Skip to main content
Top
Published in: Molecular Cancer 1/2013

Open Access 01-12-2013 | Research

Role of SIRT3 in the regulation of redox balance during oral carcinogenesis

Authors: I-Chieh Chen, Wei-Fan Chiang, Shyun-Yeu Liu, Pei-Fen Chen, Hung-Che Chiang

Published in: Molecular Cancer | Issue 1/2013

Login to get access

Abstract

Background

Sirtuins (SIRT1-7) are a family of NAD-dependent deacetylases, which play an important role in regulating cancer tumorigenesis; however, their role in oral cancer has been controversial. SIRT3 is localized in the mitochondria, where it deacetylates and activates several enzymes involved in cellular redox balance and defense against oxidative damage.

Results

We found that compared with normal human oral keratinocytes (HOK), SIRT3 is highly expressed in oral squamous cell carcinoma (OSCC) cell lines, but the enzymatic deacetylation is significantly reduced. We also sequenced the entire coding region of SIRT3 and found the same mutation in 2 different OSCC cell lines. This point mutation is located in close proximity to the active site of deacetylase in the SIRT3 protein, and reduces the overall enzymatic efficiency of deacetylation. Furthermore, up-regulation of SIRT3 inhibited the cell growth of OSCCs and decreased the levels of basal reactive oxygen species (ROS) in both OSCC lines. To verify that the SIRT3 sequence variation was associated with oral carcinogenesis, we sequenced the SIRT3 gene from 21 OSCC patients, and 5 of the 21 patients (23.8%) carried the heterozygous missense mutation, p.Val208Ile. The heterozygous missense mutation in these patients was present in gremlin DNA isolated from both normal and tumor tissues.

Conclusions

Our findings provide a valuable insight into the potential role of SIRT3 in the development of oral squamous cell carcinoma, by showing that a non-synonymous point mutation in SIRT3 contributes to reduced catalytic activity of the protein and affects redox balance in OSCCs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bsoul SA, Huber MA, Terezhalmy GT: Squamous cell carcinoma of the oral tissues: a comprehensive review for oral healthcare providers. J Contemp Dent Pract. 2005, 6: 1-16. Bsoul SA, Huber MA, Terezhalmy GT: Squamous cell carcinoma of the oral tissues: a comprehensive review for oral healthcare providers. J Contemp Dent Pract. 2005, 6: 1-16.
2.
go back to reference Chen YJ, Lin SC, Kao T, Chang CS, Hong PS, Shieh TM, Chang KW: Genome-wide profiling of oral squamous cell carcinoma. J Pathol. 2004, 204: 326-332. 10.1002/path.1640CrossRefPubMed Chen YJ, Lin SC, Kao T, Chang CS, Hong PS, Shieh TM, Chang KW: Genome-wide profiling of oral squamous cell carcinoma. J Pathol. 2004, 204: 326-332. 10.1002/path.1640CrossRefPubMed
3.
go back to reference Jeng JH, Chang MC, Hahn LJ: Role of areca nut in betel quid-associated chemical carcinogenesis: current awareness and future perspectives. Oral Oncol. 2001, 37: 477-492. 10.1016/S1368-8375(01)00003-3CrossRefPubMed Jeng JH, Chang MC, Hahn LJ: Role of areca nut in betel quid-associated chemical carcinogenesis: current awareness and future perspectives. Oral Oncol. 2001, 37: 477-492. 10.1016/S1368-8375(01)00003-3CrossRefPubMed
4.
go back to reference Sharma DC: Betel quid and areca nut are carcinogenic without tobacco. Lancet Oncol. 2003, 4: 587-587.CrossRefPubMed Sharma DC: Betel quid and areca nut are carcinogenic without tobacco. Lancet Oncol. 2003, 4: 587-587.CrossRefPubMed
5.
go back to reference Liu TY, Chen CL, Chi CW: Oxidative damage to DNA induced by areca nut extract. Mutat Res-Genet Tox. 1996, 367: 25-31. 10.1016/S0165-1218(96)90018-X. 10.1016/S0165-1218(96)90018-XCrossRef Liu TY, Chen CL, Chi CW: Oxidative damage to DNA induced by areca nut extract. Mutat Res-Genet Tox. 1996, 367: 25-31. 10.1016/S0165-1218(96)90018-X. 10.1016/S0165-1218(96)90018-XCrossRef
6.
go back to reference Chang MC, Ho YS, Lee PH, Chan CP, Lee JJ, Hahn LJ, Wang YJ, Jeng JH: Areca nut extract and arecoline induced the cell cycle arrest but not apoptosis of cultured oral KB epithelial cells: association of glutathione, reactive oxygen species and mitochondrial membrane potential. Carcinogenesis. 2001, 22: 1527-1535. 10.1093/carcin/22.9.1527CrossRefPubMed Chang MC, Ho YS, Lee PH, Chan CP, Lee JJ, Hahn LJ, Wang YJ, Jeng JH: Areca nut extract and arecoline induced the cell cycle arrest but not apoptosis of cultured oral KB epithelial cells: association of glutathione, reactive oxygen species and mitochondrial membrane potential. Carcinogenesis. 2001, 22: 1527-1535. 10.1093/carcin/22.9.1527CrossRefPubMed
7.
go back to reference Tang DW, Lin SC, Chang KW, Chi CW, Chang CS, Liu TY: Elevated expression of cyclooxygenase (COX)-2 in oral squamous cell carcinoma–evidence for COX-2 induction by areca quid ingredients in oral keratinocytes. J Oral Pathol Med. 2003, 32: 522-529. 10.1034/j.1600-0714.2003.00182.xCrossRefPubMed Tang DW, Lin SC, Chang KW, Chi CW, Chang CS, Liu TY: Elevated expression of cyclooxygenase (COX)-2 in oral squamous cell carcinoma–evidence for COX-2 induction by areca quid ingredients in oral keratinocytes. J Oral Pathol Med. 2003, 32: 522-529. 10.1034/j.1600-0714.2003.00182.xCrossRefPubMed
8.
go back to reference Balaban RS, Nemoto S, Finkel T: Mitochondria, oxidants, and aging. Cell. 2005, 120: 483-495. 10.1016/j.cell.2005.02.001CrossRefPubMed Balaban RS, Nemoto S, Finkel T: Mitochondria, oxidants, and aging. Cell. 2005, 120: 483-495. 10.1016/j.cell.2005.02.001CrossRefPubMed
9.
go back to reference Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M: Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006, 160: 1-40. 10.1016/j.cbi.2005.12.009CrossRefPubMed Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M: Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006, 160: 1-40. 10.1016/j.cbi.2005.12.009CrossRefPubMed
10.
