Skip to main content
Top
Published in: Journal of Translational Medicine 1/2007

Open Access 01-12-2007 | Research

Adjuvant therapeutic vaccination in patients with non-small cell lung cancer made lymphopenic and reconstituted with autologous PBMC: first clinical experience and evidence of an immune response

Authors: Dominik Rüttinger, Natasja K van den Engel, Hauke Winter, Marcus Schlemmer, Heike Pohla, Stefanie Grützner, Beate Wagner, Dolores J Schendel, Bernard A Fox, K-W Jauch, Rudolf A Hatz

Published in: Journal of Translational Medicine | Issue 1/2007

Login to get access

Abstract

Background

Given the considerable toxicity and modest benefit of adjuvant chemotherapy for non-small cell lung cancer (NSCLC), there is clearly a need for new treatment modalities in the adjuvant setting. Active specific immunotherapy may represent such an option. However, clinical responses have been rare so far. Manipulating the host by inducing lymphopenia before vaccination resulted in a magnification of the immune response in the preclinical setting. To evaluate feasibility and safety of an irradiated, autologous tumor cell vaccine given following induction of lymphopenia by chemotherapy and reinfusion of autologous peripheral blood mononuclear cells (PBMC), we are currently conducting a pilot-phase I clinical trial in patients with NSCLC following surgical resection. This paper reports on the first clinical experience and evidence of an immune response in patients suffering from NSCLC.

Methods

NSCLC patients stages I-IIIA are recruited. Vaccines are generated from their resected lung specimens. Patients undergo leukapheresis to harvest their PBMC prior to or following the surgical procedure. Furthermore, patients receive preparative chemotherapy (cyclophosphamide 350 mg/m2 and fludarabine 20 mg/m2 on 3 consecutive days) for induction of lymphopenia followed by reconstitution with their autologous PBMC. Vaccines are administered intradermally on day 1 following reconstitution and every two weeks for a total of up to five vaccinations. Granulocyte-macrophage-colony-stimulating-factor (GM-CSF) is given continuously (at a rate of 50 μg/24 h) at the site of vaccination via minipump for six consecutive days after each vaccination.

Results

To date, vaccines were successfully manufactured for 4 of 4 patients. The most common toxicities were local injection-site reactions and mild constitutional symptoms. Immune responses to chemotherapy, reconstitution and vaccination are measured by vaccine site and delayed type hypersensitivity (DTH) skin reactions. One patient developed positive DTH skin tests so far. Immunohistochemical assessment of punch biopsies taken at the local vaccine site reaction revealed a dense lymphocyte infiltrate. Further immunohistochemical differentiation showed that CD1a+ cells had been attracted to the vaccine site as well as predominantly CD4+ lymphocytes. The 3-day combination chemotherapy consisting of cyclophosphamide and fludarabine induced a profound lymphopenia in all patients. Sequential FACS analysis revealed that different T cell subsets (CD4, CD8, CD4CD25) as well as granulocytes, B cells and NK cells were significantly reduced. Here, we report on clinical safety and feasibility of this vaccination approach during lymphoid recovery and demonstrate a patient example.

Conclusion

Thus far, all vaccines were well tolerated. The overall trial design seems safe and feasible. Vaccine site reactions associated with infusion of GM-CSF via mini-pump are consistent with the postulated mechanism of action. More detailed immune-monitoring is required to evaluate a potential systemic immune response. Further studies to exploit homeostasis-driven T cell proliferation for the induction of a specific anti-tumor immune response in this clinical setting are warranted.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC: Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA. 1993, 90: 3539-3543. 10.1073/pnas.90.8.3539.PubMedCentralCrossRefPubMed Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC: Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA. 1993, 90: 3539-3543. 10.1073/pnas.90.8.3539.PubMedCentralCrossRefPubMed
2.
go back to reference Salgia R, Lynch T, Skarin A, Lucca J, Lynch C, Jung K, Hodi FS, Jaklitsch M, Mentzer S, Swanson S, Lukanich J, Bueno R, Wain J, Mathisen D, Wright C, Fidias P, Donahue D, Clift S, Hardy S, Neuberg D, Mulligan R, Webb I, Sugarbaker D, Mihm M, Dranoff G: Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J Clin Oncol. 2003, 21: 624-630. 10.1200/JCO.2003.03.091.CrossRefPubMed Salgia R, Lynch T, Skarin A, Lucca J, Lynch C, Jung K, Hodi FS, Jaklitsch M, Mentzer S, Swanson S, Lukanich J, Bueno R, Wain J, Mathisen D, Wright C, Fidias P, Donahue D, Clift S, Hardy S, Neuberg D, Mulligan R, Webb I, Sugarbaker D, Mihm M, Dranoff G: Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J Clin Oncol. 2003, 21: 624-630. 10.1200/JCO.2003.03.091.CrossRefPubMed
3.
go back to reference Nemunaitis J, Sterman D, Jablons D, Smith JW, Fox B, Maples P, Hamilton S, Borellini S, Lin A, Morali S, Hege K: Granulocyte-macrophage colony-stimulating factor gene-modified autologous tumor vaccines in non-small-cell lung cancer. J Natl Cancer Inst. 2004, 96: 326-331.CrossRefPubMed Nemunaitis J, Sterman D, Jablons D, Smith JW, Fox B, Maples P, Hamilton S, Borellini S, Lin A, Morali S, Hege K: Granulocyte-macrophage colony-stimulating factor gene-modified autologous tumor vaccines in non-small-cell lung cancer. J Natl Cancer Inst. 2004, 96: 326-331.CrossRefPubMed
4.
go back to reference Smyth M, Godfrey D, Trapani J: A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol. 2001, 2: 293-299. 10.1038/86297.CrossRefPubMed Smyth M, Godfrey D, Trapani J: A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol. 2001, 2: 293-299. 10.1038/86297.CrossRefPubMed
5.
go back to reference Levitsky HI: Augmentation of host immune responses to cancer: overcoming the barrier of tumor antigen-specific T-cell tolerance. Cancer J. 2000, 6: S281-290.PubMed Levitsky HI: Augmentation of host immune responses to cancer: overcoming the barrier of tumor antigen-specific T-cell tolerance. Cancer J. 2000, 6: S281-290.PubMed
6.
go back to reference O'Brien SM, Kantarjian HM, Cortes J, Beran M, Koller CA, Giles FJ, Lerner S, Keating M: Results of the fludarabine and cyclophosphamide combination regimen in chronic lymphocytic leukemia. J Clin Oncol. 2001, 19: 1414-1420.PubMed O'Brien SM, Kantarjian HM, Cortes J, Beran M, Koller CA, Giles FJ, Lerner S, Keating M: Results of the fludarabine and cyclophosphamide combination regimen in chronic lymphocytic leukemia. J Clin Oncol. 2001, 19: 1414-1420.PubMed
7.
go back to reference Santini G, Nati S, Spriano M, Gallamini A, Pierluigi D, Congiu AM, Truni M, Rubagotti A, Chisesi T, Vimercati R, Rossi E, Sertoli MR, Mattei D, Marino G, Gobbi M: Fludarabine in combination with cyclophosphamide or with cyclophosphamide plus mitoxantrone for relapsed or refractory low-grade non-Hodgkin's lymphoma. Haematologica. 2001, 86: 282-286.PubMed Santini G, Nati S, Spriano M, Gallamini A, Pierluigi D, Congiu AM, Truni M, Rubagotti A, Chisesi T, Vimercati R, Rossi E, Sertoli MR, Mattei D, Marino G, Gobbi M: Fludarabine in combination with cyclophosphamide or with cyclophosphamide plus mitoxantrone for relapsed or refractory low-grade non-Hodgkin's lymphoma. Haematologica. 2001, 86: 282-286.PubMed
8.
go back to reference Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA: Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002, 298: 850-854. 10.1126/science.1076514.PubMedCentralCrossRefPubMed Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA: Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002, 298: 850-854. 10.1126/science.1076514.PubMedCentralCrossRefPubMed
9.
go back to reference Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA, Theofilopoulos AN: T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest. 2002, 110: 185-192. 10.1172/JCI200215175.PubMedCentralCrossRefPubMed Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA, Theofilopoulos AN: T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest. 2002, 110: 185-192. 10.1172/JCI200215175.PubMedCentralCrossRefPubMed
10.
go back to reference Asavaroengchai W, Kotera Y, Mule JJ: Tumor lysate-pulsed dendritic cells can elicit an effective antitumor immune response during early lymphoid recovery. Proc Natl Acad Sci USA. 2002, 99: 931-936. 10.1073/pnas.022634999.PubMedCentralCrossRefPubMed Asavaroengchai W, Kotera Y, Mule JJ: Tumor lysate-pulsed dendritic cells can elicit an effective antitumor immune response during early lymphoid recovery. Proc Natl Acad Sci USA. 2002, 99: 931-936. 10.1073/pnas.022634999.PubMedCentralCrossRefPubMed
11.
go back to reference Machiels JP, Reilly RT, Emens LA, Ercolini AM, Lei RY, Weintraub D, Okoye FI, Jaffee EM: Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res. 2001, 61: 3689-3697.PubMed Machiels JP, Reilly RT, Emens LA, Ercolini AM, Lei RY, Weintraub D, Okoye FI, Jaffee EM: Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res. 2001, 61: 3689-3697.PubMed
12.
go back to reference Ma J, Urba WJ, Si L, Wang Y, Fox BA, Hu HM: Anti-tumor T cell response and protective immunity in mice that received sublethal irradiation and immune reconstitution. Eur J Immunol. 2003, 33: 2123-2132. 10.1002/eji.200324034.CrossRefPubMed Ma J, Urba WJ, Si L, Wang Y, Fox BA, Hu HM: Anti-tumor T cell response and protective immunity in mice that received sublethal irradiation and immune reconstitution. Eur J Immunol. 2003, 33: 2123-2132. 10.1002/eji.200324034.CrossRefPubMed
13.
go back to reference Hu HM, Poehlein CH, Urba WJ, Fox BA: Development of antitumor immune responses in reconstituted lymphopenic hosts. Cancer Res. 2002, 62: 3914-3919.PubMed Hu HM, Poehlein CH, Urba WJ, Fox BA: Development of antitumor immune responses in reconstituted lymphopenic hosts. Cancer Res. 2002, 62: 3914-3919.PubMed
15.
go back to reference Butts C, Murray N, Maksymiuk A, Goss G, Marshall E, Soulieres D, Cormier Y, Ellis P, Price A, Sawhney R, Davis M, Mansi J, Smith C, Vergidis D, Ellis P, MacNeil M, Palmer M: Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J Clin Oncol. 2005, 23: 6674-6681. 10.1200/JCO.2005.13.011.CrossRefPubMed Butts C, Murray N, Maksymiuk A, Goss G, Marshall E, Soulieres D, Cormier Y, Ellis P, Price A, Sawhney R, Davis M, Mansi J, Smith C, Vergidis D, Ellis P, MacNeil M, Palmer M: Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J Clin Oncol. 2005, 23: 6674-6681. 10.1200/JCO.2005.13.011.CrossRefPubMed
16.
go back to reference Atanackovic D, Altorki NK, Stockert E, Williamson B, Jungbluth AA, Ritter E, Santiago D, Ferrara CA, Matsuo M, Selvakumar A, Dupont B, Chen YT, Hoffman EW, Ritter G, Old LJ, Gnjatic S: Vaccine-induced CD4+ T cell response to MAGE-3 Protein in Lung Cancer Patients. J Immunol. 2004, 172: 3289-3296.CrossRefPubMed Atanackovic D, Altorki NK, Stockert E, Williamson B, Jungbluth AA, Ritter E, Santiago D, Ferrara CA, Matsuo M, Selvakumar A, Dupont B, Chen YT, Hoffman EW, Ritter G, Old LJ, Gnjatic S: Vaccine-induced CD4+ T cell response to MAGE-3 Protein in Lung Cancer Patients. J Immunol. 2004, 172: 3289-3296.CrossRefPubMed
17.
go back to reference Vansteenkiste J, Zielinski M, Dahabre J, Linder A, Malinowski W, Jassem J, Lopez-Brea M, Passlick B, Lehmann F, Brichard V: Multi-center, double-blind, randomized, placebo-controlled phase II study to assess the efficacy of recombinant MAGE-A3 vaccine as adjuvant therapy in stage IB/II MAGE-A3-positive, completely resected non-small cell lung cancer (NSCLC). J Clin Oncol. 2006, 24 (Suppl): 7019- Vansteenkiste J, Zielinski M, Dahabre J, Linder A, Malinowski W, Jassem J, Lopez-Brea M, Passlick B, Lehmann F, Brichard V: Multi-center, double-blind, randomized, placebo-controlled phase II study to assess the efficacy of recombinant MAGE-A3 vaccine as adjuvant therapy in stage IB/II MAGE-A3-positive, completely resected non-small cell lung cancer (NSCLC). J Clin Oncol. 2006, 24 (Suppl): 7019-
18.
go back to reference Borrello I, Sotomayor EM, Rattis FM, Cooke SK, Gu L, Levitsky HI: Sustaining the graft-versus-tumor effect through posttransplant immunization with granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing tumor vaccines. Blood. 2000, 95: 3011-3019.PubMed Borrello I, Sotomayor EM, Rattis FM, Cooke SK, Gu L, Levitsky HI: Sustaining the graft-versus-tumor effect through posttransplant immunization with granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing tumor vaccines. Blood. 2000, 95: 3011-3019.PubMed
20.
go back to reference Ma J, Poehlein CH, Jensen SM, LaCelle MG, Moudgil TM, Ruttinger D, Haley D, Goldstein MJ, Smith JW, Curti B, Ross H, Walker E, Hu HM, Urba WJ, Fox BA: Manipulating the host response to autologous tumour vaccines. Dev Biol. 2004, 116: 93-107. Ma J, Poehlein CH, Jensen SM, LaCelle MG, Moudgil TM, Ruttinger D, Haley D, Goldstein MJ, Smith JW, Curti B, Ross H, Walker E, Hu HM, Urba WJ, Fox BA: Manipulating the host response to autologous tumour vaccines. Dev Biol. 2004, 116: 93-107.
21.
go back to reference Mackall CL, Gress RE: Thymic aging and T cell regeneration. Immunol Rev. 1997, 160: 91-102. 10.1111/j.1600-065X.1997.tb01030.x.CrossRefPubMed Mackall CL, Gress RE: Thymic aging and T cell regeneration. Immunol Rev. 1997, 160: 91-102. 10.1111/j.1600-065X.1997.tb01030.x.CrossRefPubMed
22.
go back to reference Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, Palmer DC, Chan CC, Klebanoff CA, Overwijk WW, Rosenberg SA, Restifo NP: CD8+ cell immunity against a persisting tumor/self-antigen requires CD4+ T cells and fails in the presence of naturally occuring T regulatory cells. J Immunol. 2005, 174: 2591-2601.PubMedCentralCrossRefPubMed Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, Palmer DC, Chan CC, Klebanoff CA, Overwijk WW, Rosenberg SA, Restifo NP: CD8+ cell immunity against a persisting tumor/self-antigen requires CD4+ T cells and fails in the presence of naturally occuring T regulatory cells. J Immunol. 2005, 174: 2591-2601.PubMedCentralCrossRefPubMed
23.
go back to reference Bass KK, Mastrangelo MJ: Immunopotentiation with low-dose cyclophosphamide in the active specific immunotherapy of cancer. Cancer Immunol Immunother. 1998, 47: 1-12. 10.1007/s002620050498.CrossRefPubMed Bass KK, Mastrangelo MJ: Immunopotentiation with low-dose cyclophosphamide in the active specific immunotherapy of cancer. Cancer Immunol Immunother. 1998, 47: 1-12. 10.1007/s002620050498.CrossRefPubMed
24.
go back to reference Powell DJ, Dudley ME, Hogan KA, Wunderlich JR, Rosenberg SA: Adoptive transfer of vaccine-induced peripheral blood mononuclear cells to patients with metastatic melanoma following lymphodepletion. J Immunol. 2006, 177: 6527-6539.PubMedCentralCrossRefPubMed Powell DJ, Dudley ME, Hogan KA, Wunderlich JR, Rosenberg SA: Adoptive transfer of vaccine-induced peripheral blood mononuclear cells to patients with metastatic melanoma following lymphodepletion. J Immunol. 2006, 177: 6527-6539.PubMedCentralCrossRefPubMed
25.
go back to reference Jaffee EM, Hruban RH, Biedrzycki B, Laheru D, Schepers K, Sauter PR, Goemann M, Coleman J, Grochow L, Donehower RC, Lillemoe KD, O'Reilly S, Abrams RA, Pardoll DM, Cameron JL, Yeo CJ: Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol. 2001, 19: 145-156.PubMed Jaffee EM, Hruban RH, Biedrzycki B, Laheru D, Schepers K, Sauter PR, Goemann M, Coleman J, Grochow L, Donehower RC, Lillemoe KD, O'Reilly S, Abrams RA, Pardoll DM, Cameron JL, Yeo CJ: Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol. 2001, 19: 145-156.PubMed
26.
go back to reference Appay V, Voelter V, Rufer N, Reynard S, Jandus C, Gasparini D, Lienard D, Speiser DE, Schneider P, Cerottini JC, Romero P, Leyvraz S: Combination of transient lymphodepletion with busulfan and fludarabine and peptide vaccination in a phase I clinical trial for patients with advanced melanoma. J Immunother. 2007, 30: 240-250. 10.1097/01.cji.0000211332.68643.98.CrossRefPubMed Appay V, Voelter V, Rufer N, Reynard S, Jandus C, Gasparini D, Lienard D, Speiser DE, Schneider P, Cerottini JC, Romero P, Leyvraz S: Combination of transient lymphodepletion with busulfan and fludarabine and peptide vaccination in a phase I clinical trial for patients with advanced melanoma. J Immunother. 2007, 30: 240-250. 10.1097/01.cji.0000211332.68643.98.CrossRefPubMed
27.
go back to reference Powell A, Creaney J, Broomfield S, Van Bruggen I, Robinson B: Recombinant GM-CSF plus autologous tumor cells as a vaccine for patients with mesothelioma. Lung Cancer. 2006, 52: 189-197. 10.1016/j.lungcan.2006.01.007.CrossRefPubMed Powell A, Creaney J, Broomfield S, Van Bruggen I, Robinson B: Recombinant GM-CSF plus autologous tumor cells as a vaccine for patients with mesothelioma. Lung Cancer. 2006, 52: 189-197. 10.1016/j.lungcan.2006.01.007.CrossRefPubMed
28.
go back to reference Nemunaitis J, Jahan T, Ross H, Sterman D, Richards D, Fox B, Jablons D, Aimi J, Lin A, Hege K: Phase 1/2 trial of autologous tumor mixed with an allogeneic GVAX® vaccine in advanced-stage non-small-cell lung cancer. Cancer Gene Therapy. 2006, 13: 555-562. 10.1038/sj.cgt.7700922.CrossRefPubMed Nemunaitis J, Jahan T, Ross H, Sterman D, Richards D, Fox B, Jablons D, Aimi J, Lin A, Hege K: Phase 1/2 trial of autologous tumor mixed with an allogeneic GVAX® vaccine in advanced-stage non-small-cell lung cancer. Cancer Gene Therapy. 2006, 13: 555-562. 10.1038/sj.cgt.7700922.CrossRefPubMed
29.
go back to reference Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I: High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res. 2004, 64: 6337-6343. 10.1158/0008-5472.CAN-04-0757.CrossRefPubMed Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I: High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res. 2004, 64: 6337-6343. 10.1158/0008-5472.CAN-04-0757.CrossRefPubMed
Metadata
Title
Adjuvant therapeutic vaccination in patients with non-small cell lung cancer made lymphopenic and reconstituted with autologous PBMC: first clinical experience and evidence of an immune response
Authors
Dominik Rüttinger
Natasja K van den Engel
Hauke Winter
Marcus Schlemmer
Heike Pohla
Stefanie Grützner
Beate Wagner
Dolores J Schendel
Bernard A Fox
K-W Jauch
Rudolf A Hatz
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2007
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-5-43

Other articles of this Issue 1/2007

Journal of Translational Medicine 1/2007 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.