Skip to main content
Top
Published in: Journal of Translational Medicine 1/2011

Open Access 01-12-2011 | Methodology

High throughput RNAi assay optimization using adherent cell cytometry

Authors: Christoph S Nabzdyk, Maggie Chun, Leena Pradhan, Frank W LoGerfo

Published in: Journal of Translational Medicine | Issue 1/2011

Login to get access

Abstract

Background

siRNA technology is a promising tool for gene therapy of vascular disease. Due to the multitude of reagents and cell types, RNAi experiment optimization can be time-consuming. In this study adherent cell cytometry was used to rapidly optimize siRNA transfection in human aortic vascular smooth muscle cells (AoSMC).

Methods

AoSMC were seeded at a density of 3000-8000 cells/well of a 96well plate. 24 hours later AoSMC were transfected with either non-targeting unlabeled siRNA (50 nM), or non-targeting labeled siRNA, siGLO Red (5 or 50 nM) using no transfection reagent, HiPerfect or Lipofectamine RNAiMax. For counting cells, Hoechst nuclei stain or Cell Tracker green were used. For data analysis an adherent cell cytometer, Celigo® was used. Data was normalized to the transfection reagent alone group and expressed as red pixel count/cell.

Results

After 24 hours, none of the transfection conditions led to cell loss. Red fluorescence counts were normalized to the AoSMC count. RNAiMax was more potent compared to HiPerfect or no transfection reagent at 5 nM siGLO Red (4.12 +/-1.04 vs. 0.70 +/-0.26 vs. 0.15 +/-0.13 red pixel/cell) and 50 nM siGLO Red (6.49 +/-1.81 vs. 2.52 +/-0.67 vs. 0.34 +/-0.19). Fluorescence expression results supported gene knockdown achieved by using MARCKS targeting siRNA in AoSMCs.

Conclusion

This study underscores that RNAi delivery depends heavily on the choice of delivery method. Adherent cell cytometry can be used as a high throughput-screening tool for the optimization of RNAi assays. This technology can accelerate in vitro cell assays and thus save costs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wang L, Zheng J, Bai X, Liu B, Liu CJ, Xu Q, Zhu Y, Wang N, Kong W, Wang X: ADAMTS-7 mediates vascular smooth muscle cell migration and neointima formation in balloon-injured rat arteries. Circ Res. 2009, 104: 688-698. 10.1161/CIRCRESAHA.108.188425.CrossRefPubMed Wang L, Zheng J, Bai X, Liu B, Liu CJ, Xu Q, Zhu Y, Wang N, Kong W, Wang X: ADAMTS-7 mediates vascular smooth muscle cell migration and neointima formation in balloon-injured rat arteries. Circ Res. 2009, 104: 688-698. 10.1161/CIRCRESAHA.108.188425.CrossRefPubMed
2.
go back to reference Hlawaty H, San Juan A, Jacob MP, Vranckx R, Letourneur D, Feldman LJ: Local matrix metalloproteinase 2 gene knockdown in balloon-injured rabbit carotid arteries using nonviral-small interfering RNA transfection. J Gene Med. 2009, 11: 92-99. 10.1002/jgm.1275.CrossRefPubMed Hlawaty H, San Juan A, Jacob MP, Vranckx R, Letourneur D, Feldman LJ: Local matrix metalloproteinase 2 gene knockdown in balloon-injured rabbit carotid arteries using nonviral-small interfering RNA transfection. J Gene Med. 2009, 11: 92-99. 10.1002/jgm.1275.CrossRefPubMed
3.
go back to reference Monahan TS, Andersen ND, Martin MC, Malek JY, Shrikhande GV, Pradhan L, Ferran C, LoGerfo FW: MARCKS silencing differentially affects human vascular smooth muscle and endothelial cell phenotypes to inhibit neointimal hyperplasia in saphenous vein. FASEB J. 2009, 23: 557-564. 10.1096/fj.08-114173.PubMedCentralCrossRefPubMed Monahan TS, Andersen ND, Martin MC, Malek JY, Shrikhande GV, Pradhan L, Ferran C, LoGerfo FW: MARCKS silencing differentially affects human vascular smooth muscle and endothelial cell phenotypes to inhibit neointimal hyperplasia in saphenous vein. FASEB J. 2009, 23: 557-564. 10.1096/fj.08-114173.PubMedCentralCrossRefPubMed
4.
go back to reference Majesky MW: Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol. 2007, 27: 1248-1258. 10.1161/ATVBAHA.107.141069.CrossRefPubMed Majesky MW: Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol. 2007, 27: 1248-1258. 10.1161/ATVBAHA.107.141069.CrossRefPubMed
5.
go back to reference Aird WC: Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res. 2007, 100: 174-190. 10.1161/01.RES.0000255690.03436.ae.CrossRefPubMed Aird WC: Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res. 2007, 100: 174-190. 10.1161/01.RES.0000255690.03436.ae.CrossRefPubMed
6.
go back to reference Andersen ND, Monahan TS, Malek JY, Jain M, Daniel S, Caron LD, Pradhan L, Ferran C, Logerfo FW: Comparison of gene silencing in human vascular cells using small interfering RNAs. J Am Coll Surg. 2007, 204: 399-408. 10.1016/j.jamcollsurg.2006.12.029.CrossRefPubMed Andersen ND, Monahan TS, Malek JY, Jain M, Daniel S, Caron LD, Pradhan L, Ferran C, Logerfo FW: Comparison of gene silencing in human vascular cells using small interfering RNAs. J Am Coll Surg. 2007, 204: 399-408. 10.1016/j.jamcollsurg.2006.12.029.CrossRefPubMed
Metadata
Title
High throughput RNAi assay optimization using adherent cell cytometry
Authors
Christoph S Nabzdyk
Maggie Chun
Leena Pradhan
Frank W LoGerfo
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2011
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-9-48

Other articles of this Issue 1/2011

Journal of Translational Medicine 1/2011 Go to the issue