go back to reference Taylor DM, Maxwell MM, Luthi-Carter R, Kazantsev AG: Biological and potential therapeutic roles of sirtuin deacetylases. Cell Mol Life Sci. 2008, 65: 4000-4018. 10.1007/s00018-008-8357-yCrossRefPubMed Taylor DM, Maxwell MM, Luthi-Carter R, Kazantsev AG: Biological and potential therapeutic roles of sirtuin deacetylases. Cell Mol Life Sci. 2008, 65: 4000-4018. 10.1007/s00018-008-8357-yCrossRefPubMed
11.
go back to reference Imai S, Armstrong CM, Kaeberlein M, Guarente L: Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000, 403: 795-800. 10.1038/35001622CrossRefPubMed Imai S, Armstrong CM, Kaeberlein M, Guarente L: Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000, 403: 795-800. 10.1038/35001622CrossRefPubMed
12.
go back to reference Lin SJ, Guarente L: Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol. 2003, 15: 241-246. 10.1016/S0955-0674(03)00006-1CrossRefPubMed Lin SJ, Guarente L: Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol. 2003, 15: 241-246. 10.1016/S0955-0674(03)00006-1CrossRefPubMed
13.
go back to reference Saunders LR, Verdin E: Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene. 2007, 26: 5489-5504. 10.1038/sj.onc.1210616CrossRefPubMed Saunders LR, Verdin E: Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene. 2007, 26: 5489-5504. 10.1038/sj.onc.1210616CrossRefPubMed
14.
go back to reference Haigis MC, Guarente LP: Mammalian sirtuins–emerging roles in physiology, aging, and calorie restriction. Genes Dev. 2006, 20: 2913-2921. 10.1101/gad.1467506CrossRefPubMed Haigis MC, Guarente LP: Mammalian sirtuins–emerging roles in physiology, aging, and calorie restriction. Genes Dev. 2006, 20: 2913-2921. 10.1101/gad.1467506CrossRefPubMed
16.
go back to reference Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I: Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell. 2005, 16: 4623-4635. 10.1091/mbc.E05-01-0033PubMedCentralCrossRefPubMed Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I: Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell. 2005, 16: 4623-4635. 10.1091/mbc.E05-01-0033PubMedCentralCrossRefPubMed
17.
go back to reference Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP: SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci USA. 2002, 99: 13653-13658. 10.1073/pnas.222538099PubMedCentralCrossRefPubMed Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP: SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci USA. 2002, 99: 13653-13658. 10.1073/pnas.222538099PubMedCentralCrossRefPubMed
18.
go back to reference Schwer B, North BJ, Frye RA, Ott M, Verdin E: The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol. 2002, 158: 647-657. 10.1083/jcb.200205057PubMedCentralCrossRefPubMed Schwer B, North BJ, Frye RA, Ott M, Verdin E: The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol. 2002, 158: 647-657. 10.1083/jcb.200205057PubMedCentralCrossRefPubMed
19.
go back to reference Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, Grueter CA, Harris C, Biddinger S, Ilkayeva OR: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature. 2010, 464: 121-125. 10.1038/nature08778PubMedCentralCrossRefPubMed Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, Grueter CA, Harris C, Biddinger S, Ilkayeva OR: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature. 2010, 464: 121-125. 10.1038/nature08778PubMedCentralCrossRefPubMed
20.
go back to reference Qiu X, Brown K, Hirschey MD, Verdin E, Chen D: Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010, 12: 662-667. 10.1016/j.cmet.2010.11.015CrossRefPubMed Qiu X, Brown K, Hirschey MD, Verdin E, Chen D: Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010, 12: 662-667. 10.1016/j.cmet.2010.11.015CrossRefPubMed
21.
go back to reference Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, Tanokura M, Denu JM, Prolla TA: Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell. 2010, 143: 802-812. 10.1016/j.cell.2010.10.002PubMedCentralCrossRefPubMed Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, Tanokura M, Denu JM, Prolla TA: Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell. 2010, 143: 802-812. 10.1016/j.cell.2010.10.002PubMedCentralCrossRefPubMed
22.
go back to reference Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D, Murphy A: Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol. 2007, 27: 8807-8814. 10.1128/MCB.01636-07PubMedCentralCrossRefPubMed Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D, Murphy A: Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol. 2007, 27: 8807-8814. 10.1128/MCB.01636-07PubMedCentralCrossRefPubMed
23.
go back to reference Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B, Lombard DB, Li Y, Bunkenborg J, Alt FW, Denu JM: SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 2010, 12: 654-661. 10.1016/j.cmet.2010.11.003PubMedCentralCrossRefPubMed Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B, Lombard DB, Li Y, Bunkenborg J, Alt FW, Denu JM: SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 2010, 12: 654-661. 10.1016/j.cmet.2010.11.003PubMedCentralCrossRefPubMed
24.
go back to reference Hallows WC, Yu W, Smith BC, Devries MK, Ellinger JJ, Someya S, Shortreed MR, Prolla T, Markley JL, Smith LM: Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol Cell. 2011, 41: 139-149. 10.1016/j.molcel.2011.01.002PubMedCentralCrossRefPubMed Hallows WC, Yu W, Smith BC, Devries MK, Ellinger JJ, Someya S, Shortreed MR, Prolla T, Markley JL, Smith LM: Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol Cell. 2011, 41: 139-149. 10.1016/j.molcel.2011.01.002PubMedCentralCrossRefPubMed
25.
go back to reference Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H, Kim HS, Flynn CR, Hill S, Hayes McDonald W: Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell. 2010, 40: 893-904. 10.1016/j.molcel.2010.12.013PubMedCentralCrossRefPubMed Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H, Kim HS, Flynn CR, Hill S, Hayes McDonald W: Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell. 2010, 40: 893-904. 10.1016/j.molcel.2010.12.013PubMedCentralCrossRefPubMed
26.
27.
go back to reference Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD, van der Meer R, Nguyen P, Savage J, Owens KM: SIRT3 Is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell. 2010, 17: 41-52. 10.1016/j.ccr.2009.11.023PubMedCentralCrossRefPubMed Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD, van der Meer R, Nguyen P, Savage J, Owens KM: SIRT3 Is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell. 2010, 17: 41-52. 10.1016/j.ccr.2009.11.023PubMedCentralCrossRefPubMed
28.
go back to reference Finley LW, Carracedo A, Lee J, Souza A, Egia A, Zhang J, Teruya-Feldstein J, Moreira PI, Cardoso SM, Clish CB: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell. 2011, 19: 416-428. 10.1016/j.ccr.2011.02.014PubMedCentralCrossRefPubMed Finley LW, Carracedo A, Lee J, Souza A, Egia A, Zhang J, Teruya-Feldstein J, Moreira PI, Cardoso SM, Clish CB: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell. 2011, 19: 416-428. 10.1016/j.ccr.2011.02.014PubMedCentralCrossRefPubMed
29.
go back to reference Bell EL, Emerling BM, Ricoult SJ, Guarente L: SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production. Oncogene. 2011, 30: 2986-2996. 10.1038/onc.2011.37PubMedCentralCrossRefPubMed Bell EL, Emerling BM, Ricoult SJ, Guarente L: SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production. Oncogene. 2011, 30: 2986-2996. 10.1038/onc.2011.37PubMedCentralCrossRefPubMed
30.
go back to reference Jing E, Emanuelli B, Hirschey MD, Boucher J, Lee KY, Lombard D, Verdin EM, Kahn CR: Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci USA. 2011, 108: 14608-14613. 10.1073/pnas.1111308108PubMedCentralCrossRefPubMed Jing E, Emanuelli B, Hirschey MD, Boucher J, Lee KY, Lombard D, Verdin EM, Kahn CR: Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci USA. 2011, 108: 14608-14613. 10.1073/pnas.1111308108PubMedCentralCrossRefPubMed
31.
go back to reference Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP: Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest. 2009, 119: 2758-2771.PubMedCentralPubMed Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP: Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest. 2009, 119: 2758-2771.PubMedCentralPubMed
32.
go back to reference Hirschey MD, Shimazu T, Jing E, Grueter CA, Collins AM, Aouizerat B, Stancakova A, Goetzman E, Lam MM, Schwer B: SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell. 2011, 44: 177-190. 10.1016/j.molcel.2011.07.019PubMedCentralCrossRefPubMed Hirschey MD, Shimazu T, Jing E, Grueter CA, Collins AM, Aouizerat B, Stancakova A, Goetzman E, Lam MM, Schwer B: SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell. 2011, 44: 177-190. 10.1016/j.molcel.2011.07.019PubMedCentralCrossRefPubMed
