sci 2009, 122:2914–2923.CrossRefPubMedPubMedCentral
42.
go back to reference Stenovec M, Milošević M, Petrušić V, Potokar M, Stević Z, Prebil M, Kreft M, Trkov S, Andjus PR, Zorec R: Amyotrophic lateral sclerosis immunoglobulins G enhance the mobility of Lysotracker-labelled vesicles in cultured rat astrocytes. Acta Physiol (Oxf) 2011, 203:457–471.CrossRef Stenovec M, Milošević M, Petrušić V, Potokar M, Stević Z, Prebil M, Kreft M, Trkov S, Andjus PR, Zorec R: Amyotrophic lateral sclerosis immunoglobulins G enhance the mobility of Lysotracker-labelled vesicles in cultured rat astrocytes. Acta Physiol (Oxf) 2011, 203:457–471.CrossRef
43.
go back to reference Chow A, Toomre D, Garrett W, Mellman I: Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature 2002, 418:988–994.CrossRefPubMed Chow A, Toomre D, Garrett W, Mellman I: Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature 2002, 418:988–994.CrossRefPubMed
44.
go back to reference Boes M, Cerny J, Massol R, Op den Brouw M, Kirchhausen T, Chen J, Ploegh HL: T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature 2002, 418:983–988.CrossRefPubMed Boes M, Cerny J, Massol R, Op den Brouw M, Kirchhausen T, Chen J, Ploegh HL: T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature 2002, 418:983–988.CrossRefPubMed
45.
go back to reference Helfand BT, Chang L, Goldman RD: Intermediate filaments are dynamic and motile elements of cellular architecture. J Cell Sci 2004, 117:133–141.CrossRefPubMed Helfand BT, Chang L, Goldman RD: Intermediate filaments are dynamic and motile elements of cellular architecture. J Cell Sci 2004, 117:133–141.CrossRefPubMed
46.
go back to reference Chang L, Goldman RD: Intermediate filaments mediate cytoskeletal crosstalk. Nat Rev Mol Cell Biol 2004, 5:601–613.CrossRefPubMed Chang L, Goldman RD: Intermediate filaments mediate cytoskeletal crosstalk. Nat Rev Mol Cell Biol 2004, 5:601–613.CrossRefPubMed
47.
go back to reference Junyent F, De Lemos L, Utrera J, Paco S, Aguado F, Camins A, Pallàs M, Romero R, Auladell C: Content and traffic of taurine in hippocampal reactive astrocytes. Hippocampus 2011, 21:185–197.CrossRefPubMed Junyent F, De Lemos L, Utrera J, Paco S, Aguado F, Camins A, Pallàs M, Romero R, Auladell C: Content and traffic of taurine in hippocampal reactive astrocytes. Hippocampus 2011, 21:185–197.CrossRefPubMed
48.
go back to reference Wubbolts R, Fernandez-Borja M, Oomen L, Verwoerd D, Janssen H, Calafat J, Tulp A, Dusseljee S, Neefjes J: Direct vesicular transport of MHC class II molecules from lysosomal structures to the cell surface. J Cell Biol 1996, 135:611–622.CrossRefPubMed Wubbolts R, Fernandez-Borja M, Oomen L, Verwoerd D, Janssen H, Calafat J, Tulp A, Dusseljee S, Neefjes J: Direct vesicular transport of MHC class II molecules from lysosomal structures to the cell surface. J Cell Biol 1996, 135:611–622.CrossRefPubMed
49.
go back to reference Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, Wang W, Gu XS, Duan S: Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 2007, 9:945–953.CrossRefPubMed Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, Wang W, Gu XS, Duan S: Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 2007, 9:945–953.CrossRefPubMed
50.
go back to reference Vardjan N, Stenovec M, Jorgacevski J, Kreft M, Zorec R: Subnanometer fusion pores in spontaneous exocytosis of peptidergic vesicles. J Neurosci 2007, 27:4737–4746.CrossRefPubMed Vardjan N, Stenovec M, Jorgacevski J, Kreft M, Zorec R: Subnanometer fusion pores in spontaneous exocytosis of peptidergic vesicles. J Neurosci 2007, 27:4737–4746.CrossRefPubMed
51.
go back to reference Harata N, Aravanis A, Tsien R: Kiss-and-run and full-collapse fusion as modes of exo-endocytosis in neurosecretion. J Neurochem 2006, 97:1546–1570.CrossRefPubMed Harata N, Aravanis A, Tsien R: Kiss-and-run and full-collapse fusion as modes of exo-endocytosis in neurosecretion. J Neurochem 2006, 97:1546–1570.CrossRefPubMed
52.
go back to reference Luzio JP, Pryor PR, Bright NA: Lysosomes: fusion and function. Nat Rev Mol Cell Biol 2007, 8:622–632.CrossRefPubMed Luzio JP, Pryor PR, Bright NA: Lysosomes: fusion and function. Nat Rev Mol Cell Biol 2007, 8:622–632.CrossRefPubMed
53.
go back to reference Potokar M, Stenovec M, Kreft M, Kreft M, Zorec R: Stimulation inhibits the mobility of recycling peptidergic vesicles in astrocytes. Glia 2008, 56:135–144.CrossRefPubMed Potokar M, Stenovec M, Kreft M, Kreft M, Zorec R: Stimulation inhibits the mobility of recycling peptidergic vesicles in astrocytes. Glia 2008, 56:135–144.CrossRefPubMed
Metadata
Title
IFN-γ-induced increase in the mobility of MHC class II compartments in astrocytes depends on intermediate filaments
Authors
Nina Vardjan
Mateja Gabrijel
Maja Potokar
Urban Švajger
Marko Kreft
Matjaž Jeras
Yolanda de Pablo
Maryam Faiz
Milos Pekny
Robert Zorec
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-144

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue