Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2013

Open Access 01-12-2013 | Research

Minocycline prevents retinal inflammation and vascular permeability following ischemia-reperfusion injury

Authors: Steven F Abcouwer, Cheng-mao Lin, Sumathi Shanmugam, Arivalagan Muthusamy, Alistair J Barber, David A Antonetti

Published in: Journal of Neuroinflammation | Issue 1/2013

Login to get access

Abstract

Background

Many retinal diseases are associated with vascular dysfunction accompanied by neuroinflammation. We examined the ability of minocycline (Mino), a tetracycline derivative with anti-inflammatory and neuroprotective properties, to prevent vascular permeability and inflammation following retinal ischemia-reperfusion (IR) injury, a model of retinal neurodegeneration with breakdown of the blood-retinal barrier (BRB).

Methods

Male Sprague–Dawley rats were subjected to 45 min of pressure-induced retinal ischemia, with the contralateral eye serving as control. Rats were treated with Mino prior to and following IR. At 48 h after reperfusion, retinal gene expression, cellular inflammation, Evan’s blue dye leakage, tight junction protein organization, caspase-3 activation, and DNA fragmentation were measured. Cellular inflammation was quantified by flow-cytometric evaluation of retinal tissue using the myeloid marker CD11b and leukocyte common antigen CD45 to differentiate and quantify CD11b+/CD45low microglia, CD11b+/CD45hi myeloid leukocytes and CD11bneg/CD45hi lymphocytes. Major histocompatibility complex class II (MHCII) immunoreactivity was used to determine the inflammatory state of these cells.

Results

Mino treatment significantly inhibited IR-induced retinal vascular permeability and disruption of tight junction organization. Retinal IR injury significantly altered mRNA expression for 21 of 25 inflammation- and gliosis-related genes examined. Of these, Mino treatment effectively attenuated IR-induced expression of lipocalin 2 (LCN2), serpin peptidase inhibitor clade A member 3 N (SERPINA3N), TNF receptor superfamily member 12A (TNFRSF12A), monocyte chemoattractant-1 (MCP-1, CCL2) and intercellular adhesion molecule-1 (ICAM-1). A marked increase in leukostasis of both myeloid leukocytes and lymphocytes was observed following IR. Mino treatment significantly reduced retinal leukocyte numbers following IR and was particularly effective in decreasing the appearance of MHCII+ inflammatory leukocytes. Surprisingly, Mino did not significantly inhibit retinal cell death in this model.

