Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2011

Open Access 01-12-2011 | Review

Wallerian degeneration: the innate-immune response to traumatic nerve injury

Author: Shlomo Rotshenker

Published in: Journal of Neuroinflammation | Issue 1/2011

Login to get access

Abstract

Traumatic injury to peripheral nerves results in the loss of neural functions. Recovery by regeneration depends on the cellular and molecular events of Wallerian degeneration that injury induces distal to the lesion site, the domain through which severed axons regenerate back to their target tissues. Innate-immunity is central to Wallerian degeneration since innate-immune cells, functions and molecules that are produced by immune and non-immune cells are involved. The innate-immune response helps to turn the peripheral nerve tissue into an environment that supports regeneration by removing inhibitory myelin and by upregulating neurotrophic properties. The characteristics of an efficient innate-immune response are rapid onset and conclusion, and the orchestrated interplay between Schwann cells, fibroblasts, macrophages, endothelial cells, and molecules they produce. Wallerian degeneration serves as a prelude for successful repair when these requirements are met. In contrast, functional recovery is poor when injury fails to produce the efficient innate-immune response of Wallerian degeneration.
Appendix
Available only for authorised users
Literature
1.
go back to reference Waller A: Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, observations of the alterations produced thereby in the structure of their primitive fibers. Phil Transact Royal Soc London. 1850, 140: 423-429. 10.1098/rstl.1850.0021. Waller A: Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, observations of the alterations produced thereby in the structure of their primitive fibers. Phil Transact Royal Soc London. 1850, 140: 423-429. 10.1098/rstl.1850.0021.
2.
go back to reference Stoll G, Jander S, Myers RR: Degeneration and regeneration of the peripheral nervous system: from Augustus Waller's observations to neuroinflammation. J Peripher Nerv Syst. 2002, 7: 13-27. 10.1046/j.1529-8027.2002.02002.x.PubMed Stoll G, Jander S, Myers RR: Degeneration and regeneration of the peripheral nervous system: from Augustus Waller's observations to neuroinflammation. J Peripher Nerv Syst. 2002, 7: 13-27. 10.1046/j.1529-8027.2002.02002.x.PubMed
3.
go back to reference Vargas ME, Barres BA: Why is Wallerian degeneration in the CNS so slow?. Annu Rev Neurosci. 2007, 30: 153-179. 10.1146/annurev.neuro.30.051606.094354.PubMed Vargas ME, Barres BA: Why is Wallerian degeneration in the CNS so slow?. Annu Rev Neurosci. 2007, 30: 153-179. 10.1146/annurev.neuro.30.051606.094354.PubMed
4.
go back to reference Camara-Lemarroy CR, Guzman-de la Garza F, Fernandez-Garza NE: Molecular Inflammatory Mediators in Peripheral Nerve Degeneration and Regeneration. Neuroimmunomodulation. 2010, 17: 314-324. 10.1159/000292020.PubMed Camara-Lemarroy CR, Guzman-de la Garza F, Fernandez-Garza NE: Molecular Inflammatory Mediators in Peripheral Nerve Degeneration and Regeneration. Neuroimmunomodulation. 2010, 17: 314-324. 10.1159/000292020.PubMed
5.
go back to reference Coleman MP, Freeman MR: Wallerian degeneration, wld(s), and nmnat. Annu Rev Neurosci. 2010, 33: 245-267. 10.1146/annurev-neuro-060909-153248.PubMed Coleman MP, Freeman MR: Wallerian degeneration, wld(s), and nmnat. Annu Rev Neurosci. 2010, 33: 245-267. 10.1146/annurev-neuro-060909-153248.PubMed
6.
go back to reference Martini R, Fischer S, Lopez-Vales R, David S: Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease. Glia. 2008, 56: 1566-1577. 10.1002/glia.20766.PubMed Martini R, Fischer S, Lopez-Vales R, David S: Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease. Glia. 2008, 56: 1566-1577. 10.1002/glia.20766.PubMed
7.
go back to reference Hoke A: Mechanisms of Disease: what factors limit the success of peripheral nerve regeneration in humans?. Nat Clin Pract Neurol. 2006, 2: 448-454. 10.1038/ncpneuro0262.PubMed Hoke A: Mechanisms of Disease: what factors limit the success of peripheral nerve regeneration in humans?. Nat Clin Pract Neurol. 2006, 2: 448-454. 10.1038/ncpneuro0262.PubMed
8.
go back to reference Hoke A, Brushart T: Introduction to special issue: Challenges and opportunities for regeneration in the peripheral nervous system. Exp Neurol. 2009 Hoke A, Brushart T: Introduction to special issue: Challenges and opportunities for regeneration in the peripheral nervous system. Exp Neurol. 2009
9.
go back to reference Krarup C, Archibald SJ, Madison RD: Factors that influence peripheral nerve regeneration: An electrophysiological study of the monkey median nerve. Ann Neurol. 2002, 51: 69-81. 10.1002/ana.10054.PubMed Krarup C, Archibald SJ, Madison RD: Factors that influence peripheral nerve regeneration: An electrophysiological study of the monkey median nerve. Ann Neurol. 2002, 51: 69-81. 10.1002/ana.10054.PubMed
10.
go back to reference Wood MD, Kemp SW, Weber C, Borschel GH, Gordon T: Outcome measures of peripheral nerve regeneration. Ann Anat. 2011, 193: 321-333. 10.1016/j.aanat.2011.04.008.PubMed Wood MD, Kemp SW, Weber C, Borschel GH, Gordon T: Outcome measures of peripheral nerve regeneration. Ann Anat. 2011, 193: 321-333. 10.1016/j.aanat.2011.04.008.PubMed
11.
go back to reference Lubinska L: Early course of Wallerian degeneration in myelinated fibres of the rat phrenic nerve. Brain Res. 1977, 130: 47-63. 10.1016/0006-8993(77)90841-1.PubMed Lubinska L: Early course of Wallerian degeneration in myelinated fibres of the rat phrenic nerve. Brain Res. 1977, 130: 47-63. 10.1016/0006-8993(77)90841-1.PubMed
12.
go back to reference Beirowski B, Adalbert R, Wagner D, Grumme D, Addicks K, Ribchester R, et al: The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves. BMC Neuroscience. 2005, 6: 6-10.1186/1471-2202-6-6.PubMedCentralPubMed Beirowski B, Adalbert R, Wagner D, Grumme D, Addicks K, Ribchester R, et al: The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves. BMC Neuroscience. 2005, 6: 6-10.1186/1471-2202-6-6.PubMedCentralPubMed
13.
go back to reference Gilliatt RW, Hjorth RJ: Nerve conduction during Wallerian degeneration in the baloon. J Neurol Neurosurg Psychiatry. 1972, 35: 335-341. 10.1136/jnnp.35.3.335.PubMedCentralPubMed Gilliatt RW, Hjorth RJ: Nerve conduction during Wallerian degeneration in the baloon. J Neurol Neurosurg Psychiatry. 1972, 35: 335-341. 10.1136/jnnp.35.3.335.PubMedCentralPubMed
14.
go back to reference Cullen MJ: Freeze-fracture analysis of myelin membrane changes in Wallerian degeneration. J Neurocytol. 1988, 17: 105-115. 10.1007/BF01735383.PubMed Cullen MJ: Freeze-fracture analysis of myelin membrane changes in Wallerian degeneration. J Neurocytol. 1988, 17: 105-115. 10.1007/BF01735383.PubMed
15.
go back to reference Tetzlaff W: Tight junction contact events and temporary gap junctions in the sciatic nerve fibres of the chicken during Wallerian degeneration and subsequent regeneration. J Neurocytol. 1982, 11: 839-858. 10.1007/BF01153522.PubMed Tetzlaff W: Tight junction contact events and temporary gap junctions in the sciatic nerve fibres of the chicken during Wallerian degeneration and subsequent regeneration. J Neurocytol. 1982, 11: 839-858. 10.1007/BF01153522.PubMed
16.
go back to reference Reichert F, Saada A, Rotshenker S: Peripheral nerve injury induces Schwann cells to express two macrophage phenotypes: phagocytosis and the galactose-specific lectin MAC-2. J Neurosci. 1994, 14: 3231-3245.PubMed Reichert F, Saada A, Rotshenker S: Peripheral nerve injury induces Schwann cells to express two macrophage phenotypes: phagocytosis and the galactose-specific lectin MAC-2. J Neurosci. 1994, 14: 3231-3245.PubMed
17.
go back to reference Lunn ER, Perry VH, Brown MC, Rosen H, Gordon S: Absence of Wallerian Degeneration does not Hinder Regeneration in Peripheral Nerve. Eur J Neurosci. 1989, 1: 27-33. 10.1111/j.1460-9568.1989.tb00771.x.PubMed Lunn ER, Perry VH, Brown MC, Rosen H, Gordon S: Absence of Wallerian Degeneration does not Hinder Regeneration in Peripheral Nerve. Eur J Neurosci. 1989, 1: 27-33. 10.1111/j.1460-9568.1989.tb00771.x.PubMed
18.
go back to reference Yan T, Feng Y, Zhai Q: Axon degeneration: Mechanisms and implications of a distinct program from cell death. Neurochemistry International. 2010, 56: 529-534. 10.1016/j.neuint.2010.01.013.PubMed Yan T, Feng Y, Zhai Q: Axon degeneration: Mechanisms and implications of a distinct program from cell death. Neurochemistry International. 2010, 56: 529-534. 10.1016/j.neuint.2010.01.013.PubMed
19.
go back to reference Gilley J, Coleman MP: Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons. PLoS Biol. 2010, 8: e1000300-10.1371/journal.pbio.1000300.PubMedCentralPubMed Gilley J, Coleman MP: Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons. PLoS Biol. 2010, 8: e1000300-10.1371/journal.pbio.1000300.PubMedCentralPubMed
20.
go back to reference Conforti L, Tarlton A, Mack TGA, Mi W, Buckmaster EA, Wagner D, et al: A Ufd2/D4Cole1e chimeric protein and overexpression of Rbp7 in the slow Wallerian degeneration (WldS) mouse. Proceedings of the National Academy of Sciences. 2000, 97: 11377-11382. Conforti L, Tarlton A, Mack TGA, Mi W, Buckmaster EA, Wagner D, et al: A Ufd2/D4Cole1e chimeric protein and overexpression of Rbp7 in the slow Wallerian degeneration (WldS) mouse. Proceedings of the National Academy of Sciences. 2000, 97: 11377-11382.
21.
go back to reference Sasaki Y, Vohra BPS, Baloh RH, Milbrandt J: Transgenic Mice Expressing the Nmnat1 Protein Manifest Robust Delay in Axonal Degeneration In Vivo. The Journal of Neuroscience. 2009, 29: 6526-6534. 10.1523/JNEUROSCI.1429-09.2009.PubMedCentralPubMed Sasaki Y, Vohra BPS, Baloh RH, Milbrandt J: Transgenic Mice Expressing the Nmnat1 Protein Manifest Robust Delay in Axonal Degeneration In Vivo. The Journal of Neuroscience. 2009, 29: 6526-6534. 10.1523/JNEUROSCI.1429-09.2009.PubMedCentralPubMed
22.
go back to reference Conforti L, Fang G, Beirowski B, Wang MS, Sorci L, Asress S, et al: NAD+ and axon degeneration revisited: Nmnat1 cannot substitute for WldS to delay Wallerian degeneration. Cell Death Differ. 2006, 14: 116-127.PubMed Conforti L, Fang G, Beirowski B, Wang MS, Sorci L, Asress S, et al: NAD+ and axon degeneration revisited: Nmnat1 cannot substitute for WldS to delay Wallerian degeneration. Cell Death Differ. 2006, 14: 116-127.PubMed
23.
go back to reference Avery MA, Sheehan AE, Kerr KS, Wang J, Freeman MR: WldS requires Nmnat1 enzymatic activity and N16-VCP interactions to suppress Wallerian degeneration. J Cell Biol. 2009, 184: 501-513. 10.1083/jcb.200808042.PubMedCentralPubMed Avery MA, Sheehan AE, Kerr KS, Wang J, Freeman MR: WldS requires Nmnat1 enzymatic activity and N16-VCP interactions to suppress Wallerian degeneration. J Cell Biol. 2009, 184: 501-513. 10.1083/jcb.200808042.PubMedCentralPubMed
24.
go back to reference Guertin AD, Zhang DP, Mak KS, Alberta JA, Kim HA: Microanatomy of axon/glial signaling during Wallerian degeneration. J Neurosci. 2005, 25: 3478-3487. 10.1523/JNEUROSCI.3766-04.2005.PubMed Guertin AD, Zhang DP, Mak KS, Alberta JA, Kim HA: Microanatomy of axon/glial signaling during Wallerian degeneration. J Neurosci. 2005, 25: 3478-3487. 10.1523/JNEUROSCI.3766-04.2005.PubMed
25.
go back to reference Kwon YK, Bhattacharyya A, Alberta JA, Giannobile WV, Cheon K, Stiles CD, et al: Activation of ErbB2 during Wallerian Degeneration of Sciatic Nerve. J Neurosci. 1997, 17: 8293-8299.PubMed Kwon YK, Bhattacharyya A, Alberta JA, Giannobile WV, Cheon K, Stiles CD, et al: Activation of ErbB2 during Wallerian Degeneration of Sciatic Nerve. J Neurosci. 1997, 17: 8293-8299.PubMed
26.
go back to reference Zanazzi G, Einheber S, Westreich R, Hannocks MJ, Bedell-Hogan D, Marchionni MA, et al: Glial Growth Factor/Neuregulin Inhibits Schwann Cell Myelination and Induces Demyelination. J Cell Biol. 2001, 152: 1289-1300. 10.1083/jcb.152.6.1289.PubMedCentralPubMed Zanazzi G, Einheber S, Westreich R, Hannocks MJ, Bedell-Hogan D, Marchionni MA, et al: Glial Growth Factor/Neuregulin Inhibits Schwann Cell Myelination and Induces Demyelination. J Cell Biol. 2001, 152: 1289-1300. 10.1083/jcb.152.6.1289.PubMedCentralPubMed
27.
go back to reference Huijbregts RPH, Roth KA, Schmidt RE, Carroll SL: Hypertrophic Neuropathies and Malignant Peripheral Nerve Sheath Tumors in Transgenic Mice Overexpressing Glial Growth Factor β3 in Myelinating Schwann Cells. The Journal of Neuroscience. 2003, 23: 7269-7280.PubMed Huijbregts RPH, Roth KA, Schmidt RE, Carroll SL: Hypertrophic Neuropathies and Malignant Peripheral Nerve Sheath Tumors in Transgenic Mice Overexpressing Glial Growth Factor β3 in Myelinating Schwann Cells. The Journal of Neuroscience. 2003, 23: 7269-7280.PubMed
28.
go back to reference Garratt AN, Voiculescu O, Topilko P, Charnay P, Birchmeier C: A Dual Role of erbB2 in Myelination and in Expansion of the Schwann Cell Precursor Pool. J Cell Biol. 2000, 148: 1035-1046. 10.1083/jcb.148.5.1035.PubMedCentralPubMed Garratt AN, Voiculescu O, Topilko P, Charnay P, Birchmeier C: A Dual Role of erbB2 in Myelination and in Expansion of the Schwann Cell Precursor Pool. J Cell Biol. 2000, 148: 1035-1046. 10.1083/jcb.148.5.1035.PubMedCentralPubMed
29.
go back to reference Chen S, Velardez MO, Warot X, Yu ZX, Miller SJ, Cros D, et al: Neuregulin 1-erbB Signaling Is Necessary for Normal Myelination and Sensory Function. J Neurosci. 2006, 26: 3079-3086. 10.1523/JNEUROSCI.3785-05.2006.PubMed Chen S, Velardez MO, Warot X, Yu ZX, Miller SJ, Cros D, et al: Neuregulin 1-erbB Signaling Is Necessary for Normal Myelination and Sensory Function. J Neurosci. 2006, 26: 3079-3086. 10.1523/JNEUROSCI.3785-05.2006.PubMed
30.
go back to reference Quintes S, Goebbels S, Saher G, Schwab MH, Nave KA: Neuron-glia signaling and the protection of axon function by Schwann cells. J Peripher Nerv Syst. 2010, 15: 10-16. 10.1111/j.1529-8027.2010.00247.x.PubMed Quintes S, Goebbels S, Saher G, Schwab MH, Nave KA: Neuron-glia signaling and the protection of axon function by Schwann cells. J Peripher Nerv Syst. 2010, 15: 10-16. 10.1111/j.1529-8027.2010.00247.x.PubMed
31.
go back to reference Jessen KR, Mirsky R: Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia. 2008, 56: 1552-1565. 10.1002/glia.20761.PubMed Jessen KR, Mirsky R: Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia. 2008, 56: 1552-1565. 10.1002/glia.20761.PubMed
32.
go back to reference Willem M, Garratt AN, Novak B, Citron M, Kaufmann S, Rittger A, et al: Control of Peripheral Nerve Myelination by the β-Secretase BACE1. Science. 2006, 314: 664-666. 10.1126/science.1132341.PubMed Willem M, Garratt AN, Novak B, Citron M, Kaufmann S, Rittger A, et al: Control of Peripheral Nerve Myelination by the β-Secretase BACE1. Science. 2006, 314: 664-666. 10.1126/science.1132341.PubMed
33.
go back to reference Hu X, He W, Diaconu C, Tang X, Kidd GJ, Macklin WB, et al: Genetic deletion of BACE1 in mice affects remyelination of sciatic nerves. The FASEB Journal. 2008, 22: 2970-2980. 10.1096/fj.08-106666.PubMedCentralPubMed Hu X, He W, Diaconu C, Tang X, Kidd GJ, Macklin WB, et al: Genetic deletion of BACE1 in mice affects remyelination of sciatic nerves. The FASEB Journal. 2008, 22: 2970-2980. 10.1096/fj.08-106666.PubMedCentralPubMed
34.
go back to reference Hu X, Hicks CW, He W, Wong P, Macklin WB, Trapp BD, et al: Bace1 modulates myelination in the central and peripheral nervous system. Nat Neurosci. 2006, 9: 1520-1525. 10.1038/nn1797.PubMed Hu X, Hicks CW, He W, Wong P, Macklin WB, Trapp BD, et al: Bace1 modulates myelination in the central and peripheral nervous system. Nat Neurosci. 2006, 9: 1520-1525. 10.1038/nn1797.PubMed
35.
go back to reference Farah MH, Pan BH, Hoffman PN, Ferraris D, Tsukamoto T, Nguyen T, et al: Reduced BACE1 activity enhances clearance of myelin debris and regeneration of axons in the injured peripheral nervous system. J Neurosci. 2011, 31: 5744-5754. 10.1523/JNEUROSCI.6810-10.2011.PubMedCentralPubMed Farah MH, Pan BH, Hoffman PN, Ferraris D, Tsukamoto T, Nguyen T, et al: Reduced BACE1 activity enhances clearance of myelin debris and regeneration of axons in the injured peripheral nervous system. J Neurosci. 2011, 31: 5744-5754. 10.1523/JNEUROSCI.6810-10.2011.PubMedCentralPubMed
36.
go back to reference McKerracher L, David S, Jackson DL, Kottis V, Dunn RJ, Braun PE: Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron. 1994, 13: 805-811. 10.1016/0896-6273(94)90247-X.PubMed McKerracher L, David S, Jackson DL, Kottis V, Dunn RJ, Braun PE: Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron. 1994, 13: 805-811. 10.1016/0896-6273(94)90247-X.PubMed
37.
go back to reference Mukhopadhyay G, Doherty P, Walsh FS, Crocker PR, Filbin MT: A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron. 1994, 13: 757-767. 10.1016/0896-6273(94)90042-6.PubMed Mukhopadhyay G, Doherty P, Walsh FS, Crocker PR, Filbin MT: A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron. 1994, 13: 757-767. 10.1016/0896-6273(94)90042-6.PubMed
38.
go back to reference Bahr M, Przyrembel C: Myelin from Peripheral and Central Nervous System Is a Nonpermissive Substrate for Retinal Ganglion Cell Axons. Experimental Neurology. 1995, 134: 87-93. 10.1006/exnr.1995.1039.PubMed Bahr M, Przyrembel C: Myelin from Peripheral and Central Nervous System Is a Nonpermissive Substrate for Retinal Ganglion Cell Axons. Experimental Neurology. 1995, 134: 87-93. 10.1006/exnr.1995.1039.PubMed
39.
go back to reference Shen YJ, DeBellard ME, Salzer JL, Roder J, Filbin MT: Myelin-associated glycoprotein in myelin and expressed by Schwann cells inhibits axonal regeneration and branching. Mol Cell Neurosci. 1998, 12: 79-91. 10.1006/mcne.1998.0700.PubMed Shen YJ, DeBellard ME, Salzer JL, Roder J, Filbin MT: Myelin-associated glycoprotein in myelin and expressed by Schwann cells inhibits axonal regeneration and branching. Mol Cell Neurosci. 1998, 12: 79-91. 10.1006/mcne.1998.0700.PubMed
40.
go back to reference Schafer M, Fruttiger M, Montag D, Schachner M, Martini R: Disruption of the gene for the myelin-associated glycoprotein improves axonal regrowth along myelin in C57BL/Wlds mice. Neuron. 1996, 16: 1107-1113. 10.1016/S0896-6273(00)80137-3.PubMed Schafer M, Fruttiger M, Montag D, Schachner M, Martini R: Disruption of the gene for the myelin-associated glycoprotein improves axonal regrowth along myelin in C57BL/Wlds mice. Neuron. 1996, 16: 1107-1113. 10.1016/S0896-6273(00)80137-3.PubMed
41.
go back to reference Bisby MA, Chen S: Delayed wallerian degeneration in sciatic nerves of C57BL/Ola mice is associated with impaired regeneration of sensory axons. Brain Res. 1990, 530: 117-120. 10.1016/0006-8993(90)90666-Y.PubMed Bisby MA, Chen S: Delayed wallerian degeneration in sciatic nerves of C57BL/Ola mice is associated with impaired regeneration of sensory axons. Brain Res. 1990, 530: 117-120. 10.1016/0006-8993(90)90666-Y.PubMed
42.
go back to reference Brown MC, Perry VH, Lunn ER, Gordon S, Heumann R: Macrophage dependence of peripheral sensory nerve regeneration: possible involvement of nerve growth factor. Neuron. 1991, 6: 359-370. 10.1016/0896-6273(91)90245-U.PubMed Brown MC, Perry VH, Lunn ER, Gordon S, Heumann R: Macrophage dependence of peripheral sensory nerve regeneration: possible involvement of nerve growth factor. Neuron. 1991, 6: 359-370. 10.1016/0896-6273(91)90245-U.PubMed
43.
go back to reference Brown MC, Perry VH, Hunt SP, Lapper SR: Further studies on motor and sensory nerve regeneration in mice with delayed Wallerian degeneration. Eur J Neurosci. 1994, 6: 420-428. 10.1111/j.1460-9568.1994.tb00285.x.PubMed Brown MC, Perry VH, Hunt SP, Lapper SR: Further studies on motor and sensory nerve regeneration in mice with delayed Wallerian degeneration. Eur J Neurosci. 1994, 6: 420-428. 10.1111/j.1460-9568.1994.tb00285.x.PubMed
44.
go back to reference Caroni P, Schwab ME: Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J Cell Biol. 1988, 106: 1281-1288. 10.1083/jcb.106.4.1281.PubMed Caroni P, Schwab ME: Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J Cell Biol. 1988, 106: 1281-1288. 10.1083/jcb.106.4.1281.PubMed
45.
go back to reference Cafferty WBJ, Duffy P, Huebner E, Strittmatter SM: MAG and OMgp Synergize with Nogo-A to Restrict Axonal Growth and Neurological Recovery after Spinal Cord Trauma. J Neurosci. 2010, 30: 6825-6837. 10.1523/JNEUROSCI.6239-09.2010.PubMedCentralPubMed Cafferty WBJ, Duffy P, Huebner E, Strittmatter SM: MAG and OMgp Synergize with Nogo-A to Restrict Axonal Growth and Neurological Recovery after Spinal Cord Trauma. J Neurosci. 2010, 30: 6825-6837. 10.1523/JNEUROSCI.6239-09.2010.PubMedCentralPubMed
46.
go back to reference Lee JK, Geoffroy CG, Chan AF, Tolentino KE, Crawford MJ, Leal MA, et al: Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice. Neuron. 2010, 66: 663-670. 10.1016/j.neuron.2010.05.002.PubMedCentralPubMed Lee JK, Geoffroy CG, Chan AF, Tolentino KE, Crawford MJ, Leal MA, et al: Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice. Neuron. 2010, 66: 663-670. 10.1016/j.neuron.2010.05.002.PubMedCentralPubMed
47.
go back to reference David S, Aguayo AJ: Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats. Science. 1981, 214: 931-933. 10.1126/science.6171034.PubMed David S, Aguayo AJ: Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats. Science. 1981, 214: 931-933. 10.1126/science.6171034.PubMed
48.
go back to reference David S, Aguayo AJ: Axonal regeneration after crush injury of rat central nervous system fibres innervating peripheral nerve grafts. J Neurocytol. 1985, 14: 1-12. 10.1007/BF01150259.PubMed David S, Aguayo AJ: Axonal regeneration after crush injury of rat central nervous system fibres innervating peripheral nerve grafts. J Neurocytol. 1985, 14: 1-12. 10.1007/BF01150259.PubMed
50.
go back to reference Cao Z, Gao Y, Deng K, Williams G, Doherty P, Walsh FS: Receptors for myelin inhibitors: Structures and therapeutic opportunities. Mol Cell Neurosci. 2010, 43: 1-14. 10.1016/j.mcn.2009.07.008.PubMed Cao Z, Gao Y, Deng K, Williams G, Doherty P, Walsh FS: Receptors for myelin inhibitors: Structures and therapeutic opportunities. Mol Cell Neurosci. 2010, 43: 1-14. 10.1016/j.mcn.2009.07.008.PubMed
51.
go back to reference Giger RJ, Hollis ER, Tuszynski MH: Guidance molecules in axon regeneration. Cold Spring Harb Perspect Biol. 2010, 2: a001867-10.1101/cshperspect.a001867.PubMedCentralPubMed Giger RJ, Hollis ER, Tuszynski MH: Guidance molecules in axon regeneration. Cold Spring Harb Perspect Biol. 2010, 2: a001867-10.1101/cshperspect.a001867.PubMedCentralPubMed
52.
go back to reference Ramaglia V, King RHM, Nourallah M, Wolterman R, de Jonge R, Ramkema M, et al: The Membrane Attack Complex of the Complement System Is Essential for Rapid Wallerian Degeneration. J Neurosci. 2007, 27: 7663-7672. 10.1523/JNEUROSCI.5623-06.2007.PubMed Ramaglia V, King RHM, Nourallah M, Wolterman R, de Jonge R, Ramkema M, et al: The Membrane Attack Complex of the Complement System Is Essential for Rapid Wallerian Degeneration. J Neurosci. 2007, 27: 7663-7672. 10.1523/JNEUROSCI.5623-06.2007.PubMed
53.
go back to reference Bruck W, Bruck Y, Diederich U, Piddlesden SJ: The membrane attack complex of complement mediates peripheral nervous system demyelination in vitro. Acta Neuropathol (Berl). 1995, 90: 601-607. 10.1007/BF00318572. Bruck W, Bruck Y, Diederich U, Piddlesden SJ: The membrane attack complex of complement mediates peripheral nervous system demyelination in vitro. Acta Neuropathol (Berl). 1995, 90: 601-607. 10.1007/BF00318572.
54.
go back to reference Mead RJ, Singhrao SK, Neal JW, Lassmann H, Morgan BP: The membrane attack complex of complement causes severe demyelination associated with acute axonal injury. J Immunol. 2002, 168: 458-465.PubMed Mead RJ, Singhrao SK, Neal JW, Lassmann H, Morgan BP: The membrane attack complex of complement causes severe demyelination associated with acute axonal injury. J Immunol. 2002, 168: 458-465.PubMed
55.
go back to reference Stoll G, Griffin JW, Li CY, Trapp BD: Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation. J Neurocytol. 1989, 18: 671-683. 10.1007/BF01187086.PubMed Stoll G, Griffin JW, Li CY, Trapp BD: Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation. J Neurocytol. 1989, 18: 671-683. 10.1007/BF01187086.PubMed
56.
go back to reference George R, Griffin JW: Delayed Macrophage Responses and Myelin Clearance during Wallerian Degeneration in the Central Nervous System: The Dorsal Radiculotomy Model. Experimental Neurology. 1994, 129: 225-236. 10.1006/exnr.1994.1164.PubMed George R, Griffin JW: Delayed Macrophage Responses and Myelin Clearance during Wallerian Degeneration in the Central Nervous System: The Dorsal Radiculotomy Model. Experimental Neurology. 1994, 129: 225-236. 10.1006/exnr.1994.1164.PubMed
57.
go back to reference Perry VH, Tsao JW, Fearn S, Brown MC: Radiation-induced reductions in macrophage recruitment have only slight effects on myelin degeneration in sectioned peripheral nerves of mice. Eur J Neurosci. 1995, 7: 271-280. 10.1111/j.1460-9568.1995.tb01063.x.PubMed Perry VH, Tsao JW, Fearn S, Brown MC: Radiation-induced reductions in macrophage recruitment have only slight effects on myelin degeneration in sectioned peripheral nerves of mice. Eur J Neurosci. 1995, 7: 271-280. 10.1111/j.1460-9568.1995.tb01063.x.PubMed
58.
go back to reference Fernandez-Valle C, Bunge RP, Bunge MB: Schwann cells degrade myelin and proliferate in the absence of macrophages: evidence fromin vitro studies of Wallerian degeneration. Journal of Neurocytology. 1995, 24: 667-679. 10.1007/BF01179817.PubMed Fernandez-Valle C, Bunge RP, Bunge MB: Schwann cells degrade myelin and proliferate in the absence of macrophages: evidence fromin vitro studies of Wallerian degeneration. Journal of Neurocytology. 1995, 24: 667-679. 10.1007/BF01179817.PubMed
59.
go back to reference Rotshenker S: Microglia and Macrophage Activation and the Regulation of Complement-Receptor-3 (CR3/MAC-1)-Mediated Myelin Phagocytosis in Injury and Disease. J Mol Neurosci. 2003, 21: 65-72. 10.1385/JMN:21:1:65.PubMed Rotshenker S: Microglia and Macrophage Activation and the Regulation of Complement-Receptor-3 (CR3/MAC-1)-Mediated Myelin Phagocytosis in Injury and Disease. J Mol Neurosci. 2003, 21: 65-72. 10.1385/JMN:21:1:65.PubMed
60.
go back to reference Be'eri H, Reichert F, Saada A, Rotshenker S: The cytokine network of wallerian degeneration: IL-10 and GM-CSF. Eur J Neurosci. 1998, 10: 2707-2713. 10.1046/j.1460-9568.1998.00277.x.PubMed Be'eri H, Reichert F, Saada A, Rotshenker S: The cytokine network of wallerian degeneration: IL-10 and GM-CSF. Eur J Neurosci. 1998, 10: 2707-2713. 10.1046/j.1460-9568.1998.00277.x.PubMed
61.
go back to reference Carroll SL, Frohnert PW: Expression of JE (monocyte chemoattractant protein-1) is induced by sciatic axotomy in wild type rodents but not in C57BL/Wld(s) mice. J Neuropathol Exp Neurol. 1998, 57: 915-930. 10.1097/00005072-199810000-00004.PubMed Carroll SL, Frohnert PW: Expression of JE (monocyte chemoattractant protein-1) is induced by sciatic axotomy in wild type rodents but not in C57BL/Wld(s) mice. J Neuropathol Exp Neurol. 1998, 57: 915-930. 10.1097/00005072-199810000-00004.PubMed
62.
go back to reference Subang MC, Richardson PM: Influence of injury and cytokines on synthesis of monocyte chemoattractant protein-1 mRNA in peripheral nervous tissue. Eur J Neurosci. 2001, 13: 521-528. 10.1046/j.1460-9568.2001.01425.x.PubMed Subang MC, Richardson PM: Influence of injury and cytokines on synthesis of monocyte chemoattractant protein-1 mRNA in peripheral nervous tissue. Eur J Neurosci. 2001, 13: 521-528. 10.1046/j.1460-9568.2001.01425.x.PubMed
63.
go back to reference Shamash S, Reichert F, Rotshenker S: The Cytokine Network of Wallerian Degeneration: Tumor Necrosis Factor- α, Interleukin-1α, and Interleukin-1β. J Neurosci. 2002, 22: 3052-3060.PubMed Shamash S, Reichert F, Rotshenker S: The Cytokine Network of Wallerian Degeneration: Tumor Necrosis Factor- α, Interleukin-1α, and Interleukin-1β. J Neurosci. 2002, 22: 3052-3060.PubMed
64.
go back to reference Perry VH, Brown MC, Gordon S: The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J Exp Med. 1987, 165: 1218-1223. 10.1084/jem.165.4.1218.PubMed Perry VH, Brown MC, Gordon S: The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J Exp Med. 1987, 165: 1218-1223. 10.1084/jem.165.4.1218.PubMed
65.
go back to reference Bendszus M, Stoll G: Caught in the act: in vivo mapping of macrophage infiltration in nerve injury by magnetic resonance imaging. J Neurosci. 2003, 23: 10892-10896.PubMed Bendszus M, Stoll G: Caught in the act: in vivo mapping of macrophage infiltration in nerve injury by magnetic resonance imaging. J Neurosci. 2003, 23: 10892-10896.PubMed
66.
go back to reference Ransohoff RM: Chemokines in neurological disease models: correlation between chemokine expression patterns and inflammatory pathology. J Leukoc Biol. 1997, 62: 645-652.PubMed Ransohoff RM: Chemokines in neurological disease models: correlation between chemokine expression patterns and inflammatory pathology. J Leukoc Biol. 1997, 62: 645-652.PubMed
67.
go back to reference Siebert H, Sachse A, Kuziel WA, Maeda N, Bruck W: The chemokine receptor CCR2 is involved in macrophage recruitment to the injured peripheral nervous system. Journal of Neuroimmunology. 2000, 110: 177-185. 10.1016/S0165-5728(00)00343-X.PubMed Siebert H, Sachse A, Kuziel WA, Maeda N, Bruck W: The chemokine receptor CCR2 is involved in macrophage recruitment to the injured peripheral nervous system. Journal of Neuroimmunology. 2000, 110: 177-185. 10.1016/S0165-5728(00)00343-X.PubMed
68.
go back to reference Perrin FE, Lacroix S, Aviles-Trigueros M, David S: Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1α and interleukin-1β in Wallerian degeneration. Brain. 2005, 128: 854-866. 10.1093/brain/awh407.PubMed Perrin FE, Lacroix S, Aviles-Trigueros M, David S: Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1α and interleukin-1β in Wallerian degeneration. Brain. 2005, 128: 854-866. 10.1093/brain/awh407.PubMed
69.
go back to reference Siebert H, Dippel N, Mäder M, Weber F, Bruck W: Matrix metalloproteinase expression and inhibition after sciatic nerve axotomy. Journal of Neuropathology and Experimental Neurology. 2001, 60: 85-93.PubMed Siebert H, Dippel N, Mäder M, Weber F, Bruck W: Matrix metalloproteinase expression and inhibition after sciatic nerve axotomy. Journal of Neuropathology and Experimental Neurology. 2001, 60: 85-93.PubMed
70.
go back to reference Shubayev VI, Angert M, Dolkas J, Campana WM, Palenscar K, Myers RR: TNFα-induced MMP-9 promotes macrophage recruitment into injured peripheral nerve. Molecular and Cellular Neuroscience. 2006, 31: 407-415. 10.1016/j.mcn.2005.10.011.PubMedCentralPubMed Shubayev VI, Angert M, Dolkas J, Campana WM, Palenscar K, Myers RR: TNFα-induced MMP-9 promotes macrophage recruitment into injured peripheral nerve. Molecular and Cellular Neuroscience. 2006, 31: 407-415. 10.1016/j.mcn.2005.10.011.PubMedCentralPubMed
71.
go back to reference Chattopadhyay S, Myers RR, Janes J, Shubayev V: Cytokine regulation of MMP-9 in peripheral glia: Implications for pathological processes and pain in injured nerve. Brain, Behavior, and Immunity. 2007, 21: 561-568. 10.1016/j.bbi.2006.10.015.PubMedCentralPubMed Chattopadhyay S, Myers RR, Janes J, Shubayev V: Cytokine regulation of MMP-9 in peripheral glia: Implications for pathological processes and pain in injured nerve. Brain, Behavior, and Immunity. 2007, 21: 561-568. 10.1016/j.bbi.2006.10.015.PubMedCentralPubMed
72.
go back to reference Fleur ML, Underwood JL, Rappolee DA, Werb Z: Basement Membrane and Repair of Injury to Peripheral Nerve: Defining a Potential Role for Macrophages, Matrix Metalloproteinases, and Tissue Inhibitor of Metalloproteinases-1. The Journal of Experimental Medicine. 1996, 184: 2311-2326. 10.1084/jem.184.6.2311.PubMedCentralPubMed Fleur ML, Underwood JL, Rappolee DA, Werb Z: Basement Membrane and Repair of Injury to Peripheral Nerve: Defining a Potential Role for Macrophages, Matrix Metalloproteinases, and Tissue Inhibitor of Metalloproteinases-1. The Journal of Experimental Medicine. 1996, 184: 2311-2326. 10.1084/jem.184.6.2311.PubMedCentralPubMed
73.
go back to reference Bruck W, Friede RL: The role of complement in myelin phagocytosis during PNS wallerian degeneration. Journal of the Neurological Sciences. 1991, 103: 182-187. 10.1016/0022-510X(91)90162-Z.PubMed Bruck W, Friede RL: The role of complement in myelin phagocytosis during PNS wallerian degeneration. Journal of the Neurological Sciences. 1991, 103: 182-187. 10.1016/0022-510X(91)90162-Z.PubMed
74.
go back to reference Dailey AT, Avellino AM, Benthem L, Silver J, Kliot M: Complement Depletion Reduces Macrophage Infiltration and Activation during Wallerian Degeneration and Axonal Regeneration. J Neurosci. 1998, 18: 6713-6722.PubMed Dailey AT, Avellino AM, Benthem L, Silver J, Kliot M: Complement Depletion Reduces Macrophage Infiltration and Activation during Wallerian Degeneration and Axonal Regeneration. J Neurosci. 1998, 18: 6713-6722.PubMed
75.
go back to reference Liu L, Lioudyno M, Tao R, Eriksson P, Svensson M, Aldskogius H: Hereditary absence of complement C5 in adult mice influences wallerian degeneration, but not retrograde responses, following injury to peripheral nerve. Journal of the Peripheral Nervous System. 1999, 4: 123-133.PubMed Liu L, Lioudyno M, Tao R, Eriksson P, Svensson M, Aldskogius H: Hereditary absence of complement C5 in adult mice influences wallerian degeneration, but not retrograde responses, following injury to peripheral nerve. Journal of the Peripheral Nervous System. 1999, 4: 123-133.PubMed
76.
go back to reference van der Laan LJ, Ruuls SR, Weber KS, Lodder IJ, Dopp EA, Dijkstra CD: Macrophage phagocytosis of myelin in vitro determined by flow cytometry: phagocytosis is mediated by CR3 and induces production of tumor necrosis factor-α and nitric oxide. J Neuroimmunol. 1996, 70: 145-152. 10.1016/S0165-5728(96)00110-5.PubMed van der Laan LJ, Ruuls SR, Weber KS, Lodder IJ, Dopp EA, Dijkstra CD: Macrophage phagocytosis of myelin in vitro determined by flow cytometry: phagocytosis is mediated by CR3 and induces production of tumor necrosis factor-α and nitric oxide. J Neuroimmunol. 1996, 70: 145-152. 10.1016/S0165-5728(96)00110-5.PubMed
77.
go back to reference da Costa CC, van der Laan LJ, Dijkstra CD, Bruck W: The role of the mouse macrophage scavenger receptor in myelin phagocytosis. Eur J Neurosci. 1997, 9: 2650-2657. 10.1111/j.1460-9568.1997.tb01694.x.PubMed da Costa CC, van der Laan LJ, Dijkstra CD, Bruck W: The role of the mouse macrophage scavenger receptor in myelin phagocytosis. Eur J Neurosci. 1997, 9: 2650-2657. 10.1111/j.1460-9568.1997.tb01694.x.PubMed
78.
go back to reference Reichert F, Slobodov U, Makranz C, Rotshenker S: Modulation (inhibition and augmentation) of complement receptor-3- mediated myelin phagocytosis. Neurobiol Dis. 2001, 8: 504-512. 10.1006/nbdi.2001.0383.PubMed Reichert F, Slobodov U, Makranz C, Rotshenker S: Modulation (inhibition and augmentation) of complement receptor-3- mediated myelin phagocytosis. Neurobiol Dis. 2001, 8: 504-512. 10.1006/nbdi.2001.0383.PubMed
79.
go back to reference Reichert F, Rotshenker S: Complement-receptor-3 and scavenger-receptor-AI/II mediated myelin phagocytosis in microglia and macrophages. Neurobiol Dis. 2003, 12: 65-72. 10.1016/S0969-9961(02)00008-6.PubMed Reichert F, Rotshenker S: Complement-receptor-3 and scavenger-receptor-AI/II mediated myelin phagocytosis in microglia and macrophages. Neurobiol Dis. 2003, 12: 65-72. 10.1016/S0969-9961(02)00008-6.PubMed
80.
go back to reference Smith ME: Phagocytic properties of microglia in vitro: implications for a role in multiple sclerosis and EAE. Microsc Res Tech. 2001, 54: 81-94. 10.1002/jemt.1123.PubMed Smith ME: Phagocytic properties of microglia in vitro: implications for a role in multiple sclerosis and EAE. Microsc Res Tech. 2001, 54: 81-94. 10.1002/jemt.1123.PubMed
81.
go back to reference Vargas ME, Watanabe J, Singh SJ, Robinson WH, Barres BA: Endogenous antibodies promote rapid myelin clearance and effective axon regeneration after nerve injury. Proc Natl Acad Sci USA. 2010, 107: 11993-11998. 10.1073/pnas.1001948107.PubMedCentralPubMed Vargas ME, Watanabe J, Singh SJ, Robinson WH, Barres BA: Endogenous antibodies promote rapid myelin clearance and effective axon regeneration after nerve injury. Proc Natl Acad Sci USA. 2010, 107: 11993-11998. 10.1073/pnas.1001948107.PubMedCentralPubMed
82.
go back to reference Saada A, Reichert F, Rotshenker S: Granulocyte macrophage colony stimulating factor produced in lesioned peripheral nerves induces the up-regulation of cell surface expression of MAC-2 by macrophages and Schwann cells. J Cell Biol. 1996, 133: 159-167. 10.1083/jcb.133.1.159.PubMed Saada A, Reichert F, Rotshenker S: Granulocyte macrophage colony stimulating factor produced in lesioned peripheral nerves induces the up-regulation of cell surface expression of MAC-2 by macrophages and Schwann cells. J Cell Biol. 1996, 133: 159-167. 10.1083/jcb.133.1.159.PubMed
83.
go back to reference Reichert F, Rotshenker S: Deficient activation of microglia during optic nerve degeneration. J Neuroimmunol. 1996, 70: 153-161. 10.1016/S0165-5728(96)00112-9.PubMed Reichert F, Rotshenker S: Deficient activation of microglia during optic nerve degeneration. J Neuroimmunol. 1996, 70: 153-161. 10.1016/S0165-5728(96)00112-9.PubMed
84.
go back to reference Reichert F, Rotshenker S: Galectin-3/MAC-2 in experimental allergic encephalomyelitis. Exp Neurol. 1999, 160: 508-514. 10.1006/exnr.1999.7229.PubMed Reichert F, Rotshenker S: Galectin-3/MAC-2 in experimental allergic encephalomyelitis. Exp Neurol. 1999, 160: 508-514. 10.1006/exnr.1999.7229.PubMed
85.
go back to reference Gitik M, Liraz ZS, Oldenborg PA, Reichert F, Rotshenker S: Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α) on phagocytes. J Neuroinflammation. 2011, 8: 24-10.1186/1742-2094-8-24.PubMedCentralPubMed Gitik M, Liraz ZS, Oldenborg PA, Reichert F, Rotshenker S: Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α) on phagocytes. J Neuroinflammation. 2011, 8: 24-10.1186/1742-2094-8-24.PubMedCentralPubMed
86.
go back to reference Reichert F, Levitzky R, Rotshenker S: Interleukin 6 in intact and injured mouse peripheral nerves. Eur J Neurosci. 1996, 8: 530-535. 10.1111/j.1460-9568.1996.tb01237.x.PubMed Reichert F, Levitzky R, Rotshenker S: Interleukin 6 in intact and injured mouse peripheral nerves. Eur J Neurosci. 1996, 8: 530-535. 10.1111/j.1460-9568.1996.tb01237.x.PubMed
87.
go back to reference Rotshenker S, Aamar S, Barak V: Interleukin-1 activity in lesioned peripheral nerve. J Neuroimmunol. 1992, 39: 75-80. 10.1016/0165-5728(92)90176-L.PubMed Rotshenker S, Aamar S, Barak V: Interleukin-1 activity in lesioned peripheral nerve. J Neuroimmunol. 1992, 39: 75-80. 10.1016/0165-5728(92)90176-L.PubMed
88.
go back to reference Mirski R, Reichert F, Klar A, Rotshenker S: Granulocyte macrophage colony stimulating factor (GM-CSF) activity is regulated by a GM-CSF binding molecule in Wallerian degeneration following injury to peripheral nerve axons. Journal of Neuroimmunology. 2003, 140: 88-96. 10.1016/S0165-5728(03)00179-6.PubMed Mirski R, Reichert F, Klar A, Rotshenker S: Granulocyte macrophage colony stimulating factor (GM-CSF) activity is regulated by a GM-CSF binding molecule in Wallerian degeneration following injury to peripheral nerve axons. Journal of Neuroimmunology. 2003, 140: 88-96. 10.1016/S0165-5728(03)00179-6.PubMed
89.
go back to reference Baitsch D, Bock HH, Engel T, Telgmann R, Muller-Tidow C, Varga G, et al: Apolipoprotein E Induces Antiinflammatory Phenotype in Macrophages. Arterioscler Thromb Vasc Biol. 2011 Baitsch D, Bock HH, Engel T, Telgmann R, Muller-Tidow C, Varga G, et al: Apolipoprotein E Induces Antiinflammatory Phenotype in Macrophages. Arterioscler Thromb Vasc Biol. 2011
90.
go back to reference Khallou-Laschet J, Varthaman A, Fornasa G, Compain C, Gaston AT, Clement M, et al: Macrophage plasticity in experimental atherosclerosis. PLoS One. 2010, 5: e8852-10.1371/journal.pone.0008852.PubMedCentralPubMed Khallou-Laschet J, Varthaman A, Fornasa G, Compain C, Gaston AT, Clement M, et al: Macrophage plasticity in experimental atherosclerosis. PLoS One. 2010, 5: e8852-10.1371/journal.pone.0008852.PubMedCentralPubMed
91.
go back to reference MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H, et al: Regulation of Alternative Macrophage Activation by Galectin-3. J Immunol. 2008, 180: 2650-2658.PubMed MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H, et al: Regulation of Alternative Macrophage Activation by Galectin-3. J Immunol. 2008, 180: 2650-2658.PubMed
92.
go back to reference Aamar S, Saada A, Rotshenker S: Lesion-induced changes in the production of newly synthesized and secreted apo-E and other molecules are independent of the concomitant recruitment of blood-borne macrophages into injured peripheral nerves. J Neurochem. 1992, 59: 1287-1292. 10.1111/j.1471-4159.1992.tb08439.x.PubMed Aamar S, Saada A, Rotshenker S: Lesion-induced changes in the production of newly synthesized and secreted apo-E and other molecules are independent of the concomitant recruitment of blood-borne macrophages into injured peripheral nerves. J Neurochem. 1992, 59: 1287-1292. 10.1111/j.1471-4159.1992.tb08439.x.PubMed
93.
go back to reference Saada A, Dunaevsky-Hutt A, Aamar A, Reichert F, Rotshenker S: Fibroblasts that reside in mouse and frog injured peripheral nerves produce apolipoproteins. J Neurochem. 1995, 64: 1996-2003.PubMed Saada A, Dunaevsky-Hutt A, Aamar A, Reichert F, Rotshenker S: Fibroblasts that reside in mouse and frog injured peripheral nerves produce apolipoproteins. J Neurochem. 1995, 64: 1996-2003.PubMed
94.
go back to reference Boivin A, Pineau I, Barrette B, Filali M, Vallieres N, ivest S, et al: Toll-Like Receptor Signaling Is Critical for Wallerian Degeneration and Functional Recovery after Peripheral Nerve Injury. The Journal of Neuroscience. 2007, 27: 12565-12576. 10.1523/JNEUROSCI.3027-07.2007.PubMed Boivin A, Pineau I, Barrette B, Filali M, Vallieres N, ivest S, et al: Toll-Like Receptor Signaling Is Critical for Wallerian Degeneration and Functional Recovery after Peripheral Nerve Injury. The Journal of Neuroscience. 2007, 27: 12565-12576. 10.1523/JNEUROSCI.3027-07.2007.PubMed
95.
go back to reference Tieu BC, Lee C, Sun H, Lejeune W, Recinos A, Ju X, et al: An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice. J Clin Invest. 2009, 119: 3637-3651. 10.1172/JCI38308.PubMedCentralPubMed Tieu BC, Lee C, Sun H, Lejeune W, Recinos A, Ju X, et al: An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice. J Clin Invest. 2009, 119: 3637-3651. 10.1172/JCI38308.PubMedCentralPubMed
96.
go back to reference Chui R, Dorovini-Zis K: Regulation of CCL2 and CCL3 expression in human brain endothelial cells by cytokines and lipopolysaccharide. J Neuroinflammation. 2010, 7: 1-10.1186/1742-2094-7-1.PubMedCentralPubMed Chui R, Dorovini-Zis K: Regulation of CCL2 and CCL3 expression in human brain endothelial cells by cytokines and lipopolysaccharide. J Neuroinflammation. 2010, 7: 1-10.1186/1742-2094-7-1.PubMedCentralPubMed
97.
go back to reference Mori K, Chano T, Yamamoto K, Matsusue Y, Okabe H: Expression of macrophage inflammatory protein-1α in Schwann cell tumors. Neuropathology. 2004, 24: 131-135. 10.1111/j.1440-1789.2003.00541.x.PubMed Mori K, Chano T, Yamamoto K, Matsusue Y, Okabe H: Expression of macrophage inflammatory protein-1α in Schwann cell tumors. Neuropathology. 2004, 24: 131-135. 10.1111/j.1440-1789.2003.00541.x.PubMed
98.
go back to reference Maurer M, von Stebut E: Macrophage inflammatory protein-1. The International Journal of Biochemistry & Cell Biology. 2004, 36: 1882-1886. 10.1016/j.biocel.2003.10.019. Maurer M, von Stebut E: Macrophage inflammatory protein-1. The International Journal of Biochemistry & Cell Biology. 2004, 36: 1882-1886. 10.1016/j.biocel.2003.10.019.
99.
go back to reference Isenberg JS, Roberts DD, Frazier WA: CD47: a new target in cardiovascular therapy. Arterioscler Thromb Vasc Biol. 2008, 28: 615-621. 10.1161/ATVBAHA.107.158154.PubMedCentralPubMed Isenberg JS, Roberts DD, Frazier WA: CD47: a new target in cardiovascular therapy. Arterioscler Thromb Vasc Biol. 2008, 28: 615-621. 10.1161/ATVBAHA.107.158154.PubMedCentralPubMed
100.
go back to reference Sarfati M, Fortin G, Raymond M, Susin S: CD47 in the immune response: role of thrombospondin and SIRP-α reverse signaling. Curr Drug Targets. 2008, 9: 842-850. 10.2174/138945008785909310.PubMed Sarfati M, Fortin G, Raymond M, Susin S: CD47 in the immune response: role of thrombospondin and SIRP-α reverse signaling. Curr Drug Targets. 2008, 9: 842-850. 10.2174/138945008785909310.PubMed
101.
go back to reference Matozaki T, Murata Y, Okazawa H, Ohnishi H: Functions and molecular mechanisms of the CD47-SIRPα signalling pathway. Trends Cell Biol. 2009, 19: 72-80. 10.1016/j.tcb.2008.12.001.PubMed Matozaki T, Murata Y, Okazawa H, Ohnishi H: Functions and molecular mechanisms of the CD47-SIRPα signalling pathway. Trends Cell Biol. 2009, 19: 72-80. 10.1016/j.tcb.2008.12.001.PubMed
102.
go back to reference Barclay AN: Signal regulatory protein alpha (SIRPα)/CD47 interaction and function. Curr Opin Immunol. 2009, 21: 47-52. 10.1016/j.coi.2009.01.008.PubMedCentralPubMed Barclay AN: Signal regulatory protein alpha (SIRPα)/CD47 interaction and function. Curr Opin Immunol. 2009, 21: 47-52. 10.1016/j.coi.2009.01.008.PubMedCentralPubMed
103.
go back to reference Levi-Montalcini R, Angeletti PU: Nerve growth factor. Physiological Reviews. 1968, 48: 534-569.PubMed Levi-Montalcini R, Angeletti PU: Nerve growth factor. Physiological Reviews. 1968, 48: 534-569.PubMed
104.
go back to reference Silver JS, Hunter CA: gp130 at the nexus of inflammation, autoimmunity, and cancer. J Leukoc Biol. 2010, 88: 1145-1156. 10.1189/jlb.0410217.PubMedCentralPubMed Silver JS, Hunter CA: gp130 at the nexus of inflammation, autoimmunity, and cancer. J Leukoc Biol. 2010, 88: 1145-1156. 10.1189/jlb.0410217.PubMedCentralPubMed
105.
go back to reference Zweifel LS, Kuruvilla R, Ginty DD: Functions and mechanisms of retrograde neurotrophin signalling. Nat Rev Neurosci. 2005, 6: 615-625. 10.1038/nrn1727.PubMed Zweifel LS, Kuruvilla R, Ginty DD: Functions and mechanisms of retrograde neurotrophin signalling. Nat Rev Neurosci. 2005, 6: 615-625. 10.1038/nrn1727.PubMed
106.
go back to reference Huang EJ, Reichardt LF: NEUROTROPHINS: Roles in Neuronal Development and Function1. Annu Rev Neurosci. 2001, 24: 677-736. 10.1146/annurev.neuro.24.1.677.PubMedCentralPubMed Huang EJ, Reichardt LF: NEUROTROPHINS: Roles in Neuronal Development and Function1. Annu Rev Neurosci. 2001, 24: 677-736. 10.1146/annurev.neuro.24.1.677.PubMedCentralPubMed
107.
go back to reference Mok SA, Lund K, Campenot RB: A retrograde apoptotic signal originating in NGF-deprived distal axons of rat sympathetic neurons in compartmented cultures. Cell Res. 2009, 19: 546-560. 10.1038/cr.2009.11.PubMed Mok SA, Lund K, Campenot RB: A retrograde apoptotic signal originating in NGF-deprived distal axons of rat sympathetic neurons in compartmented cultures. Cell Res. 2009, 19: 546-560. 10.1038/cr.2009.11.PubMed
108.
go back to reference Heumann R, Korsching S, Bandtlow C, Thoenen H: Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection. J Cell Biol. 1987, 104: 1623-1631. 10.1083/jcb.104.6.1623.PubMed Heumann R, Korsching S, Bandtlow C, Thoenen H: Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection. J Cell Biol. 1987, 104: 1623-1631. 10.1083/jcb.104.6.1623.PubMed
109.
go back to reference Lindholm D, Heumann R, Meyer M, Thoenen H: Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature. 1987, 330: 658-659. 10.1038/330658a0.PubMed Lindholm D, Heumann R, Meyer M, Thoenen H: Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature. 1987, 330: 658-659. 10.1038/330658a0.PubMed
110.
go back to reference Heumann R, Lindholm D, Bandtlow C, Meyer M, Radeke MJ, Misko TP, et al: Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc Natl Acad Sci USA. 1987, 84: 8735-8739. 10.1073/pnas.84.23.8735.PubMedCentralPubMed Heumann R, Lindholm D, Bandtlow C, Meyer M, Radeke MJ, Misko TP, et al: Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc Natl Acad Sci USA. 1987, 84: 8735-8739. 10.1073/pnas.84.23.8735.PubMedCentralPubMed
111.
go back to reference Matsuoka I, Meyer M, Thoenen H: Cell-type-specific regulation of nerve growth factor (NGF) synthesis in non-neuronal cells: comparison of Schwann cells with other cell types. The Journal of Neuroscience. 1991, 11: 3165-3177.PubMed Matsuoka I, Meyer M, Thoenen H: Cell-type-specific regulation of nerve growth factor (NGF) synthesis in non-neuronal cells: comparison of Schwann cells with other cell types. The Journal of Neuroscience. 1991, 11: 3165-3177.PubMed
112.
go back to reference DiStefano PS, Curtis R: Chapter 4 Receptor mediated retrograde axonal transport of neurotrophic factors is increased after peripheral nerve injury. Progress in Brain Research Neural Regeneration. Edited by: Fredrick JS. 1994, Elsevier, 35-42. Volume 103 edition DiStefano PS, Curtis R: Chapter 4 Receptor mediated retrograde axonal transport of neurotrophic factors is increased after peripheral nerve injury. Progress in Brain Research Neural Regeneration. Edited by: Fredrick JS. 1994, Elsevier, 35-42. Volume 103 edition
113.
go back to reference Hattori A, Iwasaki S, Murase K, Tsujimoto M, Sato M, Hayashi K, et al: Tumor necrosis factor is markedly synergistic with interleukin 1 and interferon-γ in stimulating the production of nerve growth factor in fibroblasts. FEBS Lett. 1994, 340: 177-180. 10.1016/0014-5793(94)80132-0.PubMed Hattori A, Iwasaki S, Murase K, Tsujimoto M, Sato M, Hayashi K, et al: Tumor necrosis factor is markedly synergistic with interleukin 1 and interferon-γ in stimulating the production of nerve growth factor in fibroblasts. FEBS Lett. 1994, 340: 177-180. 10.1016/0014-5793(94)80132-0.PubMed
114.
go back to reference Bauer S, Kerr BJ, Patterson PH: The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci. 2007, 8: 221-232.PubMed Bauer S, Kerr BJ, Patterson PH: The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci. 2007, 8: 221-232.PubMed
115.
go back to reference Murphy M, Dutton R, Koblar S, Cheema S, Bartlett P: Cytokines which signal through the LIF receptor and their actions in the nervous system. Progress in Neurobiology. 1997, 52: 355-378. 10.1016/S0301-0082(97)00020-8.PubMed Murphy M, Dutton R, Koblar S, Cheema S, Bartlett P: Cytokines which signal through the LIF receptor and their actions in the nervous system. Progress in Neurobiology. 1997, 52: 355-378. 10.1016/S0301-0082(97)00020-8.PubMed
116.
go back to reference Banner LR, Patterson PH: Major changes in the expression of the mRNAs for cholinergic differentiation factor/leukemia inhibitory factor and its receptor after injury to adult peripheral nerves and ganglia. Proc Natl Acad Sci USA. 1994, 91: 7109-7113. 10.1073/pnas.91.15.7109.PubMedCentralPubMed Banner LR, Patterson PH: Major changes in the expression of the mRNAs for cholinergic differentiation factor/leukemia inhibitory factor and its receptor after injury to adult peripheral nerves and ganglia. Proc Natl Acad Sci USA. 1994, 91: 7109-7113. 10.1073/pnas.91.15.7109.PubMedCentralPubMed
117.
go back to reference Curtis R, Scherer SS, Somogyi R, Adryan KM, Ip NY, Zhu Y, et al: Retrograde axonal transport of LIF is increased by peripheral nerve injury: correlation with increased LIF expression in distal nerve. Neuron. 1994, 12: 191-204. 10.1016/0896-6273(94)90163-5.PubMed Curtis R, Scherer SS, Somogyi R, Adryan KM, Ip NY, Zhu Y, et al: Retrograde axonal transport of LIF is increased by peripheral nerve injury: correlation with increased LIF expression in distal nerve. Neuron. 1994, 12: 191-204. 10.1016/0896-6273(94)90163-5.PubMed
118.
go back to reference Hirota H, Kiyama H, Kishimoto T, Taga T: Accelerated Nerve Regeneration in Mice by upregulated expression of interleukin (IL) 6 and IL-6 receptor after trauma. The Journal of Experimental Medicine. 1996, 183: 2627-2634. 10.1084/jem.183.6.2627.PubMed Hirota H, Kiyama H, Kishimoto T, Taga T: Accelerated Nerve Regeneration in Mice by upregulated expression of interleukin (IL) 6 and IL-6 receptor after trauma. The Journal of Experimental Medicine. 1996, 183: 2627-2634. 10.1084/jem.183.6.2627.PubMed
119.
go back to reference Zhong J, Dietzel ID, Wahle P, Kopf M, Heumann R: Sensory Impairments and Delayed Regeneration of Sensory Axons in Interleukin-6-Deficient Mice. The Journal of Neuroscience. 1999, 19: 4305-4313.PubMed Zhong J, Dietzel ID, Wahle P, Kopf M, Heumann R: Sensory Impairments and Delayed Regeneration of Sensory Axons in Interleukin-6-Deficient Mice. The Journal of Neuroscience. 1999, 19: 4305-4313.PubMed
120.
go back to reference Murphy PG, Borthwick LA, Altares M, Gauldie J, Kaplan D, Richardson PM: Reciprocal actions of interleukin-6 and brain-derived neurotrophic factor on rat and mouse primary sensory neurons. European Journal of Neuroscience. 2000, 12: 1891-1899. 10.1046/j.1460-9568.2000.00074.x.PubMed Murphy PG, Borthwick LA, Altares M, Gauldie J, Kaplan D, Richardson PM: Reciprocal actions of interleukin-6 and brain-derived neurotrophic factor on rat and mouse primary sensory neurons. European Journal of Neuroscience. 2000, 12: 1891-1899. 10.1046/j.1460-9568.2000.00074.x.PubMed
121.
go back to reference Cheema SS, Richards L, Murphy M, Bartlett PF: Leukemia inhibitory factor prevents the death of axotomised sensory neurons in the dorsal root ganglia of the neonatal rat. J Neurosci Res. 1994, 37: 213-218. 10.1002/jnr.490370207.PubMed Cheema SS, Richards L, Murphy M, Bartlett PF: Leukemia inhibitory factor prevents the death of axotomised sensory neurons in the dorsal root ganglia of the neonatal rat. J Neurosci Res. 1994, 37: 213-218. 10.1002/jnr.490370207.PubMed
122.
go back to reference Cafferty WBJ, Gardiner NJ, Gavazzi I, Powell J, McMahon SB, Heath JK, et al: Leukemia Inhibitory Factor Determines the Growth Status of Injured Adult Sensory Neurons. The Journal of Neuroscience. 2001, 21: 7161-7170.PubMed Cafferty WBJ, Gardiner NJ, Gavazzi I, Powell J, McMahon SB, Heath JK, et al: Leukemia Inhibitory Factor Determines the Growth Status of Injured Adult Sensory Neurons. The Journal of Neuroscience. 2001, 21: 7161-7170.PubMed
123.
go back to reference Dowsing BJ, Morrison WA, Nicola NA, Starkey GP, Bucci T, Kilpatrick TJ: Leukemia inhibitory factor is an autocrine survival factor for Schwann cells. J Neurochem. 1999, 73: 96-104.PubMed Dowsing BJ, Morrison WA, Nicola NA, Starkey GP, Bucci T, Kilpatrick TJ: Leukemia inhibitory factor is an autocrine survival factor for Schwann cells. J Neurochem. 1999, 73: 96-104.PubMed
124.
go back to reference Costigan M, Scholz J, Woolf CJ: Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009, 32: 1-32. 10.1146/annurev.neuro.051508.135531.PubMedCentralPubMed Costigan M, Scholz J, Woolf CJ: Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009, 32: 1-32. 10.1146/annurev.neuro.051508.135531.PubMedCentralPubMed
126.
go back to reference Zimmermann M: Pathobiology of neuropathic pain. Eur J Pharmacol. 2001, 429: 23-37. 10.1016/S0014-2999(01)01303-6.PubMed Zimmermann M: Pathobiology of neuropathic pain. Eur J Pharmacol. 2001, 429: 23-37. 10.1016/S0014-2999(01)01303-6.PubMed
127.
go back to reference Myers RR, Heckman HM, Rodriguez M: Reduced hyperalgesia in nerve-injured WLD mice: relationship to nerve fiber phagocytosis, axonal degeneration, and regeneration in normal mice. Exp Neurol. 1996, 141: 94-101. 10.1006/exnr.1996.0142.PubMed Myers RR, Heckman HM, Rodriguez M: Reduced hyperalgesia in nerve-injured WLD mice: relationship to nerve fiber phagocytosis, axonal degeneration, and regeneration in normal mice. Exp Neurol. 1996, 141: 94-101. 10.1006/exnr.1996.0142.PubMed
128.
go back to reference Murphy PG, Ramer MS, Borthwick L, Gauldie J, Richardson PM, Bisby MA: Endogenous interleukin-6 contributes to hypersensitivity to cutaneous stimuli and changes in neuropeptides associated with chronic nerve constriction in mice. Eur J Neurosci. 1999, 11: 2243-2253. 10.1046/j.1460-9568.1999.00641.x.PubMed Murphy PG, Ramer MS, Borthwick L, Gauldie J, Richardson PM, Bisby MA: Endogenous interleukin-6 contributes to hypersensitivity to cutaneous stimuli and changes in neuropeptides associated with chronic nerve constriction in mice. Eur J Neurosci. 1999, 11: 2243-2253. 10.1046/j.1460-9568.1999.00641.x.PubMed
129.
go back to reference Wu G, Ringkamp M, Murinson BB, Pogatzki EM, Hartke TV, Weerahandi HM, et al: Degeneration of myelinated efferent fibers induces spontaneous activity in uninjured C-fiber afferents. J Neurosci. 2002, 22: 7746-7753.PubMed Wu G, Ringkamp M, Murinson BB, Pogatzki EM, Hartke TV, Weerahandi HM, et al: Degeneration of myelinated efferent fibers induces spontaneous activity in uninjured C-fiber afferents. J Neurosci. 2002, 22: 7746-7753.PubMed
130.
go back to reference Safieh-Garabedian B, Poole S, Allchorne A, Winter J, Woolf CJ: Contribution of interleukin-1β to the inflammation-induced increase in nerve growth factor levels and inflammatory hyperalgesia. Br J Pharmacol. 1995, 115: 1265-1275.PubMedCentralPubMed Safieh-Garabedian B, Poole S, Allchorne A, Winter J, Woolf CJ: Contribution of interleukin-1β to the inflammation-induced increase in nerve growth factor levels and inflammatory hyperalgesia. Br J Pharmacol. 1995, 115: 1265-1275.PubMedCentralPubMed
131.
go back to reference Woolf CJ, Allchorne A, Safieh-Garabedian B, Poole S: Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor alpha. Br J Pharmacol. 1997, 121: 417-424. 10.1038/sj.bjp.0701148.PubMedCentralPubMed Woolf CJ, Allchorne A, Safieh-Garabedian B, Poole S: Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor alpha. Br J Pharmacol. 1997, 121: 417-424. 10.1038/sj.bjp.0701148.PubMedCentralPubMed
132.
go back to reference Wagner R, Myers RR: Endoneurial injection of TNF-α produces neuropathic pain behaviors. Neuroreport. 1996, 7: 2897-2901. 10.1097/00001756-199611250-00018.PubMed Wagner R, Myers RR: Endoneurial injection of TNF-α produces neuropathic pain behaviors. Neuroreport. 1996, 7: 2897-2901. 10.1097/00001756-199611250-00018.PubMed
133.
go back to reference Sorkin LS, Doom CM: Epineurial application of TNF elicits an acute mechanical hyperalgesia in the awake rat. Journal of the Peripheral Nervous System. 2000, 5: 96-100. 10.1046/j.1529-8027.2000.00012.x.PubMed Sorkin LS, Doom CM: Epineurial application of TNF elicits an acute mechanical hyperalgesia in the awake rat. Journal of the Peripheral Nervous System. 2000, 5: 96-100. 10.1046/j.1529-8027.2000.00012.x.PubMed
134.
go back to reference Zelenka M, Schafers M, Sommer C: Intraneural injection of interleukin-1β and tumor necrosis factor-α into rat sciatic nerve at physiological doses induces signs of neuropathic pain. Pain. 2005, 116: 257-263. 10.1016/j.pain.2005.04.018.PubMed Zelenka M, Schafers M, Sommer C: Intraneural injection of interleukin-1β and tumor necrosis factor-α into rat sciatic nerve at physiological doses induces signs of neuropathic pain. Pain. 2005, 116: 257-263. 10.1016/j.pain.2005.04.018.PubMed
135.
go back to reference Leung L, Cahill C: TNF-α and neuropathic pain - a review. Journal of Neuroinflammation. 2010, 7: 27-10.1186/1742-2094-7-27.PubMedCentralPubMed Leung L, Cahill C: TNF-α and neuropathic pain - a review. Journal of Neuroinflammation. 2010, 7: 27-10.1186/1742-2094-7-27.PubMedCentralPubMed
136.
go back to reference Ho MK, Springer TA: Mac-2, a novel 32,000 Mr mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies. J Immunol. 1982, 128: 1221-1228.PubMed Ho MK, Springer TA: Mac-2, a novel 32,000 Mr mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies. J Immunol. 1982, 128: 1221-1228.PubMed
137.
go back to reference Ashery U, Yizhar O, Rotblat B, Elad-Sfadia G, Barkan B, Haklai R, et al: Spatiotemporal Organization of Ras Signaling: Rasosomes and the Galectin Switch. Cell Mol Neurobiol. 2006, 26: 471-495.PubMed Ashery U, Yizhar O, Rotblat B, Elad-Sfadia G, Barkan B, Haklai R, et al: Spatiotemporal Organization of Ras Signaling: Rasosomes and the Galectin Switch. Cell Mol Neurobiol. 2006, 26: 471-495.PubMed
138.
go back to reference Yang RY, Rabinovich GA, Liu FT: Galectins: structure, function and therapeutic potential. Expert Rev Mol Med. 2008, 10: e17.PubMed Yang RY, Rabinovich GA, Liu FT: Galectins: structure, function and therapeutic potential. Expert Rev Mol Med. 2008, 10: e17.PubMed
139.
go back to reference Sato S, St-Pierre C, Bhaumik P, Nieminen J: Galectins in innate immunity: dual functions of host soluble β-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs). Immunological Reviews. 2009, 230: 172-187. 10.1111/j.1600-065X.2009.00790.x.PubMed Sato S, St-Pierre C, Bhaumik P, Nieminen J: Galectins in innate immunity: dual functions of host soluble β-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs). Immunological Reviews. 2009, 230: 172-187. 10.1111/j.1600-065X.2009.00790.x.PubMed
140.
go back to reference Makranz C, Cohen G, Baron A, Levidor L, Kodama T, Reichert F, Rotshenker S: Phosphatidylinositol 3-kinase, phosphoinositide-specific phospholipase-Cγ and protein kinase-C signal myelin phagocytosis mediated by complement receptor-3 alone and combined with scavenger receptor-AI/II in macrophages. Neurobiol Dis. 2004, 15: 279-286. 10.1016/j.nbd.2003.11.007.PubMed Makranz C, Cohen G, Baron A, Levidor L, Kodama T, Reichert F, Rotshenker S: Phosphatidylinositol 3-kinase, phosphoinositide-specific phospholipase-Cγ and protein kinase-C signal myelin phagocytosis mediated by complement receptor-3 alone and combined with scavenger receptor-AI/II in macrophages. Neurobiol Dis. 2004, 15: 279-286. 10.1016/j.nbd.2003.11.007.PubMed
141.
go back to reference Cohen G, Makranz C, Spira M, Kodama T, Reichert F, Rotshenker S: Non-PKC DAG/Phorbol-Ester receptor(s) inhibit complement receptor-3 and nPKC inhibit scavenger receptor-AI/II-mediated myelin phagocytosis but cPKC, PI3K, and PLCγ activate myelin phagocytosis by both. Glia. 2006, 53: 538-550. 10.1002/glia.20304.PubMed Cohen G, Makranz C, Spira M, Kodama T, Reichert F, Rotshenker S: Non-PKC DAG/Phorbol-Ester receptor(s) inhibit complement receptor-3 and nPKC inhibit scavenger receptor-AI/II-mediated myelin phagocytosis but cPKC, PI3K, and PLCγ activate myelin phagocytosis by both. Glia. 2006, 53: 538-550. 10.1002/glia.20304.PubMed
142.
go back to reference Shalom-Feuerstein R, Plowman SJ, Rotblat B, Ariotti N, Tian T, Hancock JF, et al: K-Ras Nanoclustering Is Subverted by Overexpression of the Scaffold Protein Galectin-3. Cancer Res. 2008, 68: 6608-6616. 10.1158/0008-5472.CAN-08-1117.PubMedCentralPubMed Shalom-Feuerstein R, Plowman SJ, Rotblat B, Ariotti N, Tian T, Hancock JF, et al: K-Ras Nanoclustering Is Subverted by Overexpression of the Scaffold Protein Galectin-3. Cancer Res. 2008, 68: 6608-6616. 10.1158/0008-5472.CAN-08-1117.PubMedCentralPubMed
143.
go back to reference Rotshenker S, Reichert F, Gitik M, Haklai R, Elad-Sfadia G, Kloog Y: Galectin-3/MAC-2, Ras and PI3K activate complement receptor-3 and scavenger receptor-AI/II mediated myelin phagocytosis in microglia. Glia. 2008, 56: 1607-1613. 10.1002/glia.20713.PubMed Rotshenker S, Reichert F, Gitik M, Haklai R, Elad-Sfadia G, Kloog Y: Galectin-3/MAC-2, Ras and PI3K activate complement receptor-3 and scavenger receptor-AI/II mediated myelin phagocytosis in microglia. Glia. 2008, 56: 1607-1613. 10.1002/glia.20713.PubMed
144.
go back to reference Rotshenker S: The Role of Galectin-3/MAC-2 in the Activation of the Innate-Immune Function of Phagocytosis in Microglia in Injury and Disease. J Mol Neurosci. 2009, 39: 99-103. 10.1007/s12031-009-9186-7.PubMed Rotshenker S: The Role of Galectin-3/MAC-2 in the Activation of the Innate-Immune Function of Phagocytosis in Microglia in Injury and Disease. J Mol Neurosci. 2009, 39: 99-103. 10.1007/s12031-009-9186-7.PubMed
145.
go back to reference Aderka D, Le JM, Vilcek J: IL-6 inhibits lipopolysaccharide-induced tumor necrosis factor production in cultured human monocytes, U937 cells, and in mice. J Immunol. 1989, 143: 3517-3523.PubMed Aderka D, Le JM, Vilcek J: IL-6 inhibits lipopolysaccharide-induced tumor necrosis factor production in cultured human monocytes, U937 cells, and in mice. J Immunol. 1989, 143: 3517-3523.PubMed
147.
go back to reference Gordon S: Alternative activation of macrophages. Nat Rev Immunol. 2003, 3: 23-35. 10.1038/nri978.PubMed Gordon S: Alternative activation of macrophages. Nat Rev Immunol. 2003, 3: 23-35. 10.1038/nri978.PubMed
148.
go back to reference Mosser DM: The many faces of macrophage activation. J Leukoc Biol. 2003, 73: 209-212. 10.1189/jlb.0602325.PubMed Mosser DM: The many faces of macrophage activation. J Leukoc Biol. 2003, 73: 209-212. 10.1189/jlb.0602325.PubMed
149.
go back to reference Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004, 25: 677-686. 10.1016/j.it.2004.09.015.PubMed Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004, 25: 677-686. 10.1016/j.it.2004.09.015.PubMed
150.
go back to reference Auffray C, Sieweke MH, Geissmann F: Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009, 27: 669-692. 10.1146/annurev.immunol.021908.132557.PubMed Auffray C, Sieweke MH, Geissmann F: Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009, 27: 669-692. 10.1146/annurev.immunol.021908.132557.PubMed
151.
go back to reference Benoit M, Desnues B, Mege JL: Macrophage Polarization in Bacterial Infections. J Immunol. 2008, 181: 3733-3739.PubMed Benoit M, Desnues B, Mege JL: Macrophage Polarization in Bacterial Infections. J Immunol. 2008, 181: 3733-3739.PubMed
152.
go back to reference Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ: Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol. 2010, 10: 453-460. 10.1038/nri2784.PubMedCentralPubMed Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ: Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol. 2010, 10: 453-460. 10.1038/nri2784.PubMedCentralPubMed
Metadata
Title
Wallerian degeneration: the innate-immune response to traumatic nerve injury
Author
Shlomo Rotshenker
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2011
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-8-109

Other articles of this Issue 1/2011

Journal of Neuroinflammation 1/2011 Go to the issue