33.
go back to reference Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, Fang F, Chang Y: Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One. 2010, 5: e11707- 10.1371/journal.pone.0011707PubMedCentralCrossRefPubMed Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, Fang F, Chang Y: Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One. 2010, 5: e11707- 10.1371/journal.pone.0011707PubMedCentralCrossRefPubMed
34.
go back to reference Frye RA: Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun. 2000, 273: 793-798. 10.1006/bbrc.2000.3000CrossRefPubMed Frye RA: Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun. 2000, 273: 793-798. 10.1006/bbrc.2000.3000CrossRefPubMed
35.
go back to reference Choi S, Myers JN: Molecular pathogenesis of oral squamous cell carcinoma: implications for therapy. J Dent Res. 2008, 87: 14-32. 10.1177/154405910808700104CrossRefPubMed Choi S, Myers JN: Molecular pathogenesis of oral squamous cell carcinoma: implications for therapy. J Dent Res. 2008, 87: 14-32. 10.1177/154405910808700104CrossRefPubMed
36.
go back to reference Hillbertz NS, Hirsch JM, Jalouli J, Jalouli MM, Sand L: Viral and molecular aspects of oral cancer. Anticancer Res. 2012, 32: 4201-4212.PubMed Hillbertz NS, Hirsch JM, Jalouli J, Jalouli MM, Sand L: Viral and molecular aspects of oral cancer. Anticancer Res. 2012, 32: 4201-4212.PubMed
37.
go back to reference Benigni A, Corna D, Zoja C, Sonzogni A, Latini R, Salio M, Conti S, Rottoli D, Longaretti L, Cassis P: Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest. 2009, 119: 524-530. 10.1172/JCI36703PubMedCentralCrossRefPubMed Benigni A, Corna D, Zoja C, Sonzogni A, Latini R, Salio M, Conti S, Rottoli D, Longaretti L, Cassis P: Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest. 2009, 119: 524-530. 10.1172/JCI36703PubMedCentralCrossRefPubMed
38.
39.
go back to reference Giralt A, Hondares E, Villena JA, Ribas F, Diaz-Delfin J, Giralt M, Iglesias R, Villarroya F: Peroxisome proliferator-activated receptor-gamma coactivator-1alpha controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype. J Biol Chem. 2011, 286: 16958-16966. 10.1074/jbc.M110.202390PubMedCentralCrossRefPubMed Giralt A, Hondares E, Villena JA, Ribas F, Diaz-Delfin J, Giralt M, Iglesias R, Villarroya F: Peroxisome proliferator-activated receptor-gamma coactivator-1alpha controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype. J Biol Chem. 2011, 286: 16958-16966. 10.1074/jbc.M110.202390PubMedCentralCrossRefPubMed
40.
go back to reference Shi T, Wang F, Stieren E, Tong Q: SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem. 2005, 280: 13560-13567. 10.1074/jbc.M414670200CrossRefPubMed Shi T, Wang F, Stieren E, Tong Q: SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem. 2005, 280: 13560-13567. 10.1074/jbc.M414670200CrossRefPubMed
41.
go back to reference Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CF, Steegborn C: Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol. 2008, 382: 790-801. 10.1016/j.jmb.2008.07.048CrossRefPubMed Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CF, Steegborn C: Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol. 2008, 382: 790-801. 10.1016/j.jmb.2008.07.048CrossRefPubMed
42.
go back to reference Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010, 3: ra3- 10.1126/scisignal.2000475CrossRefPubMed Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010, 3: ra3- 10.1126/scisignal.2000475CrossRefPubMed
43.
go back to reference Rose G, Dato S, Altomare K, Bellizzi D, Garasto S, Greco V, Passarino G, Feraco E, Mari V, Barbi C: Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol. 2003, 38: 1065-1070. 10.1016/S0531-5565(03)00209-2CrossRefPubMed Rose G, Dato S, Altomare K, Bellizzi D, Garasto S, Greco V, Passarino G, Feraco E, Mari V, Barbi C: Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol. 2003, 38: 1065-1070. 10.1016/S0531-5565(03)00209-2CrossRefPubMed
44.