Conclusions

IR induces a retinal neuroinflammation within hours of reperfusion characterized by inflammatory gene expression, leukocyte adhesion and invasion, and vascular permeability. Despite Mino significantly inhibiting these responses, it failed to block neurodegeneration.
Appendix
Available only for authorised users
Literature
1.
go back to reference Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, Melena J: Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 2004, 23:91–147.CrossRefPubMed Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, Melena J: Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 2004, 23:91–147.CrossRefPubMed
2.
go back to reference Jehle T, Wingert K, Dimitriu C, Meschede W, Lasseck J, Bach M, Lagreze WA: Quantification of ischemic damage in the rat retina: a comparative study using evoked potentials, electroretinography, and histology. Invest Ophthalmol Vis Sci 2008, 49:1056–1064.CrossRefPubMed Jehle T, Wingert K, Dimitriu C, Meschede W, Lasseck J, Bach M, Lagreze WA: Quantification of ischemic damage in the rat retina: a comparative study using evoked potentials, electroretinography, and histology. Invest Ophthalmol Vis Sci 2008, 49:1056–1064.CrossRefPubMed
3.
go back to reference Husain S, Potter DE, Crosson CE: Opioid receptor-activation: retina protected from ischemic injury. Invest Ophthalmol Vis Sci 2009, 50:3853–3859.CrossRefPubMed Husain S, Potter DE, Crosson CE: Opioid receptor-activation: retina protected from ischemic injury. Invest Ophthalmol Vis Sci 2009, 50:3853–3859.CrossRefPubMed
4.
go back to reference Konno T, Sato A, Uchibori T, Nagai A, Kogi K, Nakahata N: Adenosine A2A receptor mediated protective effect of 2-(6-cyano-1-hexyn-1-yl)adenosine on retinal ischaemia/reperfusion damage in rats. Br J Ophthalmol 2006, 90:900–905.CrossRefPubMedPubMedCentral Konno T, Sato A, Uchibori T, Nagai A, Kogi K, Nakahata N: Adenosine A2A receptor mediated protective effect of 2-(6-cyano-1-hexyn-1-yl)adenosine on retinal ischaemia/reperfusion damage in rats. Br J Ophthalmol 2006, 90:900–905.CrossRefPubMedPubMedCentral
5.
go back to reference Nishijima K, Ng YS, Zhong L, Bradley J, Schubert W, Jo N, Akita J, Samuelsson SJ, Robinson GS, Adamis AP, Shima DT: Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol 2007, 171:53–67.CrossRefPubMedPubMedCentral Nishijima K, Ng YS, Zhong L, Bradley J, Schubert W, Jo N, Akita J, Samuelsson SJ, Robinson GS, Adamis AP, Shima DT: Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol 2007, 171:53–67.CrossRefPubMedPubMedCentral
6.
go back to reference Kim BJ, Braun TA, Wordinger RJ, Clark AF: Progressive morphological changes and impaired retinal function associated with temporal regulation of gene expression after retinal ischemia/reperfusion injury in mice. Mol Neurodegener 2013, 8:21.CrossRefPubMedPubMedCentral Kim BJ, Braun TA, Wordinger RJ, Clark AF: Progressive morphological changes and impaired retinal function associated with temporal regulation of gene expression after retinal ischemia/reperfusion injury in mice. Mol Neurodegener 2013, 8:21.CrossRefPubMedPubMedCentral
7.
go back to reference Abcouwer SF, Lin CM, Wolpert EB, Shanmugam S, Schaefer EW, Freeman WM, Barber AJ, Antonetti DA: Effects of ischemic preconditioning and bevacizumab on apoptosis and vascular permeability following retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 2010, 51:5920–5933.CrossRefPubMed Abcouwer SF, Lin CM, Wolpert EB, Shanmugam S, Schaefer EW, Freeman WM, Barber AJ, Antonetti DA: Effects of ischemic preconditioning and bevacizumab on apoptosis and vascular permeability following retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 2010, 51:5920–5933.CrossRefPubMed
8.
go back to reference Danesh-Meyer HV, Kerr NM, Zhang J, Eady EK, O’Carroll SJ, Nicholson LF, Johnson CS, Green CR: Connexin43 mimetic peptide reduces vascular leak and retinal ganglion cell death following retinal ischaemia. Brain 2012, 135:506–520.CrossRefPubMed Danesh-Meyer HV, Kerr NM, Zhang J, Eady EK, O’Carroll SJ, Nicholson LF, Johnson CS, Green CR: Connexin43 mimetic peptide reduces vascular leak and retinal ganglion cell death following retinal ischaemia. Brain 2012, 135:506–520.CrossRefPubMed
9.
go back to reference Zheng L, Gong B, Hatala DA, Kern TS: Retinal ischemia and reperfusion causes capillary degeneration: similarities to diabetes. Invest Ophthalmol Vis Sci 2007, 48:361–367.CrossRefPubMed Zheng L, Gong B, Hatala DA, Kern TS: Retinal ischemia and reperfusion causes capillary degeneration: similarities to diabetes. Invest Ophthalmol Vis Sci 2007, 48:361–367.CrossRefPubMed
10.
go back to reference Chen B, Caballero S, Seo S, Grant MB, Lewin AS: Delivery of antioxidant enzyme genes to protect against ischemia/reperfusion-induced injury to retinal microvasculature. Invest Ophthalmol Vis Sci 2009, 50:5587–5595.CrossRefPubMedPubMedCentral Chen B, Caballero S, Seo S, Grant MB, Lewin AS: Delivery of antioxidant enzyme genes to protect against ischemia/reperfusion-induced injury to retinal microvasculature. Invest Ophthalmol Vis Sci 2009, 50:5587–5595.CrossRefPubMedPubMedCentral
11.
go back to reference Wei Y, Gong J, Yoshida T, Eberhart CG, Xu Z, Kombairaju P, Sporn MB, Handa JT, Duh EJ: Nrf2 has a protective role against neuronal and capillary degeneration in retinal ischemia-reperfusion injury. Free Radic Biol Med 2011, 51:216–224.CrossRefPubMedPubMedCentral Wei Y, Gong J, Yoshida T, Eberhart CG, Xu Z, Kombairaju P, Sporn MB, Handa JT, Duh EJ: Nrf2 has a protective role against neuronal and capillary degeneration in retinal ischemia-reperfusion injury. Free Radic Biol Med 2011, 51:216–224.CrossRefPubMedPubMedCentral
12.
go back to reference Gustavsson C, Agardh CD, Hagert P, Agardh E: Inflammatory markers in nondiabetic and diabetic rat retinas exposed to ischemia followed by reperfusion. Retina 2008, 28:645–652.CrossRefPubMed Gustavsson C, Agardh CD, Hagert P, Agardh E: Inflammatory markers in nondiabetic and diabetic rat retinas exposed to ischemia followed by reperfusion. Retina 2008, 28:645–652.CrossRefPubMed
13.
go back to reference Chen FT, Yang CM, Yang CH: The protective effects of the proteasome inhibitor bortezomib (velcade) on ischemia-reperfusion injury in the rat retina. PLoS One 2013, 8:e64262.CrossRefPubMedPubMedCentral Chen FT, Yang CM, Yang CH: The protective effects of the proteasome inhibitor bortezomib (velcade) on ischemia-reperfusion injury in the rat retina. PLoS One 2013, 8:e64262.CrossRefPubMedPubMedCentral
14.
go back to reference Dvoriantchikova G, Barakat D, Brambilla R, Agudelo C, Hernandez E, Bethea JR, Shestopalov VI, Ivanov D: Inactivation of astroglial NF-kappaB promotes survival of retinal neurons following ischemic injury. Eur J Neurosci 2009, 30:175–185.CrossRefPubMedPubMedCentral Dvoriantchikova G, Barakat D, Brambilla R, Agudelo C, Hernandez E, Bethea JR, Shestopalov VI, Ivanov D: Inactivation of astroglial NF-kappaB promotes survival of retinal neurons following ischemic injury. Eur J Neurosci 2009, 30:175–185.CrossRefPubMedPubMedCentral
15.
go back to reference Dvoriantchikova G, Barakat DJ, Hernandez E, Shestopalov VI, Ivanov D: Liposome-delivered ATP effectively protects the retina against ischemia-reperfusion injury. Mol Vis 2010, 16:2882–2890.PubMedPubMedCentral Dvoriantchikova G, Barakat DJ, Hernandez E, Shestopalov VI, Ivanov D: Liposome-delivered ATP effectively protects the retina against ischemia-reperfusion injury. Mol Vis 2010, 16:2882–2890.PubMedPubMedCentral
16.
go back to reference Dvoriantchikova G, Barakat DJ, Hernandez E, Shestopalov VI, Ivanov D: Toll-like receptor 4 contributes to retinal ischemia/reperfusion injury. Mol Vis 2010, 16:1907–1912.PubMedPubMedCentral Dvoriantchikova G, Barakat DJ, Hernandez E, Shestopalov VI, Ivanov D: Toll-like receptor 4 contributes to retinal ischemia/reperfusion injury. Mol Vis 2010, 16:1907–1912.PubMedPubMedCentral
17.
go back to reference Hangai M, Yoshimura N, Honda Y: Increased cytokine gene expression in rat retina following transient ischemia. Ophthalmic Res 1996, 28:248–254.CrossRefPubMed Hangai M, Yoshimura N, Honda Y: Increased cytokine gene expression in rat retina following transient ischemia. Ophthalmic Res 1996, 28:248–254.CrossRefPubMed
18.
go back to reference Nishijima K, Kiryu J, Tsujikawa A, Honjo M, Nonaka A, Yamashiro K, Kamizuru H, Ieki Y, Tanihara H, Honda Y, Ogura Y: Inhibitory effects of antithrombin III on interactions between blood cells and endothelial cells during retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 2003, 44:332–341.CrossRefPubMed Nishijima K, Kiryu J, Tsujikawa A, Honjo M, Nonaka A, Yamashiro K, Kamizuru H, Ieki Y, Tanihara H, Honda Y, Ogura Y: Inhibitory effects of antithrombin III on interactions between blood cells and endothelial cells during retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 2003, 44:332–341.CrossRefPubMed
19.
go back to reference Hirose F, Kiryu J, Miyamoto K, Nishijima K, Miyahara S, Katsuta H, Tamura H, Honda Y: In vivo evaluation of retinal injury after transient ischemia in hypertensive rats. Hypertension 2004, 43:1098–1102.CrossRefPubMed Hirose F, Kiryu J, Miyamoto K, Nishijima K, Miyahara S, Katsuta H, Tamura H, Honda Y: In vivo evaluation of retinal injury after transient ischemia in hypertensive rats. Hypertension 2004, 43:1098–1102.CrossRefPubMed
20.
go back to reference Miyahara S, Kiryu J, Tsujikawa A, Katsuta H, Nishijima K, Miyamoto K, Yamashiro K, Nonaka A, Honda Y: Argatroban attenuates leukocyte- and platelet-endothelial cell interactions after transient retinal ischemia. Stroke 2003, 34:2043–2049.CrossRefPubMed Miyahara S, Kiryu J, Tsujikawa A, Katsuta H, Nishijima K, Miyamoto K, Yamashiro K, Nonaka A, Honda Y: Argatroban attenuates leukocyte- and platelet-endothelial cell interactions after transient retinal ischemia. Stroke 2003, 34:2043–2049.CrossRefPubMed
21.
go back to reference Cho KJ, Kim JH, Park HY, Park CK: Glial cell response and iNOS expression in the optic nerve head and retina of the rat following acute high IOP ischemia-reperfusion. Brain Res 2011, 1403:67–77.CrossRefPubMed Cho KJ, Kim JH, Park HY, Park CK: Glial cell response and iNOS expression in the optic nerve head and retina of the rat following acute high IOP ischemia-reperfusion. Brain Res 2011, 1403:67–77.CrossRefPubMed
22.
go back to reference Hirata A, Inatani M, Inomata Y, Yonemura N, Kawaji T, Honjo M, Tanihara H: Y-27632, a Rho-associated protein kinase inhibitor, attenuates neuronal cell death after transient retinal ischemia. Graefes Arch Clin Exp Ophthalmol 2008, 246:51–59.CrossRefPubMed Hirata A, Inatani M, Inomata Y, Yonemura N, Kawaji T, Honjo M, Tanihara H: Y-27632, a Rho-associated protein kinase inhibitor, attenuates neuronal cell death after transient retinal ischemia. Graefes Arch Clin Exp Ophthalmol 2008, 246:51–59.CrossRefPubMed
23.
go back to reference Griffin MO, Ceballos G, Villarreal FJ: Tetracycline compounds with non-antimicrobial organ protective properties: possible mechanisms of action. Pharmacol Res 2011, 63:102–107.CrossRefPubMed Griffin MO, Ceballos G, Villarreal FJ: Tetracycline compounds with non-antimicrobial organ protective properties: possible mechanisms of action. Pharmacol Res 2011, 63:102–107.CrossRefPubMed
25.
go back to reference Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, Levison SW: Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 2005, 54:1559–1565.CrossRefPubMed Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, Levison SW: Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 2005, 54:1559–1565.CrossRefPubMed
26.
go back to reference Chang CJ, Cherng CH, Liou WS, Liao CL: Minocycline partially inhibits caspase-3 activation and photoreceptor degeneration after photic injury. Ophthalmic Res 2005, 37:202–213.CrossRefPubMed Chang CJ, Cherng CH, Liou WS, Liao CL: Minocycline partially inhibits caspase-3 activation and photoreceptor degeneration after photic injury. Ophthalmic Res 2005, 37:202–213.CrossRefPubMed
27.
go back to reference Zhang C, Lei B, Lam TT, Yang F, Sinha D, Tso MO: Neuroprotection of photoreceptors by minocycline in light-induced retinal degeneration. Invest Ophthalmol Vis Sci 2004, 45:2753–2759.CrossRefPubMed Zhang C, Lei B, Lam TT, Yang F, Sinha D, Tso MO: Neuroprotection of photoreceptors by minocycline in light-induced retinal degeneration. Invest Ophthalmol Vis Sci 2004, 45:2753–2759.CrossRefPubMed
28.
go back to reference Levkovitch-Verbin H, Kalev-Landoy M, Habot-Wilner Z, Melamed S: Minocycline delays death of retinal ganglion cells in experimental glaucoma and after optic nerve transection. Arch Ophthalmol 2006, 124:520–526.CrossRefPubMed Levkovitch-Verbin H, Kalev-Landoy M, Habot-Wilner Z, Melamed S: Minocycline delays death of retinal ganglion cells in experimental glaucoma and after optic nerve transection. Arch Ophthalmol 2006, 124:520–526.CrossRefPubMed
29.
go back to reference Bosco A, Inman DM, Steele MR, Wu G, Soto I, Marsh-Armstrong N, Hubbard WC, Calkins DJ, Horner PJ, Vetter ML: Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2 J mouse model of glaucoma. Invest Ophthalmol Vis Sci 2008, 49:1437–1446.CrossRefPubMed Bosco A, Inman DM, Steele MR, Wu G, Soto I, Marsh-Armstrong N, Hubbard WC, Calkins DJ, Horner PJ, Vetter ML: Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2 J mouse model of glaucoma. Invest Ophthalmol Vis Sci 2008, 49:1437–1446.CrossRefPubMed
30.
go back to reference Baptiste DC, Powell KJ, Jollimore CA, Hamilton C, LeVatte TL, Archibald ML, Chauhan BC, Robertson GS, Kelly ME: Effects of minocycline and tetracycline on retinal ganglion cell survival after axotomy. Neuroscience 2005, 134:575–582.CrossRefPubMed Baptiste DC, Powell KJ, Jollimore CA, Hamilton C, LeVatte TL, Archibald ML, Chauhan BC, Robertson GS, Kelly ME: Effects of minocycline and tetracycline on retinal ganglion cell survival after axotomy. Neuroscience 2005, 134:575–582.CrossRefPubMed
31.
go back to reference Yang L, Kim JH, Kovacs KD, Arroyo JG, Chen DF: Minocycline inhibition of photoreceptor degeneration. Arch Ophthalmol 2009, 127:1475–1480.CrossRefPubMed Yang L, Kim JH, Kovacs KD, Arroyo JG, Chen DF: Minocycline inhibition of photoreceptor degeneration. Arch Ophthalmol 2009, 127:1475–1480.CrossRefPubMed
32.
go back to reference Chen Y-I, Lee Y-J, Wilkie DA, Lin C-T: Evaluation of potential topical and systemic neuroprotective agents for ocular hypertension-induced retinal ischemia-reperfusion injury. Vet Ophthalmol 2013. doi: 10.1111/vop.12105 Chen Y-I, Lee Y-J, Wilkie DA, Lin C-T: Evaluation of potential topical and systemic neuroprotective agents for ocular hypertension-induced retinal ischemia-reperfusion injury. Vet Ophthalmol 2013. doi: 10.1111/vop.12105
33.
go back to reference Xu Q, Qaum T, Adamis AP: Sensitive blood-retinal barrier breakdown quantitation using Evans blue. Invest Ophthalmol Vis Sci 2001, 42:789–794.PubMed Xu Q, Qaum T, Adamis AP: Sensitive blood-retinal barrier breakdown quantitation using Evans blue. Invest Ophthalmol Vis Sci 2001, 42:789–794.PubMed
34.
go back to reference Fanning AS, Anderson JM: Zonula occludens-1 and -2 are cytosolic scaffolds that regulate the assembly of cellular junctions. Ann N Y Acad Sci 2009, 1165:113–120.CrossRefPubMedPubMedCentral Fanning AS, Anderson JM: Zonula occludens-1 and -2 are cytosolic scaffolds that regulate the assembly of cellular junctions. Ann N Y Acad Sci 2009, 1165:113–120.CrossRefPubMedPubMedCentral
35.
go back to reference Laitinen L: Griffonia simplicifolia lectins bind specifically to endothelial cells and some epithelial cells in mouse tissues. Histochem J 1987, 19:225–234.CrossRefPubMed Laitinen L: Griffonia simplicifolia lectins bind specifically to endothelial cells and some epithelial cells in mouse tissues. Histochem J 1987, 19:225–234.CrossRefPubMed
36.
go back to reference Matsumoto H, Kumon Y, Watanabe H, Ohnishi T, Shudou M, Ii C, Takahashi H, Imai Y, Tanaka J: Antibodies to CD11b, CD68, and lectin label neutrophils rather than microglia in traumatic and ischemic brain lesions. J Neurosci Res 2007, 85:994–1009.CrossRefPubMed Matsumoto H, Kumon Y, Watanabe H, Ohnishi T, Shudou M, Ii C, Takahashi H, Imai Y, Tanaka J: Antibodies to CD11b, CD68, and lectin label neutrophils rather than microglia in traumatic and ischemic brain lesions. J Neurosci Res 2007, 85:994–1009.CrossRefPubMed
37.
go back to reference Chen YD, Xu X, Xia X, Wu H, Liu K, Zheng Z, Zhu D: MMP9 is involved in glycation end-products induced increase of retinal vascular permeability in rats and the therapeutic effect of minocycline. Curr Eye Res 2008, 33:977–983.CrossRefPubMed Chen YD, Xu X, Xia X, Wu H, Liu K, Zheng Z, Zhu D: MMP9 is involved in glycation end-products induced increase of retinal vascular permeability in rats and the therapeutic effect of minocycline. Curr Eye Res 2008, 33:977–983.CrossRefPubMed
38.
go back to reference Sun C, Li XX, He XJ, Zhang Q, Tao Y: Neuroprotective effect of minocycline in a rat model of branch retinal vein occlusion. Exp Eye Res 2013, 113C:105–116.CrossRef Sun C, Li XX, He XJ, Zhang Q, Tao Y: Neuroprotective effect of minocycline in a rat model of branch retinal vein occlusion. Exp Eye Res 2013, 113C:105–116.CrossRef
39.
go back to reference Nagel S, Su Y, Horstmann S, Heiland S, Gardner H, Koziol J, Martinez-Torres FJ, Wagner S: Minocycline and hypothermia for reperfusion injury after focal cerebral ischemia in the rat: effects on BBB breakdown and MMP expression in the acute and subacute phase. Brain Res 2008, 1188:198–206.CrossRefPubMed Nagel S, Su Y, Horstmann S, Heiland S, Gardner H, Koziol J, Martinez-Torres FJ, Wagner S: Minocycline and hypothermia for reperfusion injury after focal cerebral ischemia in the rat: effects on BBB breakdown and MMP expression in the acute and subacute phase. Brain Res 2008, 1188:198–206.CrossRefPubMed
40.
go back to reference Sutton TA, Kelly KJ, Mang HE, Plotkin Z, Sandoval RM, Dagher PC: Minocycline reduces renal microvascular leakage in a rat model of ischemic renal injury. Am J Physiol Renal Physiol 2005, 288:F91-F97.CrossRefPubMed Sutton TA, Kelly KJ, Mang HE, Plotkin Z, Sandoval RM, Dagher PC: Minocycline reduces renal microvascular leakage in a rat model of ischemic renal injury. Am J Physiol Renal Physiol 2005, 288:F91-F97.CrossRefPubMed
41.
go back to reference Wasserman JK, Schlichter LC: Minocycline protects the blood–brain barrier and reduces edema following intracerebral hemorrhage in the rat. Exp Neurol 2007, 207:227–237.CrossRefPubMed Wasserman JK, Schlichter LC: Minocycline protects the blood–brain barrier and reduces edema following intracerebral hemorrhage in the rat. Exp Neurol 2007, 207:227–237.CrossRefPubMed
42.
go back to reference Koistinaho M, Malm TM, Kettunen MI, Goldsteins G, Starckx S, Kauppinen RA, Opdenakker G, Koistinaho J: Minocycline protects against permanent cerebral ischemia in wild type but not in matrix metalloprotease-9-deficient mice. J Cereb Blood Flow Metab 2005, 25:460–467.CrossRefPubMed Koistinaho M, Malm TM, Kettunen MI, Goldsteins G, Starckx S, Kauppinen RA, Opdenakker G, Koistinaho J: Minocycline protects against permanent cerebral ischemia in wild type but not in matrix metalloprotease-9-deficient mice. J Cereb Blood Flow Metab 2005, 25:460–467.CrossRefPubMed
43.
go back to reference Wu J, Yang S, Hua Y, Liu W, Keep RF, Xi G: Minocycline attenuates brain edema, brain atrophy and neurological deficits after intracerebral hemorrhage. Acta Neurochir Suppl 2010, 106:147–150.CrossRefPubMed Wu J, Yang S, Hua Y, Liu W, Keep RF, Xi G: Minocycline attenuates brain edema, brain atrophy and neurological deficits after intracerebral hemorrhage. Acta Neurochir Suppl 2010, 106:147–150.CrossRefPubMed
44.
go back to reference Wu J, Yang S, Xi G, Fu G, Keep RF, Hua Y: Minocycline reduces intracerebral hemorrhage-induced brain injury. Neurol Res 2009, 31:183–188.CrossRefPubMed Wu J, Yang S, Xi G, Fu G, Keep RF, Hua Y: Minocycline reduces intracerebral hemorrhage-induced brain injury. Neurol Res 2009, 31:183–188.CrossRefPubMed
45.
go back to reference Homsi S, Federico F, Croci N, Palmier B, Plotkine M, Marchand-Leroux C, Jafarian-Tehrani M: Minocycline effects on cerebral edema: relations with inflammatory and oxidative stress markers following traumatic brain injury in mice. Brain Res 2009, 1291:122–132.CrossRefPubMed Homsi S, Federico F, Croci N, Palmier B, Plotkine M, Marchand-Leroux C, Jafarian-Tehrani M: Minocycline effects on cerebral edema: relations with inflammatory and oxidative stress markers following traumatic brain injury in mice. Brain Res 2009, 1291:122–132.CrossRefPubMed
46.
go back to reference Mishra MK, Dutta K, Saheb SK, Basu A: Understanding the molecular mechanism of blood–brain barrier damage in an experimental model of Japanese encephalitis: correlation with minocycline administration as a therapeutic agent. Neurochem Int 2009, 55:717–723.CrossRefPubMed Mishra MK, Dutta K, Saheb SK, Basu A: Understanding the molecular mechanism of blood–brain barrier damage in an experimental model of Japanese encephalitis: correlation with minocycline administration as a therapeutic agent. Neurochem Int 2009, 55:717–723.CrossRefPubMed
47.
go back to reference Ryu JK, McLarnon JG: Minocycline or iNOS inhibition block 3-nitrotyrosine increases and blood–brain barrier leakiness in amyloid beta-peptide-injected rat hippocampus. Exp Neurol 2006, 198:552–557.CrossRefPubMed Ryu JK, McLarnon JG: Minocycline or iNOS inhibition block 3-nitrotyrosine increases and blood–brain barrier leakiness in amyloid beta-peptide-injected rat hippocampus. Exp Neurol 2006, 198:552–557.CrossRefPubMed
48.
go back to reference Zhao C, Ling Z, Newman MB, Bhatia A, Carvey PM: TNF-alpha knockout and minocycline treatment attenuates blood–brain barrier leakage in MPTP-treated mice. Neurobiol Dis 2007, 26:36–46.CrossRefPubMedPubMedCentral Zhao C, Ling Z, Newman MB, Bhatia A, Carvey PM: TNF-alpha knockout and minocycline treatment attenuates blood–brain barrier leakage in MPTP-treated mice. Neurobiol Dis 2007, 26:36–46.CrossRefPubMedPubMedCentral
49.
go back to reference Cukras CA, Petrou P, Chew EY, Meyerle CB, Wong WT: Oral minocycline for the treatment of diabetic macular edema (DME): results of a phase I/II clinical study. Invest Ophthalmol Vis Sci 2012, 53:3865–3874.CrossRefPubMedPubMedCentral Cukras CA, Petrou P, Chew EY, Meyerle CB, Wong WT: Oral minocycline for the treatment of diabetic macular edema (DME): results of a phase I/II clinical study. Invest Ophthalmol Vis Sci 2012, 53:3865–3874.CrossRefPubMedPubMedCentral
50.
51.
go back to reference Baptiste DC, Hartwick AT, Jollimore CA, Baldridge WH, Seigel GM, Kelly ME: An investigation of the neuroprotective effects of tetracycline derivatives in experimental models of retinal cell death. Mol Pharmacol 2004, 66:1113–1122.CrossRefPubMed Baptiste DC, Hartwick AT, Jollimore CA, Baldridge WH, Seigel GM, Kelly ME: An investigation of the neuroprotective effects of tetracycline derivatives in experimental models of retinal cell death. Mol Pharmacol 2004, 66:1113–1122.CrossRefPubMed
52.
go back to reference Mathalone N, Lahat N, Rahat MA, Bahar-Shany K, Oron Y, Geyer O: The involvement of matrix metalloproteinases 2 and 9 in rat retinal ischemia. Graefes Arch Clin Exp Ophthalmol 2007, 245:725–732.CrossRefPubMed Mathalone N, Lahat N, Rahat MA, Bahar-Shany K, Oron Y, Geyer O: The involvement of matrix metalloproteinases 2 and 9 in rat retinal ischemia. Graefes Arch Clin Exp Ophthalmol 2007, 245:725–732.CrossRefPubMed
53.
go back to reference Krueger M, Hartig W, Reichenbach A, Bechmann I, Michalski D: Blood–brain barrier breakdown after embolic stroke in rats occurs without ultrastructural evidence for disrupting tight junctions. PLoS One 2013, 8:e56419.CrossRefPubMedPubMedCentral Krueger M, Hartig W, Reichenbach A, Bechmann I, Michalski D: Blood–brain barrier breakdown after embolic stroke in rats occurs without ultrastructural evidence for disrupting tight junctions. PLoS One 2013, 8:e56419.CrossRefPubMedPubMedCentral
54.
go back to reference Graeber MB, Li W, Rodriguez ML: Role of microglia in CNS inflammation. FEBS Lett 2011, 585:3798–3805.CrossRefPubMed Graeber MB, Li W, Rodriguez ML: Role of microglia in CNS inflammation. FEBS Lett 2011, 585:3798–3805.CrossRefPubMed
55.
go back to reference Nishiwaki A, Ueda T, Ugawa S, Shimada S, Ogura Y: Upregulation of P-selectin and intercellular adhesion molecule-1 after retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 2003, 44:4931–4935.CrossRefPubMed Nishiwaki A, Ueda T, Ugawa S, Shimada S, Ogura Y: Upregulation of P-selectin and intercellular adhesion molecule-1 after retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 2003, 44:4931–4935.CrossRefPubMed
56.
go back to reference Tsujikawa A, Ogura Y, Hiroshiba N, Miyamoto K, Kiryu J, Tojo SJ, Miyasaka M, Honda Y: Retinal ischemia-reperfusion injury attenuated by blocking of adhesion molecules of vascular endothelium. Invest Ophthalmol Vis Sci 1999, 40:1183–1190.PubMed Tsujikawa A, Ogura Y, Hiroshiba N, Miyamoto K, Kiryu J, Tojo SJ, Miyasaka M, Honda Y: Retinal ischemia-reperfusion injury attenuated by blocking of adhesion molecules of vascular endothelium. Invest Ophthalmol Vis Sci 1999, 40:1183–1190.PubMed
57.
go back to reference Gregerson DS, Yang J: CD45-positive cells of the retina and their responsiveness to in vivo and in vitro treatment with IFN-gamma or anti-CD40. Invest Ophthalmol Vis Sci 2003, 44:3083–3093.CrossRefPubMed Gregerson DS, Yang J: CD45-positive cells of the retina and their responsiveness to in vivo and in vitro treatment with IFN-gamma or anti-CD40. Invest Ophthalmol Vis Sci 2003, 44:3083–3093.CrossRefPubMed
58.
go back to reference Sedgwick JD, Schwender S, Imrich H, Dorries R, Butcher GW, ter Meulen V: Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci USA 1991, 88:7438–7442.CrossRefPubMedPubMedCentral Sedgwick JD, Schwender S, Imrich H, Dorries R, Butcher GW, ter Meulen V: Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci USA 1991, 88:7438–7442.CrossRefPubMedPubMedCentral
59.
go back to reference Sedgwick JD, Schwender S, Gregersen R, Dorries R, ter Meulen V: Resident macrophages (ramified microglia) of the adult brown Norway rat central nervous system are constitutively major histocompatibility complex class II positive. J Exp Med 1993, 177:1145–1152.CrossRefPubMed Sedgwick JD, Schwender S, Gregersen R, Dorries R, ter Meulen V: Resident macrophages (ramified microglia) of the adult brown Norway rat central nervous system are constitutively major histocompatibility complex class II positive. J Exp Med 1993, 177:1145–1152.CrossRefPubMed
60.
go back to reference Renno T, Krakowski M, Piccirillo C, Lin JY, Owens T: TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines. J Immunol 1995, 154:944–953.PubMed Renno T, Krakowski M, Piccirillo C, Lin JY, Owens T: TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines. J Immunol 1995, 154:944–953.PubMed
61.
go back to reference Dick AD, Ford AL, Forrester JV, Sedgwick JD: Flow cytometric identification of a minority population of MHC class II positive cells in the normal rat retina distinct from CD45lowCD11b/c + CD4low parenchymal microglia. Br J Ophthalmol 1995, 79:834–840.CrossRefPubMedPubMedCentral Dick AD, Ford AL, Forrester JV, Sedgwick JD: Flow cytometric identification of a minority population of MHC class II positive cells in the normal rat retina distinct from CD45lowCD11b/c + CD4low parenchymal microglia. Br J Ophthalmol 1995, 79:834–840.CrossRefPubMedPubMedCentral
62.
63.
go back to reference Holling TM, Schooten E, van Den Elsen PJ: Function and regulation of MHC class II molecules in T-lymphocytes: of mice and men. Hum Immunol 2004, 65:282–290.CrossRefPubMed Holling TM, Schooten E, van Den Elsen PJ: Function and regulation of MHC class II molecules in T-lymphocytes: of mice and men. Hum Immunol 2004, 65:282–290.CrossRefPubMed
64.
go back to reference Nikodemova M, Watters JJ, Jackson SJ, Yang SK, Duncan ID: Minocycline down-regulates MHC II expression in microglia and macrophages through inhibition of IRF-1 and protein kinase C (PKC)alpha/betaII. J Biol Chem 2007, 282:15208–15216.CrossRefPubMed Nikodemova M, Watters JJ, Jackson SJ, Yang SK, Duncan ID: Minocycline down-regulates MHC II expression in microglia and macrophages through inhibition of IRF-1 and protein kinase C (PKC)alpha/betaII. J Biol Chem 2007, 282:15208–15216.CrossRefPubMed
65.
go back to reference Yrjanheikki J, Keinanen R, Pellikka M, Hokfelt T, Koistinaho J: Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 1998, 95:15769–15774.CrossRefPubMedPubMedCentral Yrjanheikki J, Keinanen R, Pellikka M, Hokfelt T, Koistinaho J: Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 1998, 95:15769–15774.CrossRefPubMedPubMedCentral
66.
go back to reference Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersch SM, Hobbs W, Vonsattel JP, Cha JH, Friedlander RM: Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 2000, 6:797–801.CrossRefPubMed Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersch SM, Hobbs W, Vonsattel JP, Cha JH, Friedlander RM: Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 2000, 6:797–801.CrossRefPubMed
67.
go back to reference Vincent JA, Mohr S: Inhibition of caspase-1/interleukin-1beta signaling prevents degeneration of retinal capillaries in diabetes and galactosemia. Diabetes 2007, 56:224–230.CrossRefPubMed Vincent JA, Mohr S: Inhibition of caspase-1/interleukin-1beta signaling prevents degeneration of retinal capillaries in diabetes and galactosemia. Diabetes 2007, 56:224–230.CrossRefPubMed
68.
go back to reference Seo JH, Guo S, Lok J, Navaratna D, Whalen MJ, Kim KW, Lo EH: Neurovascular matrix metalloproteinases and the blood–brain barrier. Curr Pharm Des 2012, 18:3645–3648.CrossRefPubMedPubMedCentral Seo JH, Guo S, Lok J, Navaratna D, Whalen MJ, Kim KW, Lo EH: Neurovascular matrix metalloproteinases and the blood–brain barrier. Curr Pharm Des 2012, 18:3645–3648.CrossRefPubMedPubMedCentral
69.
go back to reference Griffin MO, Fricovsky E, Ceballos G, Villarreal F: Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature. Am J Physiol Cell Physiol 2010, 299:C539-C548.CrossRefPubMedPubMedCentral Griffin MO, Fricovsky E, Ceballos G, Villarreal F: Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature. Am J Physiol Cell Physiol 2010, 299:C539-C548.CrossRefPubMedPubMedCentral
70.
go back to reference Seal JB, Gewertz BL: Vascular dysfunction in ischemia-reperfusion injury. Ann Vasc Surg 2005, 19:572–584.CrossRefPubMed Seal JB, Gewertz BL: Vascular dysfunction in ischemia-reperfusion injury. Ann Vasc Surg 2005, 19:572–584.CrossRefPubMed
Metadata
Title
Minocycline prevents retinal inflammation and vascular permeability following ischemia-reperfusion injury
Authors
Steven F Abcouwer
Cheng-mao Lin
Sumathi Shanmugam
Arivalagan Muthusamy
Alistair J Barber
David A Antonetti
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2013
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-10-149

Other articles of this Issue 1/2013

Journal of Neuroinflammation 1/2013 Go to the issue