Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2013

Open Access 01-12-2013 | Research

Cellular and temporal expression of NADPH oxidase (NOX) isotypes after brain injury

Authors: Sean J Cooney, Sara L Bermudez-Sabogal, Kimberly R Byrnes

Published in: Journal of Neuroinflammation | Issue 1/2013

Login to get access

Abstract

Background

Brain injury results in an increase in the activity of the reactive oxygen species generating NADPH oxidase (NOX) enzymes. Preliminary studies have shown that NOX2, NOX3, and NOX4 are the most prominently expressed NOX isotypes in the brain. However, the cellular and temporal expression profile of these isotypes in the injured and non-injured brain is currently unclear.

Methods

Double immunofluorescence for NOX isotypes and brain cell types was performed at acute (24 hours), sub-acute (7 days), and chronic (28 days) time points after controlled cortical impact-induced brain injury or sham-injury in rats.

Results

NOX2, NOX3, and NOX4 isotypes were found to be expressed in neurons, astrocytes, and microglia, and this expression was dependent on both cellular source and post-injury time. NOX4 was found in all cell types assessed, while NOX3 was positively identified in neurons only, and NOX2 was identified in microglia and neurons. NOX2 was the most responsive to injury, increasing primarily in microglia in response to injury. Quantitation of this isotype showed a significant increase in NOX2 expression at 24 hours, with reduced expression at 7 days and 28 days post-injury, although expression remained above sham levels at later time points. Cellular confirmation using purified primary or cell line culture demonstrated similar patterns in microglia, astrocytes, and neurons. Further, inhibition of NOX, and more specifically NOX2, reduced pro-inflammatory activity in microglia, demonstrating that NOX is not only up-regulated after stimulation, but may also play a significant role in post-injury neuroinflammation.

Conclusions

This study illustrates the expression profiles of NOX isotypes in the brain after injury, and demonstrates that NOX2, and to a lesser extent, NOX4, may be responsible for the majority of oxidative stress observed acutely after traumatic brain injury. These data may provide insight into the design of future therapeutic approaches.
Literature
1.
go back to reference Faul M, Xu L, Wald MM, Coronado VG: Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002–2006. Atlanta (GA): Centers for Disease Control and Prevention, National Center for Injury Prevention and Control; 2010. Faul M, Xu L, Wald MM, Coronado VG: Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002–2006. Atlanta (GA): Centers for Disease Control and Prevention, National Center for Injury Prevention and Control; 2010.
3.
go back to reference Jin X, Ishii H, Bai Z, Itokazu T, Yamashita T: Temporal changes in cell marker expression and cellular infiltration in a controlled cortical impact model in adult male C57BL/6 mice. PLoS One 2012, 7:e41892.CrossRefPubMedPubMedCentral Jin X, Ishii H, Bai Z, Itokazu T, Yamashita T: Temporal changes in cell marker expression and cellular infiltration in a controlled cortical impact model in adult male C57BL/6 mice. PLoS One 2012, 7:e41892.CrossRefPubMedPubMedCentral
4.
go back to reference Hall ED, Wang JA, Miller DM: Relationship of nitric oxide synthase induction to peroxynitrite-mediated oxidative damage during the first week after experimental traumatic brain injury. Exp Neurol 2012,238(2):176–182.CrossRefPubMedPubMedCentral Hall ED, Wang JA, Miller DM: Relationship of nitric oxide synthase induction to peroxynitrite-mediated oxidative damage during the first week after experimental traumatic brain injury. Exp Neurol 2012,238(2):176–182.CrossRefPubMedPubMedCentral
5.
go back to reference Helmy A, De Simoni MG, Guilfoyle MR, Carpenter KL, Hutchinson PJ: Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury. Prog Neurobiol 2011, 95:352–372.CrossRefPubMed Helmy A, De Simoni MG, Guilfoyle MR, Carpenter KL, Hutchinson PJ: Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury. Prog Neurobiol 2011, 95:352–372.CrossRefPubMed
6.
go back to reference Dalgard CL, Cole JT, Kean WS, Lucky JJ, Sukumar G, McMullen DC, Pollard HB, Watson WD: The cytokine temporal profile in rat cortex after controlled cortical impact. Front Mol Neurosci 2012, 5:6.CrossRefPubMedPubMedCentral Dalgard CL, Cole JT, Kean WS, Lucky JJ, Sukumar G, McMullen DC, Pollard HB, Watson WD: The cytokine temporal profile in rat cortex after controlled cortical impact. Front Mol Neurosci 2012, 5:6.CrossRefPubMedPubMedCentral
7.
go back to reference Bedard K, Krause K-H: The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiol Rev 2007, 87:245–313.CrossRefPubMed Bedard K, Krause K-H: The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiol Rev 2007, 87:245–313.CrossRefPubMed
8.
go back to reference Leto TL, Morand S, Hurt D, Ueyama T: Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal 2009, 11:2607–2619.CrossRefPubMedPubMedCentral Leto TL, Morand S, Hurt D, Ueyama T: Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal 2009, 11:2607–2619.CrossRefPubMedPubMedCentral
10.
go back to reference Savchenko VL: Regulation of NADPH oxidase gene expression with PKA and cytokine IL-4 in neurons and microglia. Neurotox Res 2013,23(3):201–213.CrossRefPubMed Savchenko VL: Regulation of NADPH oxidase gene expression with PKA and cytokine IL-4 in neurons and microglia. Neurotox Res 2013,23(3):201–213.CrossRefPubMed
11.
go back to reference Fischer MT, Sharma R, Lim JL, Haider L, Frischer JM, Drexhage J, Mahad D, Bradl M, van Horssen J, Lassmann H: NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain 2012, 135:886–899.CrossRefPubMedPubMedCentral Fischer MT, Sharma R, Lim JL, Haider L, Frischer JM, Drexhage J, Mahad D, Bradl M, van Horssen J, Lassmann H: NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain 2012, 135:886–899.CrossRefPubMedPubMedCentral
12.
go back to reference Jaquet V, Scapozza L, Clark RA, Krause KH, Lambeth JD: Small-molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxid Redox Signal 2009, 11:2535–2552.CrossRefPubMed Jaquet V, Scapozza L, Clark RA, Krause KH, Lambeth JD: Small-molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxid Redox Signal 2009, 11:2535–2552.CrossRefPubMed
13.
go back to reference Kim D, You B, Jo EK, Han SK, Simon MI, Lee SJ: NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain. Proc Natl Acad Sci U S A 2010, 107:14851–14856.CrossRefPubMedPubMedCentral Kim D, You B, Jo EK, Han SK, Simon MI, Lee SJ: NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain. Proc Natl Acad Sci U S A 2010, 107:14851–14856.CrossRefPubMedPubMedCentral
14.
go back to reference McCann SK, Dusting GJ, Roulston CL: Early increase of Nox4 NADPH oxidase and superoxide generation following endothelin-1-induced stroke in conscious rats. J Neurosci Res 2008, 86:2524–2534.CrossRefPubMed McCann SK, Dusting GJ, Roulston CL: Early increase of Nox4 NADPH oxidase and superoxide generation following endothelin-1-induced stroke in conscious rats. J Neurosci Res 2008, 86:2524–2534.CrossRefPubMed
15.
go back to reference Dugan LL, Ali SS, Shekhtman G, Roberts AJ, Lucero J, Quick KL, Behrens MM: IL-6 mediated degeneration of forebrain GABAergic interneurons and cognitive impairment in aged mice through activation of neuronal NADPH oxidase. PLoS One 2009, 4:e5518.CrossRefPubMedPubMedCentral Dugan LL, Ali SS, Shekhtman G, Roberts AJ, Lucero J, Quick KL, Behrens MM: IL-6 mediated degeneration of forebrain GABAergic interneurons and cognitive impairment in aged mice through activation of neuronal NADPH oxidase. PLoS One 2009, 4:e5518.CrossRefPubMedPubMedCentral
16.
go back to reference Ambasta RK, Kumar P, Griendling KK, Schmidt HH, Busse R, Brandes RP: Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem 2004, 279:45935–45941.CrossRefPubMed Ambasta RK, Kumar P, Griendling KK, Schmidt HH, Busse R, Brandes RP: Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem 2004, 279:45935–45941.CrossRefPubMed
17.
go back to reference Dohi K, Ohtaki H, Nakamachi T, Yofu S, Satoh K, Miyamoto K, Song D, Tsunawaki S, Shioda S, Aruga T: Gp91phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. J Neuroinflammation 2010, 7:41.CrossRefPubMedPubMedCentral Dohi K, Ohtaki H, Nakamachi T, Yofu S, Satoh K, Miyamoto K, Song D, Tsunawaki S, Shioda S, Aruga T: Gp91phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. J Neuroinflammation 2010, 7:41.CrossRefPubMedPubMedCentral
18.
go back to reference Byrnes KR, Garay J, Di Giovanni S, De Biase A, Knoblach SM, Hoffman EP, Movsesyan V, Faden AI: Expression of two temporally distinct microglia-related gene clusters after spinal cord injury. Glia 2006, 53:420–433.CrossRefPubMed Byrnes KR, Garay J, Di Giovanni S, De Biase A, Knoblach SM, Hoffman EP, Movsesyan V, Faden AI: Expression of two temporally distinct microglia-related gene clusters after spinal cord injury. Glia 2006, 53:420–433.CrossRefPubMed
19.
go back to reference Byrnes KR, Washington PM, Knoblach SM, Hoffman E, Faden AI: Delayed inflammatory mRNA and protein expression after spinal cord injury. J Neuroinflammation 2011, 8:130.CrossRefPubMedPubMedCentral Byrnes KR, Washington PM, Knoblach SM, Hoffman E, Faden AI: Delayed inflammatory mRNA and protein expression after spinal cord injury. J Neuroinflammation 2011, 8:130.CrossRefPubMedPubMedCentral
20.
go back to reference Pajoohesh-Ganji A, Knoblach SM, Faden AI, Byrnes KR: Characterization of inflammatory gene expression and galectin-3 function after spinal cord injury in mice. Brain Res 2012, 1475:96–105.CrossRefPubMedPubMedCentral Pajoohesh-Ganji A, Knoblach SM, Faden AI, Byrnes KR: Characterization of inflammatory gene expression and galectin-3 function after spinal cord injury in mice. Brain Res 2012, 1475:96–105.CrossRefPubMedPubMedCentral
21.
go back to reference Nakano Y, Banfi B, Jesaitis AJ, Dinauer MC, Allen LA, Nauseef WM: Critical roles for p22phox in the structural maturation and subcellular targeting of Nox3. Biochem J 2007, 403:97–108.CrossRefPubMedPubMedCentral Nakano Y, Banfi B, Jesaitis AJ, Dinauer MC, Allen LA, Nauseef WM: Critical roles for p22phox in the structural maturation and subcellular targeting of Nox3. Biochem J 2007, 403:97–108.CrossRefPubMedPubMedCentral
22.
go back to reference Cross AR, Segal AW: The NADPH oxidase of professional phagocytes–prototype of the NOX electron transport chain systems. Biochim Biophys Acta 2004, 1657:1–22.CrossRefPubMedPubMedCentral Cross AR, Segal AW: The NADPH oxidase of professional phagocytes–prototype of the NOX electron transport chain systems. Biochim Biophys Acta 2004, 1657:1–22.CrossRefPubMedPubMedCentral
23.
go back to reference Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, Michel JP, Szanto I: Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience 2005, 132:233–238.CrossRefPubMed Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, Michel JP, Szanto I: Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience 2005, 132:233–238.CrossRefPubMed
24.
go back to reference Jiang F, Zhang Y, Dusting GJ: NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 2011, 63:218–242.CrossRefPubMed Jiang F, Zhang Y, Dusting GJ: NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 2011, 63:218–242.CrossRefPubMed
25.
go back to reference Singh IN, Sullivan PG, Deng Y, Mbye LH, Hall ED: Time course of post-traumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: implications for neuroprotective therapy. J Cereb Blood Flow Metab 2006, 26:1407–1418.CrossRefPubMed Singh IN, Sullivan PG, Deng Y, Mbye LH, Hall ED: Time course of post-traumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: implications for neuroprotective therapy. J Cereb Blood Flow Metab 2006, 26:1407–1418.CrossRefPubMed
26.
go back to reference Choi BY, Jang BG, Kim JH, Lee BE, Sohn M, Song HK, Suh SW: Prevention of traumatic brain injury-induced neuronal death by inhibition of NADPH oxidase activation. Brain Res 2012, 1481:49–58.CrossRefPubMed Choi BY, Jang BG, Kim JH, Lee BE, Sohn M, Song HK, Suh SW: Prevention of traumatic brain injury-induced neuronal death by inhibition of NADPH oxidase activation. Brain Res 2012, 1481:49–58.CrossRefPubMed
27.
go back to reference Zhang QG, Laird MD, Han D, Nguyen K, Scott E, Dong Y, Dhandapani KM, Brann DW: Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury. PLoS One 2012, 7:e34504.CrossRefPubMedPubMedCentral Zhang QG, Laird MD, Han D, Nguyen K, Scott E, Dong Y, Dhandapani KM, Brann DW: Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury. PLoS One 2012, 7:e34504.CrossRefPubMedPubMedCentral
28.
go back to reference Song SX, Gao JL, Wang KJ, Li R, Tian YX, Wei JQ, Cui JZ: Attenuation of brain edema and spatial learning de fi cits by the inhibition of NADPH oxidase activity using apocynin following diffuse traumatic brain injury in rats. Mol Med Rep 2013,7(1):327–331.PubMed Song SX, Gao JL, Wang KJ, Li R, Tian YX, Wei JQ, Cui JZ: Attenuation of brain edema and spatial learning de fi cits by the inhibition of NADPH oxidase activity using apocynin following diffuse traumatic brain injury in rats. Mol Med Rep 2013,7(1):327–331.PubMed
29.
go back to reference Carrico KM, Vaishnav R, Hall ED: Temporal and spatial dynamics of peroxynitrite-induced oxidative damage after spinal cord contusion injury. J Neurotrauma 2009, 26:1369–1378.CrossRefPubMedPubMedCentral Carrico KM, Vaishnav R, Hall ED: Temporal and spatial dynamics of peroxynitrite-induced oxidative damage after spinal cord contusion injury. J Neurotrauma 2009, 26:1369–1378.CrossRefPubMedPubMedCentral
30.
go back to reference Kumar A, Stoica BA, Sabirzhanov B, Burns MP, Faden AI, Loane DJ: Traumatic brain injury in aged animals increases lesion size and chronically alters microglial/macrophage classical and alternative activation states. Neurobiol Aging 2013, 34:1397–1411.CrossRefPubMed Kumar A, Stoica BA, Sabirzhanov B, Burns MP, Faden AI, Loane DJ: Traumatic brain injury in aged animals increases lesion size and chronically alters microglial/macrophage classical and alternative activation states. Neurobiol Aging 2013, 34:1397–1411.CrossRefPubMed
31.
go back to reference Turtzo LC, Budde MD, Gold EM, Lewis BK, Janes L, Yarnell A, Grunberg NE, Watson W, Frank JA: The evolution of traumatic brain injury in a rat focal contusion model. NMR Biomed 2013,26(4):468–479.CrossRefPubMed Turtzo LC, Budde MD, Gold EM, Lewis BK, Janes L, Yarnell A, Grunberg NE, Watson W, Frank JA: The evolution of traumatic brain injury in a rat focal contusion model. NMR Biomed 2013,26(4):468–479.CrossRefPubMed
32.
go back to reference Ginis I, Schweizer U, Brenner M, Liu J, Azzam N, Spatz M, Hallenbeck JM: TNF-alpha pretreatment prevents subsequent activation of cultured brain cells with TNF-alpha and hypoxia via ceramide. Am J Physiol 1999, 276:C1171-C1183.PubMed Ginis I, Schweizer U, Brenner M, Liu J, Azzam N, Spatz M, Hallenbeck JM: TNF-alpha pretreatment prevents subsequent activation of cultured brain cells with TNF-alpha and hypoxia via ceramide. Am J Physiol 1999, 276:C1171-C1183.PubMed
33.
go back to reference Chen Y, Balasubramaniyan V, Peng J, Hurlock EC, Tallquist M, Li J, Lu QR: Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nat Protoc 2007, 2:1044–1051.CrossRefPubMed Chen Y, Balasubramaniyan V, Peng J, Hurlock EC, Tallquist M, Li J, Lu QR: Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nat Protoc 2007, 2:1044–1051.CrossRefPubMed
34.
go back to reference Byrnes KR, Stoica B, Loane DJ, Riccio A, Davis MI, Faden AI: Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity. Glia 2009, 57:550–560.CrossRefPubMedPubMedCentral Byrnes KR, Stoica B, Loane DJ, Riccio A, Davis MI, Faden AI: Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity. Glia 2009, 57:550–560.CrossRefPubMedPubMedCentral
35.
go back to reference Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, Pasquale-Styles M, Dietrich WD, Weaver LC: The cellular inflammatory response in human spinal cords after injury. Brain 2006, 129:3249–3269.CrossRefPubMed Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, Pasquale-Styles M, Dietrich WD, Weaver LC: The cellular inflammatory response in human spinal cords after injury. Brain 2006, 129:3249–3269.CrossRefPubMed
36.
go back to reference Bao F, Bailey CS, Gurr KR, Bailey SI, Rosas-Arellano MP, Dekaban GA, Weaver LC: Increased oxidative activity in human blood neutrophils and monocytes after spinal cord injury. Exp Neurol 2009, 215:308–316.CrossRefPubMed Bao F, Bailey CS, Gurr KR, Bailey SI, Rosas-Arellano MP, Dekaban GA, Weaver LC: Increased oxidative activity in human blood neutrophils and monocytes after spinal cord injury. Exp Neurol 2009, 215:308–316.CrossRefPubMed
37.
go back to reference Ju KD, Lim JW, Kim KH, Kim H: Potential role of NADPH oxidase-mediated activation of Jak2/Stat3 and mitogen-activated protein kinases and expression of TGF-beta1 in the pathophysiology of acute pancreatitis. Inflamm Res 2011, 60:791–800.CrossRefPubMed Ju KD, Lim JW, Kim KH, Kim H: Potential role of NADPH oxidase-mediated activation of Jak2/Stat3 and mitogen-activated protein kinases and expression of TGF-beta1 in the pathophysiology of acute pancreatitis. Inflamm Res 2011, 60:791–800.CrossRefPubMed
38.
go back to reference Simonyi A, He Y, Sheng W, Sun AY, Wood WG, Weisman GA, Sun GY: Targeting NADPH oxidase and phospholipases A2 in Alzheimer’s disease. Mol Neurobiol 2010, 41:73–86.CrossRefPubMedPubMedCentral Simonyi A, He Y, Sheng W, Sun AY, Wood WG, Weisman GA, Sun GY: Targeting NADPH oxidase and phospholipases A2 in Alzheimer’s disease. Mol Neurobiol 2010, 41:73–86.CrossRefPubMedPubMedCentral
39.
go back to reference Choi SH, Aid S, Kim HW, Jackson SH, Bosetti F: Inhibition of NADPH oxidase promotes alternative and anti-inflammatory microglial activation during neuroinflammation. J Neurochem 2012, 120:292–301.CrossRefPubMed Choi SH, Aid S, Kim HW, Jackson SH, Bosetti F: Inhibition of NADPH oxidase promotes alternative and anti-inflammatory microglial activation during neuroinflammation. J Neurochem 2012, 120:292–301.CrossRefPubMed
40.
go back to reference Hattori H, Subramanian KK, Sakai J, Jia Y, Li Y, Porter TF, Loison F, Sarraj B, Kasorn A, Jo H, Blanchard C, Zirkle D, McDonald D, Pai SY, Serhan CN, Luo HR: Small-molecule screen identifies reactive oxygen species as key regulators of neutrophil chemotaxis. Proc Natl Acad Sci U S A 2010, 107:3546–3551.CrossRefPubMedPubMedCentral Hattori H, Subramanian KK, Sakai J, Jia Y, Li Y, Porter TF, Loison F, Sarraj B, Kasorn A, Jo H, Blanchard C, Zirkle D, McDonald D, Pai SY, Serhan CN, Luo HR: Small-molecule screen identifies reactive oxygen species as key regulators of neutrophil chemotaxis. Proc Natl Acad Sci U S A 2010, 107:3546–3551.CrossRefPubMedPubMedCentral
42.
go back to reference Takeuchi H, Mizuno T, Zhang G, Wang J, Kawanokuchi J, Kuno R, Suzumura A: Neuritic beading induced by activated microglia is an early feature of neuronal dysfunction toward neuronal death by inhibition of mitochondrial respiration and axonal transport. J Biol Chem 2005, 280:10444–10454.CrossRefPubMed Takeuchi H, Mizuno T, Zhang G, Wang J, Kawanokuchi J, Kuno R, Suzumura A: Neuritic beading induced by activated microglia is an early feature of neuronal dysfunction toward neuronal death by inhibition of mitochondrial respiration and axonal transport. J Biol Chem 2005, 280:10444–10454.CrossRefPubMed
43.
go back to reference Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA: Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci U S A 2005, 102:9936–9941.CrossRefPubMedPubMedCentral Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA: Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci U S A 2005, 102:9936–9941.CrossRefPubMedPubMedCentral
44.
go back to reference Li S, Vana AC, Ribeiro R, Zhang Y: Distinct role of nitric oxide and peroxynitrite in mediating oligodendrocyte toxicity in culture and in experimental autoimmune encephalomyelitis. Neuroscience 2011, 184:107–119.CrossRefPubMed Li S, Vana AC, Ribeiro R, Zhang Y: Distinct role of nitric oxide and peroxynitrite in mediating oligodendrocyte toxicity in culture and in experimental autoimmune encephalomyelitis. Neuroscience 2011, 184:107–119.CrossRefPubMed
45.
go back to reference Li B, Guo YS, Sun MM, Dong H, Wu SY, Wu DX, Li CY: The NADPH oxidase is involved in lipopolysaccharide-mediated motor neuron injury. Brain Res 2008, 1226:199–208.CrossRefPubMed Li B, Guo YS, Sun MM, Dong H, Wu SY, Wu DX, Li CY: The NADPH oxidase is involved in lipopolysaccharide-mediated motor neuron injury. Brain Res 2008, 1226:199–208.CrossRefPubMed
46.
go back to reference Wang Q, Tompkins KD, Simonyi A, Korthuis RJ, Sun AY, Sun GY: Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res 2006, 1090:182–189.CrossRefPubMed Wang Q, Tompkins KD, Simonyi A, Korthuis RJ, Sun AY, Sun GY: Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res 2006, 1090:182–189.CrossRefPubMed
47.
48.
go back to reference Csanyi G, Cifuentes-Pagano E, Al Ghouleh I, Ranayhossaini DJ, Egana L, Lopes LR, Jackson HM, Kelley EE, Pagano PJ: Nox2 B-loop peptide, Nox2ds, specifically inhibits the NADPH oxidase Nox2. Free Radic Biol Med 2011, 51:1116–1125.CrossRefPubMedPubMedCentral Csanyi G, Cifuentes-Pagano E, Al Ghouleh I, Ranayhossaini DJ, Egana L, Lopes LR, Jackson HM, Kelley EE, Pagano PJ: Nox2 B-loop peptide, Nox2ds, specifically inhibits the NADPH oxidase Nox2. Free Radic Biol Med 2011, 51:1116–1125.CrossRefPubMedPubMedCentral
49.
go back to reference Vendrov AE, Madamanchi NR, Niu XL, Molnar KC, Runge M, Szyndralewiez C, Page P, Runge MS: NADPH oxidases regulate CD44 and hyaluronic acid expression in thrombin-treated vascular smooth muscle cells and in atherosclerosis. J Biol Chem 2010, 285:26545–26557.CrossRefPubMedPubMedCentral Vendrov AE, Madamanchi NR, Niu XL, Molnar KC, Runge M, Szyndralewiez C, Page P, Runge MS: NADPH oxidases regulate CD44 and hyaluronic acid expression in thrombin-treated vascular smooth muscle cells and in atherosclerosis. J Biol Chem 2010, 285:26545–26557.CrossRefPubMedPubMedCentral
50.
go back to reference Guemez-Gamboa A, Estrada-Sanchez AM, Montiel T, Paramo B, Massieu L, Moran J: Activation of NOX2 by the stimulation of ionotropic and metabotropic glutamate receptors contributes to glutamate neurotoxicity in vivo through the production of reactive oxygen species and calpain activation. J Neuropathol Exp Neurol 2011, 70:1020–1035.CrossRefPubMed Guemez-Gamboa A, Estrada-Sanchez AM, Montiel T, Paramo B, Massieu L, Moran J: Activation of NOX2 by the stimulation of ionotropic and metabotropic glutamate receptors contributes to glutamate neurotoxicity in vivo through the production of reactive oxygen species and calpain activation. J Neuropathol Exp Neurol 2011, 70:1020–1035.CrossRefPubMed
51.
go back to reference Reddy PV, Gandhi N, Samikkannu T, Saiyed Z, Agudelo M, Yndart A, Khatavkar P, Nair MP: HIV-1 gp120 induces antioxidant response element-mediated expression in primary astrocytes: role in HIV associated neurocognitive disorder. Neurochem Int 2012, 61:807–814.CrossRefPubMed Reddy PV, Gandhi N, Samikkannu T, Saiyed Z, Agudelo M, Yndart A, Khatavkar P, Nair MP: HIV-1 gp120 induces antioxidant response element-mediated expression in primary astrocytes: role in HIV associated neurocognitive disorder. Neurochem Int 2012, 61:807–814.CrossRefPubMed
52.
go back to reference Reyes RC, Brennan AM, Shen Y, Baldwin Y, Swanson RA: Activation of neuronal NMDA receptors induces superoxide-mediated oxidative stress in neighboring neurons and astrocytes. J Neurosci 2012, 32:12973–12978.CrossRefPubMedPubMedCentral Reyes RC, Brennan AM, Shen Y, Baldwin Y, Swanson RA: Activation of neuronal NMDA receptors induces superoxide-mediated oxidative stress in neighboring neurons and astrocytes. J Neurosci 2012, 32:12973–12978.CrossRefPubMedPubMedCentral
53.
go back to reference Kallenborn-Gerhardt W, Schroder K, Del Turco D, Lu R, Kynast K, Kosowski J, Niederberger E, Shah AM, Brandes RP, Geisslinger G, Schmidtko A: NADPH oxidase-4 maintains neuropathic pain after peripheral nerve injury. J Neurosci 2012, 32:10136–10145.CrossRefPubMed Kallenborn-Gerhardt W, Schroder K, Del Turco D, Lu R, Kynast K, Kosowski J, Niederberger E, Shah AM, Brandes RP, Geisslinger G, Schmidtko A: NADPH oxidase-4 maintains neuropathic pain after peripheral nerve injury. J Neurosci 2012, 32:10136–10145.CrossRefPubMed
54.
go back to reference Lin CC, Hsieh HL, Shih RH, Chi PL, Cheng SE, Chen JC, Yang CM: NADPH oxidase 2-derived reactive oxygen species signal contributes to bradykinin-induced matrix metalloproteinase-9 expression and cell migration in brain astrocytes. Cell Commun Signal 2012, 10:35.CrossRefPubMedPubMedCentral Lin CC, Hsieh HL, Shih RH, Chi PL, Cheng SE, Chen JC, Yang CM: NADPH oxidase 2-derived reactive oxygen species signal contributes to bradykinin-induced matrix metalloproteinase-9 expression and cell migration in brain astrocytes. Cell Commun Signal 2012, 10:35.CrossRefPubMedPubMedCentral
55.
go back to reference Khanna A, Guo M, Mehra M, Royal W 3rd: Inflammation and oxidative stress induced by cigarette smoke in Lewis rat brains. J Neuroimmunol 2013,254(1–2):69–75.CrossRefPubMed Khanna A, Guo M, Mehra M, Royal W 3rd: Inflammation and oxidative stress induced by cigarette smoke in Lewis rat brains. J Neuroimmunol 2013,254(1–2):69–75.CrossRefPubMed
Metadata
Title
Cellular and temporal expression of NADPH oxidase (NOX) isotypes after brain injury
Authors
Sean J Cooney
Sara L Bermudez-Sabogal
Kimberly R Byrnes
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2013
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-10-155

Other articles of this Issue 1/2013

Journal of Neuroinflammation 1/2013 Go to the issue