go back to reference Bellizzi D, Rose G, Cavalcante P, Covello G, Dato S, De Rango F, Greco V, Maggiolini M, Feraco E, Mari V: A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics. 2005, 85: 258-263. 10.1016/j.ygeno.2004.11.003CrossRefPubMed Bellizzi D, Rose G, Cavalcante P, Covello G, Dato S, De Rango F, Greco V, Maggiolini M, Feraco E, Mari V: A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics. 2005, 85: 258-263. 10.1016/j.ygeno.2004.11.003CrossRefPubMed
45.
go back to reference Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, Steinthorsdottir V, Thorleifsson G, Zillikens MC, Speliotes EK, Magi R: Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet. 2010, 42: 949-960. 10.1038/ng.685PubMedCentralCrossRefPubMed Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, Steinthorsdottir V, Thorleifsson G, Zillikens MC, Speliotes EK, Magi R: Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet. 2010, 42: 949-960. 10.1038/ng.685PubMedCentralCrossRefPubMed
46.
go back to reference Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, Wheeler E, Glazer NL, Bouatia-Naji N, Gloyn AL: New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk (vol 42, pg 105, 2010). Nat Genet. 2010, 42: 464-464.CrossRef Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, Wheeler E, Glazer NL, Bouatia-Naji N, Gloyn AL: New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk (vol 42, pg 105, 2010). Nat Genet. 2010, 42: 464-464.CrossRef
47.
go back to reference Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, Pirruccello JP, Ripatti S, Chasman DI, Willer CJ: Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010, 466: 707-713. 10.1038/nature09270PubMedCentralCrossRefPubMed Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, Pirruccello JP, Ripatti S, Chasman DI, Willer CJ: Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010, 466: 707-713. 10.1038/nature09270PubMedCentralCrossRefPubMed
48.
go back to reference Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, Li XY, Li H, Kuperwasser N, Ruda VM: From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010, 466: 714-U712. 10.1038/nature09266PubMedCentralCrossRefPubMed Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, Li XY, Li H, Kuperwasser N, Ruda VM: From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010, 466: 714-U712. 10.1038/nature09266PubMedCentralCrossRefPubMed
49.
go back to reference Marfe G, Tafani M, Indelicato M, Sinibaldi-Salimei P, Reali V, Pucci B, Fini M, Russo MA: Kaempferol induces apoptosis in Two different cell lines Via Akt inactivation, Bax and SIRT3 activation, and mitochondrial dysfunction. J Cell Biochem. 2009, 106: 643-650. 10.1002/jcb.22044CrossRefPubMed Marfe G, Tafani M, Indelicato M, Sinibaldi-Salimei P, Reali V, Pucci B, Fini M, Russo MA: Kaempferol induces apoptosis in Two different cell lines Via Akt inactivation, Bax and SIRT3 activation, and mitochondrial dysfunction. J Cell Biochem. 2009, 106: 643-650. 10.1002/jcb.22044CrossRefPubMed
50.
go back to reference Allison SJ, Milner J: SIRT3 is pro-apoptotic and participates in distinct basal apoptotic pathways. Cell Cycle. 2007, 6: 2669-2677. 10.4161/cc.6.21.4866CrossRefPubMed Allison SJ, Milner J: SIRT3 is pro-apoptotic and participates in distinct basal apoptotic pathways. Cell Cycle. 2007, 6: 2669-2677. 10.4161/cc.6.21.4866CrossRefPubMed
51.
52.
go back to reference Slane BG, Aykin-Burns N, Smith BJ, Kalen AL, Goswami PC, Domann FE, Spitz DR: Mutation of succinate dehydrogenase subunit C results in increased O2.-, oxidative stress, and genomic instability. Cancer Res. 2006, 66: 7615-7620. 10.1158/0008-5472.CAN-06-0833CrossRefPubMed Slane BG, Aykin-Burns N, Smith BJ, Kalen AL, Goswami PC, Domann FE, Spitz DR: Mutation of succinate dehydrogenase subunit C results in increased O2.-, oxidative stress, and genomic instability. Cancer Res. 2006, 66: 7615-7620. 10.1158/0008-5472.CAN-06-0833CrossRefPubMed
Metadata
Title
Role of SIRT3 in the regulation of redox balance during oral carcinogenesis
Authors
I-Chieh Chen
Wei-Fan Chiang
Shyun-Yeu Liu
Pei-Fen Chen
Hung-Che Chiang
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2013
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-12-68

Other articles of this Issue 1/2013

Molecular Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine