Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2013

Open Access 01-12-2013 | Research

PD-L1 enhances CNS inflammation and infarct volume following experimental stroke in mice in opposition to PD-1

Authors: Sheetal Bodhankar, Yingxin Chen, Arthur A Vandenbark, Stephanie J Murphy, Halina Offner

Published in: Journal of Neuroinflammation | Issue 1/2013

Login to get access

Abstract

Background

Stroke severity is worsened by recruitment of inflammatory immune cells into the brain. This process depends in part on T cell activation, in which the B7 family of co-stimulatory molecules plays a pivotal role. Previous studies demonstrated more severe infarcts in mice lacking programmed death-1 (PD-1), a member of the B7 family, thus implicating PD-1 as a key factor in limiting stroke severity. The purpose of this study was to determine if this protective effect of PD-1 involves either of its ligands, PD-L1 or PD-L2.

Methods

Central nervous system (CNS) inflammation and infarct volume were evaluated in male PD-L1 and PD-L2 knockout (-/-) mice undergoing 60 minutes of middle cerebral artery occlusion (MCAO) followed by 96 hours of reperfusion and compared to wild-type (WT) C57BL/6J mice.

Results

PD-L1-/- and PD-L2-/- mice had smaller total infarct volumes compared to WT mice. The PD-L1-/- and to a lesser extent PD-L2-/- mice had reduced levels of proinflammatory activated microglia and/or infiltrating monocytes and CD4+ T cells in the ischemic hemispheres. There was a reduction in ischemia-related splenic atrophy accompanied by lower activation status of splenic T cells and monocytes in the absence of PD-L1, suggesting a pathogenic rather than a regulatory role for both PD-1 ligands (PD-Ls). Suppressor T cells (IL-10-producing CD8+CD122+ T cells) trafficked to the brain in PD-L1-/- mice and there was decreased expression of CD80 on splenic antigen-presenting cells (APCs) as compared to the WT and PD-L2-/- mice.

Conclusions

Our novel observations are the first to implicate PD-L1 involvement in worsening outcome of experimental stroke. The presence of suppressor T cells in the right MCAO-inflicted hemisphere in mice lacking PD-L1 implicates these cells as possible key contributors for controlling adverse effects of ischemia. Increased expression of CD80 on APCs in WT and PD-L2-/- mice suggests an overriding interaction leading to T cell activation. Conversely, low CD80 expression by APCs, along with increased PD-1 and PD-L2 expression in PD-L1-/- mice suggests alternative T cell signaling pathways, leading to a suppressor phenotype. These results suggest that agents (for example antibodies) that can target and neutralize PD-L1/2 may have therapeutic potential for treatment of human stroke.
Literature
1.
go back to reference Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD: Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab 2006,26(5):654–665.CrossRefPubMed Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD: Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab 2006,26(5):654–665.CrossRefPubMed
2.
go back to reference Offner H, Subramanian S, Parker SM, Wang C, Afentoulis ME, Lewis A, Vandenbark AA, Hurn PD: Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol 2006,176(11):6523–6531.CrossRefPubMed Offner H, Subramanian S, Parker SM, Wang C, Afentoulis ME, Lewis A, Vandenbark AA, Hurn PD: Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol 2006,176(11):6523–6531.CrossRefPubMed
3.
go back to reference Kleinschnitz CSG: Inflammation and the role of immune mediators in the pathophysiology of ischemic stroke. In Inflammation Research Perspectives. Volume 2. Edited by: Romano GT. New York: Nova; 2008:81–112. Kleinschnitz CSG: Inflammation and the role of immune mediators in the pathophysiology of ischemic stroke. In Inflammation Research Perspectives. Volume 2. Edited by: Romano GT. New York: Nova; 2008:81–112.
4.
go back to reference Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E, Magnus T: Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 2009,40(5):1849–1857.CrossRefPubMed Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E, Magnus T: Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 2009,40(5):1849–1857.CrossRefPubMed
5.
go back to reference Stevens SL, Bao J, Hollis J, Lessov NS, Clark WM, Stenzel-Poore MP: The use of flow cytometry to evaluate temporal changes in inflammatory cells following focal cerebral ischemia in mice. Brain Res 2002,932(1–2):110–119.CrossRefPubMed Stevens SL, Bao J, Hollis J, Lessov NS, Clark WM, Stenzel-Poore MP: The use of flow cytometry to evaluate temporal changes in inflammatory cells following focal cerebral ischemia in mice. Brain Res 2002,932(1–2):110–119.CrossRefPubMed
6.
go back to reference Wang PY, Kao CH, Mui MY, Wang SJ: Leukocyte infiltration in acute hemispheric ischemic stroke. Stroke 1993,24(2):236–240.CrossRefPubMed Wang PY, Kao CH, Mui MY, Wang SJ: Leukocyte infiltration in acute hemispheric ischemic stroke. Stroke 1993,24(2):236–240.CrossRefPubMed
8.
go back to reference Schroeter M, Jander S, Witte OW, Stoll G: Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion. J Neuroimmunol 1994,55(2):195–203.CrossRefPubMed Schroeter M, Jander S, Witte OW, Stoll G: Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion. J Neuroimmunol 1994,55(2):195–203.CrossRefPubMed
9.
go back to reference Yilmaz G, Arumugam TV, Stokes KY, Granger DN: Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 2006,113(17):2105–2112.CrossRefPubMed Yilmaz G, Arumugam TV, Stokes KY, Granger DN: Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 2006,113(17):2105–2112.CrossRefPubMed
10.
go back to reference Bugeon L, Dallman MJ: Costimulation of T cells. Am J Respir Crit Care Med 2000,162(4 Pt 2):S164-S168.CrossRefPubMed Bugeon L, Dallman MJ: Costimulation of T cells. Am J Respir Crit Care Med 2000,162(4 Pt 2):S164-S168.CrossRefPubMed
12.
go back to reference Keir ME, Butte MJ, Freeman GJ, Sharpe AH: PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008, 26:677–704.CrossRefPubMed Keir ME, Butte MJ, Freeman GJ, Sharpe AH: PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008, 26:677–704.CrossRefPubMed
13.
go back to reference Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y, Shin T, Tsuchiya H, Pardoll DM, Okumura K, Azuma M, Yagita H: Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 2002,169(10):5538–5545.CrossRefPubMed Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y, Shin T, Tsuchiya H, Pardoll DM, Okumura K, Azuma M, Yagita H: Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 2002,169(10):5538–5545.CrossRefPubMed
14.
go back to reference Ansari MJ, Salama AD, Chitnis T, Smith RN, Yagita H, Akiba H, Yamazaki T, Azuma M, Iwai H, Khoury SJ, Auchincloss H Jr, Sayegh MH: The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med 2003,198(1):63–69.CrossRefPubMedPubMedCentral Ansari MJ, Salama AD, Chitnis T, Smith RN, Yagita H, Akiba H, Yamazaki T, Azuma M, Iwai H, Khoury SJ, Auchincloss H Jr, Sayegh MH: The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med 2003,198(1):63–69.CrossRefPubMedPubMedCentral
15.
16.
go back to reference Salama AD, Chitnis T, Imitola J, Ansari MJ, Akiba H, Tushima F, Azuma M, Yagita H, Sayegh MH, Khoury SJ: Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med 2003,198(1):71–78.CrossRefPubMedPubMedCentral Salama AD, Chitnis T, Imitola J, Ansari MJ, Akiba H, Tushima F, Azuma M, Yagita H, Sayegh MH, Khoury SJ: Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med 2003,198(1):71–78.CrossRefPubMedPubMedCentral
17.
go back to reference Wiendl H, Mitsdoerffer M, Schneider D, Chen L, Lochmuller H, Melms A, Weller M: Human muscle cells express a B7-related molecule, B7-H1, with strong negative immune regulatory potential: a novel mechanism of counterbalancing the immune attack in idiopathic inflammatory myopathies. FASEB J 2003,17(13):1892–1894.PubMed Wiendl H, Mitsdoerffer M, Schneider D, Chen L, Lochmuller H, Melms A, Weller M: Human muscle cells express a B7-related molecule, B7-H1, with strong negative immune regulatory potential: a novel mechanism of counterbalancing the immune attack in idiopathic inflammatory myopathies. FASEB J 2003,17(13):1892–1894.PubMed
18.
go back to reference Liang SC, Latchman YE, Buhlmann JE, Tomczak MF, Horwitz BH, Freeman GJ, Sharpe AH: Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol 2003,33(10):2706–2716.CrossRefPubMed Liang SC, Latchman YE, Buhlmann JE, Tomczak MF, Horwitz BH, Freeman GJ, Sharpe AH: Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol 2003,33(10):2706–2716.CrossRefPubMed
19.
go back to reference Ishida M, Iwai Y, Tanaka Y, Okazaki T, Freeman GJ, Minato N, Honjo T: Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol Lett 2002,84(1):57–62.CrossRefPubMed Ishida M, Iwai Y, Tanaka Y, Okazaki T, Freeman GJ, Minato N, Honjo T: Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol Lett 2002,84(1):57–62.CrossRefPubMed
20.
go back to reference Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, Koulmanda M, Freeman GJ, Sayegh MH, Sharpe AH: Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 2006,203(4):883–895.CrossRefPubMedPubMedCentral Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, Koulmanda M, Freeman GJ, Sayegh MH, Sharpe AH: Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 2006,203(4):883–895.CrossRefPubMedPubMedCentral
21.
go back to reference Zhong X, Tumang JR, Gao W, Bai C, Rothstein TL: PD-L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for V(H)11/V(H)12 and phosphatidylcholine binding. Eur J Immunol 2007,37(9):2405–2410.CrossRefPubMed Zhong X, Tumang JR, Gao W, Bai C, Rothstein TL: PD-L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for V(H)11/V(H)12 and phosphatidylcholine binding. Eur J Immunol 2007,37(9):2405–2410.CrossRefPubMed
22.
go back to reference Ren X, Akiyoshi K, Vandenbark AA, Hurn PD, Offner H: Programmed death-1 pathway limits central nervous system inflammation and neurologic deficits in murine experimental stroke. Stroke 2011,42(9):2578–2583.CrossRefPubMedPubMedCentral Ren X, Akiyoshi K, Vandenbark AA, Hurn PD, Offner H: Programmed death-1 pathway limits central nervous system inflammation and neurologic deficits in murine experimental stroke. Stroke 2011,42(9):2578–2583.CrossRefPubMedPubMedCentral
23.
go back to reference Latchman YE, Liang SC, Wu Y, Chernova T, Sobel RA, Klemm M, Kuchroo VK, Freeman GJ, Sharpe AH: PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc Natl Acad Sci USA 2004,101(29):10691–10696.CrossRefPubMedPubMedCentral Latchman YE, Liang SC, Wu Y, Chernova T, Sobel RA, Klemm M, Kuchroo VK, Freeman GJ, Sharpe AH: PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc Natl Acad Sci USA 2004,101(29):10691–10696.CrossRefPubMedPubMedCentral
24.
go back to reference Chen Y, Bodhankar S, Murphy SJ, Vandenbark AA, Alkayed NJ, Offner H: Intrastriatal B-cell administration limits infarct size after stroke in B-cell deficient mice. Metab Brain Dis 2012,27(4):487–493.CrossRefPubMedPubMedCentral Chen Y, Bodhankar S, Murphy SJ, Vandenbark AA, Alkayed NJ, Offner H: Intrastriatal B-cell administration limits infarct size after stroke in B-cell deficient mice. Metab Brain Dis 2012,27(4):487–493.CrossRefPubMedPubMedCentral
25.
go back to reference Campanella M, Sciorati C, Tarozzo G, Beltramo M: Flow cytometric analysis of inflammatory cells in ischemic rat brain. Stroke 2002,33(2):586–592.CrossRefPubMed Campanella M, Sciorati C, Tarozzo G, Beltramo M: Flow cytometric analysis of inflammatory cells in ischemic rat brain. Stroke 2002,33(2):586–592.CrossRefPubMed
26.
go back to reference Zhang B, Subramanian S, Dziennis S, Jia J, Uchida M, Akiyoshi K, Migliati E, Lewis AD, Vandenbark AA, Offner H, Hurn PD: Estradiol and G1 reduce infarct size and improve immunosuppression after experimental stroke. J Immunol 2010,184(8):4087–4094.CrossRefPubMedPubMedCentral Zhang B, Subramanian S, Dziennis S, Jia J, Uchida M, Akiyoshi K, Migliati E, Lewis AD, Vandenbark AA, Offner H, Hurn PD: Estradiol and G1 reduce infarct size and improve immunosuppression after experimental stroke. J Immunol 2010,184(8):4087–4094.CrossRefPubMedPubMedCentral
27.
go back to reference Subramanian S, Yates M, Vandenbark AA, Offner H: Oestrogen-mediated protection of experimental autoimmune encephalomyelitis in the absence of Foxp3+ regulatory T cells implicates compensatory pathways including regulatory B cells. Immunology 2011,132(3):340–347.CrossRefPubMedPubMedCentral Subramanian S, Yates M, Vandenbark AA, Offner H: Oestrogen-mediated protection of experimental autoimmune encephalomyelitis in the absence of Foxp3+ regulatory T cells implicates compensatory pathways including regulatory B cells. Immunology 2011,132(3):340–347.CrossRefPubMedPubMedCentral
28.
go back to reference Yanaba K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M, Tedder TF: A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 2008,28(5):639–650.CrossRefPubMed Yanaba K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M, Tedder TF: A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 2008,28(5):639–650.CrossRefPubMed
29.
go back to reference Rifa’i M, Kawamoto Y, Nakashima I, Suzuki H: Essential roles of CD8+CD122+ regulatory T cells in the maintenance of T cell homeostasis. J Exp Med 2004,200(9):1123–1134.CrossRefPubMedPubMedCentral Rifa’i M, Kawamoto Y, Nakashima I, Suzuki H: Essential roles of CD8+CD122+ regulatory T cells in the maintenance of T cell homeostasis. J Exp Med 2004,200(9):1123–1134.CrossRefPubMedPubMedCentral
30.
go back to reference Rifa’i M, Shi Z, Zhang SY, Lee YH, Shiku H, Isobe K, Suzuki H: CD8+CD122+ regulatory T cells recognize activated T cells via conventional MHC class I-alphabetaTCR interaction and become IL-10-producing active regulatory cells. Int Immunol 2008,20(7):937–947.CrossRefPubMed Rifa’i M, Shi Z, Zhang SY, Lee YH, Shiku H, Isobe K, Suzuki H: CD8+CD122+ regulatory T cells recognize activated T cells via conventional MHC class I-alphabetaTCR interaction and become IL-10-producing active regulatory cells. Int Immunol 2008,20(7):937–947.CrossRefPubMed
31.
go back to reference Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ: Programmed death-1 ligand 1 interacts specifically with the B7–1 costimulatory molecule to inhibit T cell responses. Immunity 2007,27(1):111–122.CrossRefPubMedPubMedCentral Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ: Programmed death-1 ligand 1 interacts specifically with the B7–1 costimulatory molecule to inhibit T cell responses. Immunity 2007,27(1):111–122.CrossRefPubMedPubMedCentral
32.
go back to reference Park JJ, Omiya R, Matsumura Y, Sakoda Y, Kuramasu A, Augustine MM, Yao S, Tsushima F, Narazaki H, Anand S, Liu Y, Strome SE, Chen L, Tamada K: B7-H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance. Blood 2010,116(8):1291–1298.CrossRefPubMedPubMedCentral Park JJ, Omiya R, Matsumura Y, Sakoda Y, Kuramasu A, Augustine MM, Yao S, Tsushima F, Narazaki H, Anand S, Liu Y, Strome SE, Chen L, Tamada K: B7-H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance. Blood 2010,116(8):1291–1298.CrossRefPubMedPubMedCentral
33.
go back to reference Castillo J, Dávalos A, Noya M: Progression of ischaemic stroke and excitotoxicaminoacids. Lancet 1997,349(9045):79–83.CrossRefPubMed Castillo J, Dávalos A, Noya M: Progression of ischaemic stroke and excitotoxicaminoacids. Lancet 1997,349(9045):79–83.CrossRefPubMed
34.
go back to reference Davalos A, Toni D, Iweins F, Lesaffre E, Bastianello S, Castillo J: Neurological deterioration in acute ischemic stroke: potential predictors and associated factors in the European cooperative acute stroke study (ECASS) I. Stroke 1999,30(12):2631–2636.CrossRefPubMed Davalos A, Toni D, Iweins F, Lesaffre E, Bastianello S, Castillo J: Neurological deterioration in acute ischemic stroke: potential predictors and associated factors in the European cooperative acute stroke study (ECASS) I. Stroke 1999,30(12):2631–2636.CrossRefPubMed
35.
go back to reference Jander S, Kraemer M, Schroeter M, Witte OW, Stoll G: Lymphocytic infiltration and expression of intercellular adhesion molecule-1 in photochemically induced ischemia of the rat cortex. J Cereb Blood Flow Metab 1995,15(1):42–51.CrossRefPubMed Jander S, Kraemer M, Schroeter M, Witte OW, Stoll G: Lymphocytic infiltration and expression of intercellular adhesion molecule-1 in photochemically induced ischemia of the rat cortex. J Cereb Blood Flow Metab 1995,15(1):42–51.CrossRefPubMed
36.
go back to reference Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, Vandenbark AA, Offner H: T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab 2007,27(11):1798–1805.CrossRefPubMedPubMedCentral Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, Vandenbark AA, Offner H: T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab 2007,27(11):1798–1805.CrossRefPubMedPubMedCentral
37.
go back to reference Kleinschnitz C, Schwab N, Kraft P, Hagedorn I, Dreykluft A, Schwarz T, Austinat M, Nieswandt B, Wiendl H, Stoll G: Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood 2010,115(18):3835–3842.CrossRefPubMed Kleinschnitz C, Schwab N, Kraft P, Hagedorn I, Dreykluft A, Schwarz T, Austinat M, Nieswandt B, Wiendl H, Stoll G: Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood 2010,115(18):3835–3842.CrossRefPubMed
38.
go back to reference McColl BW, Rothwell NJ, Allan SM: Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. J Neurosci 2007,27(16):4403–4412.CrossRefPubMed McColl BW, Rothwell NJ, Allan SM: Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. J Neurosci 2007,27(16):4403–4412.CrossRefPubMed
39.
go back to reference Elkind MS, Cheng J, Rundek T, Boden-Albala B, Sacco RL: Leukocyte count predicts outcome after ischemic stroke: the Northern Manhattan Stroke Study. J Stroke Cerebrovasc Dis 2004,13(5):220–227.CrossRefPubMed Elkind MS, Cheng J, Rundek T, Boden-Albala B, Sacco RL: Leukocyte count predicts outcome after ischemic stroke: the Northern Manhattan Stroke Study. J Stroke Cerebrovasc Dis 2004,13(5):220–227.CrossRefPubMed
40.
go back to reference Chen L: Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 2004,4(5):336–347.CrossRefPubMed Chen L: Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 2004,4(5):336–347.CrossRefPubMed
41.
go back to reference Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ: The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 2007,8(3):239–245.CrossRefPubMed Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ: The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 2007,8(3):239–245.CrossRefPubMed
42.
go back to reference Subudhi SK, Zhou P, Yerian LM, Chin RK, Lo JC, Anders RA, Sun Y, Chen L, Wang Y, Alegre ML, Fu YX: Local expression of B7-H1 promotes organ-specific autoimmunity and transplant rejection. J Clin Invest 2004,113(5):694–700.CrossRefPubMedPubMedCentral Subudhi SK, Zhou P, Yerian LM, Chin RK, Lo JC, Anders RA, Sun Y, Chen L, Wang Y, Alegre ML, Fu YX: Local expression of B7-H1 promotes organ-specific autoimmunity and transplant rejection. J Clin Invest 2004,113(5):694–700.CrossRefPubMedPubMedCentral
43.
go back to reference Zozulya AL, Ortler S, Fabry Z, Sandor M, Wiendl H: The level of B7 homologue 1 expression on brain DC is decisive for CD8 Treg cell recruitment into the CNS during EAE. Eur J Immunol 2009,39(6):1536–1543.CrossRefPubMedPubMedCentral Zozulya AL, Ortler S, Fabry Z, Sandor M, Wiendl H: The level of B7 homologue 1 expression on brain DC is decisive for CD8 Treg cell recruitment into the CNS during EAE. Eur J Immunol 2009,39(6):1536–1543.CrossRefPubMedPubMedCentral
44.
go back to reference Waisman A, Yogev N: B7-H1 and CD8+ Treg: the enigmatic role of B7-H1 in peripheral tolerance. Eur J Immunol 2009,39(6):1448–1451.CrossRefPubMed Waisman A, Yogev N: B7-H1 and CD8+ Treg: the enigmatic role of B7-H1 in peripheral tolerance. Eur J Immunol 2009,39(6):1448–1451.CrossRefPubMed
45.
go back to reference Nishimura H, Honjo T: PD-1: an inhibitory immunoreceptor involved in peripheral tolerance. Trends Immunol 2001,22(5):265–268.CrossRefPubMed Nishimura H, Honjo T: PD-1: an inhibitory immunoreceptor involved in peripheral tolerance. Trends Immunol 2001,22(5):265–268.CrossRefPubMed
46.
go back to reference Nishimura H, Minato N, Nakano T, Honjo T: Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int Immunol 1998,10(10):1563–1572.CrossRefPubMed Nishimura H, Minato N, Nakano T, Honjo T: Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int Immunol 1998,10(10):1563–1572.CrossRefPubMed
47.
go back to reference Barreto GE, Sun X, Xu L, Giffard RG: Astrocyte proliferation following stroke in the mouse depends on distance from the infarct. PLoS One 2011,6(11):e27881.CrossRefPubMedPubMedCentral Barreto GE, Sun X, Xu L, Giffard RG: Astrocyte proliferation following stroke in the mouse depends on distance from the infarct. PLoS One 2011,6(11):e27881.CrossRefPubMedPubMedCentral
Metadata
Title
PD-L1 enhances CNS inflammation and infarct volume following experimental stroke in mice in opposition to PD-1
Authors
Sheetal Bodhankar
Yingxin Chen
Arthur A Vandenbark
Stephanie J Murphy
Halina Offner
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2013
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-10-111

Other articles of this Issue 1/2013

Journal of Neuroinflammation 1/2013 Go to the issue