Skip to main content
Top
Published in: Molecular Cancer 1/2013

Open Access 01-12-2013 | Research

Differential G protein subunit expression by prostate cancer cells and their interaction with CXCR5

Authors: Christelle P El-Haibi, Praveen Sharma, Rajesh Singh, Pranav Gupta, Dennis D Taub, Shailesh Singh, James W Lillard, Jr

Published in: Molecular Cancer | Issue 1/2013

Login to get access

Abstract

Background

Prostate cancer (PCa) cell lines and tissues differentially express CXCR5, which positively correlate with PCa progression, and mediate PCa cell migration and invasion following interaction with CXCL13. However, the differential expression of G protein α, β, and γ subunits by PCa cell lines and the precise combination of these proteins with CXCR5 has not been elucidated.

Methods

We examined differences in G protein expression of normal prostate (RWPE-1) and PCa cell lines (LNCaP, C4-2B, and PC3) by western blot analysis. Further, we immunoprecipitated CXCR5 with different G protein subunits, and CXCR4, following CXCL13 stimulation. To investigate constitutive coupling of CXCR5 with CXCR4 and PAR-1 we performed invasion assay in PCa cells transfected with Gαq/i2 or Gα13 siRNA, following CXCL13 treatment. We also investigated Rac and RhoA activity by G-LISA activation assay in PCa cells following CXCL13/thrombin stimulation.

Result

Of the 22 G proteins studied, Gαi1-3, Gβ1-4, Gγ5, Gγ7, and Gγ10 were expressed by both normal and PCa cell lines. Gαs was moderately expressed in C4-2B and PC3 cell lines, Gαq/11 was only present in RWPE-1 and LNCaP cell lines, while Gα12 and Gα13 were expressed in C4-2B and PC3 cell lines. Gγ9 was expressed only in PCa cell lines. Gα16, Gβ5, Gγ1-4, and Gγ13 were not detected in any of the cell lines studied. Surprisingly, CXCR4 co-immunoprecipitated with CXCR5 in PCa cell lines irrespective of CXCL13 treatment. We also identified specific G protein isoforms coupled to CXCR5 in its resting and active states. Gαq/11/Gβ3/Gγ9 in LNCaP and Gαi2/Gβ3/Gγ9 in C4-2B and PC3 cell lines, were coupled to CXCR5 and disassociated following CXCL13 stimulation. Interestingly, Gα13 co-immunoprecipitated with CXCR5 in CXCL13-treated, but not in untreated PCa cell lines. Inhibition of Gαq/i2 significantly decreased the ability of cells to invade, whereas silencing Gα13 did not affect CXCL13-dependent cell invasion. Finally, CXCL13 treatment significantly increased Rac activity in Gαq/i2 dependent manner, but not RhoA activity, in PCa cell lines.

Conclusions

These findings offer insight into molecular mechanisms of PCa progression and can help to design some therapeutic strategies involving CXCR5 and/or CXCL13 blockade and specific G protein inhibition to abrogate PCa metastasis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Boege FF, Neumann EE, Helmreich EJE: Structural heterogeneity of membrane receptors and GTP-binding proteins and its functional consequences for signal transduction. FEBS J. 1991, 199: 1-15.CrossRef Boege FF, Neumann EE, Helmreich EJE: Structural heterogeneity of membrane receptors and GTP-binding proteins and its functional consequences for signal transduction. FEBS J. 1991, 199: 1-15.CrossRef
2.
go back to reference Pierce KL, Premont RT, Lefkowitz RJ: Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 2002, 3: 639-650. 10.1038/nrm908CrossRefPubMed Pierce KL, Premont RT, Lefkowitz RJ: Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 2002, 3: 639-650. 10.1038/nrm908CrossRefPubMed
3.
go back to reference Offermanns S, Simon MI: Organization of transmembrane signalling by heterotrimeric G proteins. Cancer Surv. 1996, 27: 177-198.PubMed Offermanns S, Simon MI: Organization of transmembrane signalling by heterotrimeric G proteins. Cancer Surv. 1996, 27: 177-198.PubMed
4.
go back to reference Oldham WM, Hamm HE: Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol. 2008, 9: 60-71. 10.1038/nrm2299CrossRefPubMed Oldham WM, Hamm HE: Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol. 2008, 9: 60-71. 10.1038/nrm2299CrossRefPubMed
5.
go back to reference Beecroft MD, Taylor CW: Incremental Ca2+ mobilization by inositol trisphosphate receptors is unlikely to be mediated by their desensitization or regulation by luminal or cytosolic Ca2+. Biochem J. 1997, 326: 215-220.PubMedCentralCrossRefPubMed Beecroft MD, Taylor CW: Incremental Ca2+ mobilization by inositol trisphosphate receptors is unlikely to be mediated by their desensitization or regulation by luminal or cytosolic Ca2+. Biochem J. 1997, 326: 215-220.PubMedCentralCrossRefPubMed
6.
go back to reference Simon MIM, Strathmann MPM, Gautam NN: Diversity of G proteins in signal transduction. Science. 1991, 252: 802-808. 10.1126/science.1902986CrossRefPubMed Simon MIM, Strathmann MPM, Gautam NN: Diversity of G proteins in signal transduction. Science. 1991, 252: 802-808. 10.1126/science.1902986CrossRefPubMed
7.
go back to reference Downes GB, Gautam N: The G protein subunit gene families. Genomics. 1999, 62: 544-552. 10.1006/geno.1999.5992CrossRefPubMed Downes GB, Gautam N: The G protein subunit gene families. Genomics. 1999, 62: 544-552. 10.1006/geno.1999.5992CrossRefPubMed
8.
go back to reference Clapham DE, Neer EJ: New roles for G-protein beta gamma-dimers in transmembrane signalling. Nature. 1993, 365: 403-406. 10.1038/365403a0CrossRefPubMed Clapham DE, Neer EJ: New roles for G-protein beta gamma-dimers in transmembrane signalling. Nature. 1993, 365: 403-406. 10.1038/365403a0CrossRefPubMed
9.
go back to reference Clapham DE, Neer EJ: G protein beta gamma subunits. Annu Rev Pharmacol Toxicol. 1997, 37: 167-203. 10.1146/annurev.pharmtox.37.1.167CrossRefPubMed Clapham DE, Neer EJ: G protein beta gamma subunits. Annu Rev Pharmacol Toxicol. 1997, 37: 167-203. 10.1146/annurev.pharmtox.37.1.167CrossRefPubMed
10.
go back to reference Offermanns S: G-proteins as transducers in transmembrane signalling. Prog Biophys Mol Biol. 2003, 83: 101-130. 10.1016/S0079-6107(03)00052-XCrossRefPubMed Offermanns S: G-proteins as transducers in transmembrane signalling. Prog Biophys Mol Biol. 2003, 83: 101-130. 10.1016/S0079-6107(03)00052-XCrossRefPubMed
11.
go back to reference Spiegel AM: Defects in G protein-coupled signal transduction in human disease. Annu Rev Physiol. 1996, 58: 143-170. 10.1146/annurev.ph.58.030196.001043CrossRefPubMed Spiegel AM: Defects in G protein-coupled signal transduction in human disease. Annu Rev Physiol. 1996, 58: 143-170. 10.1146/annurev.ph.58.030196.001043CrossRefPubMed
12.
go back to reference Waugh DJJ, Wilson C, Seaton A, Maxwell PJ: Multi-faceted roles for CXC-chemokines in prostate cancer progression. Front Biosci. 2008, 13: 4595-4604.CrossRefPubMed Waugh DJJ, Wilson C, Seaton A, Maxwell PJ: Multi-faceted roles for CXC-chemokines in prostate cancer progression. Front Biosci. 2008, 13: 4595-4604.CrossRefPubMed
13.
go back to reference Bonfil RD, Chinni S, Fridman R, Kim H-R, Cher ML: Proteases, growth factors, chemokines, and the microenvironment in prostate cancer bone metastasis. Urol Oncol. 2007, 25: 407-411. 10.1016/j.urolonc.2007.05.008CrossRefPubMed Bonfil RD, Chinni S, Fridman R, Kim H-R, Cher ML: Proteases, growth factors, chemokines, and the microenvironment in prostate cancer bone metastasis. Urol Oncol. 2007, 25: 407-411. 10.1016/j.urolonc.2007.05.008CrossRefPubMed
14.
go back to reference Singh S, Singh R, Sharma PK, Singh UP, Rai SN, Chung LWK, Cooper CR, Novakovic KR, Grizzle WE, Lillard JW: Serum CXCL13 positively correlates with prostatic disease, prostate-specific antigen and mediates prostate cancer cell invasion, integrin clustering and cell adhesion. Cancer Lett. 2009, 283: 29-35. 10.1016/j.canlet.2009.03.022PubMedCentralCrossRefPubMed Singh S, Singh R, Sharma PK, Singh UP, Rai SN, Chung LWK, Cooper CR, Novakovic KR, Grizzle WE, Lillard JW: Serum CXCL13 positively correlates with prostatic disease, prostate-specific antigen and mediates prostate cancer cell invasion, integrin clustering and cell adhesion. Cancer Lett. 2009, 283: 29-35. 10.1016/j.canlet.2009.03.022PubMedCentralCrossRefPubMed
15.
go back to reference Singh S, Singh R, Singh UP, Rai SN, Novakovic KR, Chung LWK, Didier PJ, Grizzle WE, Lillard JW: Clinical and biological significance of CXCR5 expressed by prostate cancer specimens and cell lines. Int J Cancer. 2009, 125: 2288-2295. 10.1002/ijc.24574PubMedCentralCrossRefPubMed Singh S, Singh R, Singh UP, Rai SN, Novakovic KR, Chung LWK, Didier PJ, Grizzle WE, Lillard JW: Clinical and biological significance of CXCR5 expressed by prostate cancer specimens and cell lines. Int J Cancer. 2009, 125: 2288-2295. 10.1002/ijc.24574PubMedCentralCrossRefPubMed
16.
go back to reference Amatruda TT, Steele DA, Slepak VZ, Simon MI: G alpha 16, a G protein alpha subunit specifically expressed in hematopoietic cells. Proc Natl Acad Sci USA. 1991, 88: 5587-5591. 10.1073/pnas.88.13.5587PubMedCentralCrossRefPubMed Amatruda TT, Steele DA, Slepak VZ, Simon MI: G alpha 16, a G protein alpha subunit specifically expressed in hematopoietic cells. Proc Natl Acad Sci USA. 1991, 88: 5587-5591. 10.1073/pnas.88.13.5587PubMedCentralCrossRefPubMed
17.
go back to reference Rodríguez-Frade JM, Martínez-A C, Mellado M: Chemokine signaling defines novel targets for therapeutic intervention. Mini Rev Med Chem. 2005, 5: 781-789. 10.2174/1389557054867084CrossRefPubMed Rodríguez-Frade JM, Martínez-A C, Mellado M: Chemokine signaling defines novel targets for therapeutic intervention. Mini Rev Med Chem. 2005, 5: 781-789. 10.2174/1389557054867084CrossRefPubMed
18.
go back to reference Nguyen Q-D, Faivre S, Bruyneel E, Rivat C, Seto M, Endo T, Mareel M, Emami S, Gespach C: RhoA- and RhoD-dependent regulatory switch of Galpha subunit signaling by PAR-1 receptors in cellular invasion. FASEB J. 2002, 16: 565-576. 10.1096/fj.01-0525comCrossRefPubMed Nguyen Q-D, Faivre S, Bruyneel E, Rivat C, Seto M, Endo T, Mareel M, Emami S, Gespach C: RhoA- and RhoD-dependent regulatory switch of Galpha subunit signaling by PAR-1 receptors in cellular invasion. FASEB J. 2002, 16: 565-576. 10.1096/fj.01-0525comCrossRefPubMed
19.
go back to reference Tan W, Martin D, Gutkind JS: The Galpha13-Rho signaling axis is required for SDF-1-induced migration through CXCR4. J Biol Chem. 2006, 281: 39542-39549. 10.1074/jbc.M609062200CrossRefPubMed Tan W, Martin D, Gutkind JS: The Galpha13-Rho signaling axis is required for SDF-1-induced migration through CXCR4. J Biol Chem. 2006, 281: 39542-39549. 10.1074/jbc.M609062200CrossRefPubMed
20.
go back to reference George SR, O’Dowd BF, Lee SP: G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat Rev Drug Discov. 2002, 1: 808-820. 10.1038/nrd913CrossRefPubMed George SR, O’Dowd BF, Lee SP: G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat Rev Drug Discov. 2002, 1: 808-820. 10.1038/nrd913CrossRefPubMed
21.
go back to reference Rodríguez-Frade JM, Mellado M, Martínez-A C: Chemokine receptor dimerization: two are better than one. Trends Immunol. 2001, 22: 612-617. 10.1016/S1471-4906(01)02036-1CrossRefPubMed Rodríguez-Frade JM, Mellado M, Martínez-A C: Chemokine receptor dimerization: two are better than one. Trends Immunol. 2001, 22: 612-617. 10.1016/S1471-4906(01)02036-1CrossRefPubMed
22.
go back to reference García-Fernández MO, Solano RM, Sánchez-Chapado M, Ruiz-Villaespesa A, Prieto JC, Carmena MJ: Low expression of Galpha protein subunits in human prostate cancer. J Urol. 2001, 166: 2512-2517. 10.1016/S0022-5347(05)65626-1CrossRefPubMed García-Fernández MO, Solano RM, Sánchez-Chapado M, Ruiz-Villaespesa A, Prieto JC, Carmena MJ: Low expression of Galpha protein subunits in human prostate cancer. J Urol. 2001, 166: 2512-2517. 10.1016/S0022-5347(05)65626-1CrossRefPubMed
23.
go back to reference Kelly P, Casey PJ, Meigs TE: Biologic functions of the G12 subfamily of heterotrimeric g proteins: growth, migration, and metastasis. Biochemistry. 2007, 46: 6677-6687. 10.1021/bi700235fCrossRefPubMed Kelly P, Casey PJ, Meigs TE: Biologic functions of the G12 subfamily of heterotrimeric g proteins: growth, migration, and metastasis. Biochemistry. 2007, 46: 6677-6687. 10.1021/bi700235fCrossRefPubMed
24.
go back to reference Kelly P, Stemmle LN, Madden JF, Fields TA, Daaka Y, Casey PJ: A role for the G12 family of heterotrimeric G proteins in prostate cancer invasion. J Biol Chem. 2006, 281: 26483-26490. 10.1074/jbc.M604376200CrossRefPubMed Kelly P, Stemmle LN, Madden JF, Fields TA, Daaka Y, Casey PJ: A role for the G12 family of heterotrimeric G proteins in prostate cancer invasion. J Biol Chem. 2006, 281: 26483-26490. 10.1074/jbc.M604376200CrossRefPubMed
25.
go back to reference Yan K, Kalyanaraman V, Gautam N: Differential ability to form the G protein betagamma complex among members of the beta and gamma subunit families. J Biol Chem. 1996, 271: 7141-7146. 10.1074/jbc.271.12.7141CrossRefPubMed Yan K, Kalyanaraman V, Gautam N: Differential ability to form the G protein betagamma complex among members of the beta and gamma subunit families. J Biol Chem. 1996, 271: 7141-7146. 10.1074/jbc.271.12.7141CrossRefPubMed
26.
go back to reference Wu D, Katz A, Simon MI: Activation of phospholipase C beta 2 by the alpha and beta gamma subunits of trimeric GTP-binding protein. Proc Natl Acad Sci USA. 1993, 90: 5297-5301. 10.1073/pnas.90.11.5297PubMedCentralCrossRefPubMed Wu D, Katz A, Simon MI: Activation of phospholipase C beta 2 by the alpha and beta gamma subunits of trimeric GTP-binding protein. Proc Natl Acad Sci USA. 1993, 90: 5297-5301. 10.1073/pnas.90.11.5297PubMedCentralCrossRefPubMed
27.
go back to reference Blake BL, Wing MR, Zhou JY, Lei Q, Hillmann JR, Behe CI, Morris RA, Harden TK, Bayliss DA, Miller RJ, Siderovski DP: G beta association and effector interaction selectivities of the divergent G gamma subunit G gamma(13). J Biol Chem. 2001, 276: 49267-49274. 10.1074/jbc.M106565200CrossRefPubMed Blake BL, Wing MR, Zhou JY, Lei Q, Hillmann JR, Behe CI, Morris RA, Harden TK, Bayliss DA, Miller RJ, Siderovski DP: G beta association and effector interaction selectivities of the divergent G gamma subunit G gamma(13). J Biol Chem. 2001, 276: 49267-49274. 10.1074/jbc.M106565200CrossRefPubMed
28.
go back to reference Ray K, Kunsch C, Bonner LM, Robishaw JD: Isolation of cDNA clones encoding eight different human G protein gamma subunits, including three novel forms designated the gamma 4, gamma 10, and gamma 11 subunits. J Biol Chem. 1995, 270: 21765-21771. 10.1074/jbc.270.37.21765CrossRefPubMed Ray K, Kunsch C, Bonner LM, Robishaw JD: Isolation of cDNA clones encoding eight different human G protein gamma subunits, including three novel forms designated the gamma 4, gamma 10, and gamma 11 subunits. J Biol Chem. 1995, 270: 21765-21771. 10.1074/jbc.270.37.21765CrossRefPubMed
29.
30.
go back to reference Farfel Z, Bourne HR, Iiri T: The expanding spectrum of G protein diseases. N Engl J Med. 1999, 340: 1012-1020. 10.1056/NEJM199904013401306CrossRefPubMed Farfel Z, Bourne HR, Iiri T: The expanding spectrum of G protein diseases. N Engl J Med. 1999, 340: 1012-1020. 10.1056/NEJM199904013401306CrossRefPubMed
31.
go back to reference Han S-B, Moratz C, Huang N-N, Kelsall B, Cho H, Shi C-S, Schwartz O, Kehrl JH: Rgs1 and Gnai2 regulate the entrance of B lymphocytes into lymph nodes and B cell motility within lymph node follicles. Immunity. 2005, 22: 343-354. 10.1016/j.immuni.2005.01.017CrossRefPubMed Han S-B, Moratz C, Huang N-N, Kelsall B, Cho H, Shi C-S, Schwartz O, Kehrl JH: Rgs1 and Gnai2 regulate the entrance of B lymphocytes into lymph nodes and B cell motility within lymph node follicles. Immunity. 2005, 22: 343-354. 10.1016/j.immuni.2005.01.017CrossRefPubMed
32.
go back to reference Liu AY, Brubaker KD, Goo YA, Quinn JE, Kral S, Sorensen CM, Vessella RL, Belldegrun AS, Hood LE: Lineage relationship between LNCaP and LNCaP-derived prostate cancer cell lines. Prostate. 2004, 60: 98-108. 10.1002/pros.20031CrossRefPubMed Liu AY, Brubaker KD, Goo YA, Quinn JE, Kral S, Sorensen CM, Vessella RL, Belldegrun AS, Hood LE: Lineage relationship between LNCaP and LNCaP-derived prostate cancer cell lines. Prostate. 2004, 60: 98-108. 10.1002/pros.20031CrossRefPubMed
33.
go back to reference Debes JD, Tindall DJ: The role of androgens and the androgen receptor in prostate cancer. Cancer Lett. 2002, 187: 1-7. 10.1016/S0304-3835(02)00413-5CrossRefPubMed Debes JD, Tindall DJ: The role of androgens and the androgen receptor in prostate cancer. Cancer Lett. 2002, 187: 1-7. 10.1016/S0304-3835(02)00413-5CrossRefPubMed
34.
go back to reference Casey PJ: Protein lipidation in cell signaling. Science. 1995, 268: 221-225. 10.1126/science.7716512CrossRefPubMed Casey PJ: Protein lipidation in cell signaling. Science. 1995, 268: 221-225. 10.1126/science.7716512CrossRefPubMed
35.
go back to reference Bookout AL, Finney AE, Guo R, Peppel K, Koch WJ, Daaka Y: Targeting Gbetagamma signaling to inhibit prostate tumor formation and growth. J Biol Chem. 2003, 278: 37569-37573. 10.1074/jbc.M306276200CrossRefPubMed Bookout AL, Finney AE, Guo R, Peppel K, Koch WJ, Daaka Y: Targeting Gbetagamma signaling to inhibit prostate tumor formation and growth. J Biol Chem. 2003, 278: 37569-37573. 10.1074/jbc.M306276200CrossRefPubMed
36.
go back to reference Clar H, Langsenlehner U, Krippl P, Renner W, Leithner A, Gruber G, Hofmann G, Yazdani-Biuki B, Langsenlehner T, Windhager R: A polymorphism in the G protein beta3-subunit gene is associated with bone metastasis risk in breast cancer patients. Breast Cancer Res Treat. 2008, 111: 449-452. 10.1007/s10549-007-9808-0CrossRefPubMed Clar H, Langsenlehner U, Krippl P, Renner W, Leithner A, Gruber G, Hofmann G, Yazdani-Biuki B, Langsenlehner T, Windhager R: A polymorphism in the G protein beta3-subunit gene is associated with bone metastasis risk in breast cancer patients. Breast Cancer Res Treat. 2008, 111: 449-452. 10.1007/s10549-007-9808-0CrossRefPubMed
37.
go back to reference Martin NP, Whalen EJ, Zamah MA, Pierce KL, Lefkowitz RJ: PKA-mediated phosphorylation of the beta1-adrenergic receptor promotes Gs/Gi switching. Cell Signal. 2004, 16: 1397-1403. 10.1016/j.cellsig.2004.05.002CrossRefPubMed Martin NP, Whalen EJ, Zamah MA, Pierce KL, Lefkowitz RJ: PKA-mediated phosphorylation of the beta1-adrenergic receptor promotes Gs/Gi switching. Cell Signal. 2004, 16: 1397-1403. 10.1016/j.cellsig.2004.05.002CrossRefPubMed
38.
go back to reference Zamah AM, Delahunty M, Luttrell LM, Lefkowitz RJ: Protein kinase A-mediated phosphorylation of the beta 2-adrenergic receptor regulates its coupling to Gs and Gi. Demonstration in a reconstituted system. J Biol Chem. 2002, 277: 31249-31256. 10.1074/jbc.M202753200CrossRefPubMed Zamah AM, Delahunty M, Luttrell LM, Lefkowitz RJ: Protein kinase A-mediated phosphorylation of the beta 2-adrenergic receptor regulates its coupling to Gs and Gi. Demonstration in a reconstituted system. J Biol Chem. 2002, 277: 31249-31256. 10.1074/jbc.M202753200CrossRefPubMed
39.
go back to reference Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK: Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 2002, 62: 1832-1837.PubMed Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK: Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 2002, 62: 1832-1837.PubMed
40.
go back to reference Kim E-S, Kim J-S, Kim SG, Hwang S, Lee CH, Moon A: Sphingosine 1-phosphate regulates matrix metalloproteinase-9 expression and breast cell invasion through S1P3-Gαq coupling. J Cell Sci. 2011, 124: 2220-2230. 10.1242/jcs.076794CrossRefPubMed Kim E-S, Kim J-S, Kim SG, Hwang S, Lee CH, Moon A: Sphingosine 1-phosphate regulates matrix metalloproteinase-9 expression and breast cell invasion through S1P3-Gαq coupling. J Cell Sci. 2011, 124: 2220-2230. 10.1242/jcs.076794CrossRefPubMed
41.
go back to reference Santos-Alvarez J, Sánchez-Margalet V: G protein G alpha q/11 and G alpha i1, 2 are activated by pancreastatin receptors in rat liver: studies with GTP-gamma 35S and azido-GTP-alpha-32P. J Cell Biochem. 1999, 73: 469-477. 10.1002/(SICI)1097-4644(19990615)73:4<469::AID-JCB5>3.0.CO;2-UCrossRefPubMed Santos-Alvarez J, Sánchez-Margalet V: G protein G alpha q/11 and G alpha i1, 2 are activated by pancreastatin receptors in rat liver: studies with GTP-gamma 35S and azido-GTP-alpha-32P. J Cell Biochem. 1999, 73: 469-477. 10.1002/(SICI)1097-4644(19990615)73:4<469::AID-JCB5>3.0.CO;2-UCrossRefPubMed
42.
go back to reference Buhl AM, Johnson NL, Dhanasekaran N, Johnson GL: G alpha 12 and G alpha 13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly. J Biol Chem. 1995, 270: 24631-24634. 10.1074/jbc.270.42.24631CrossRefPubMed Buhl AM, Johnson NL, Dhanasekaran N, Johnson GL: G alpha 12 and G alpha 13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly. J Biol Chem. 1995, 270: 24631-24634. 10.1074/jbc.270.42.24631CrossRefPubMed
43.
go back to reference Gratacap MP, Payrastre B, Nieswandt B, Offermanns S: Differential regulation of Rho and Rac through heterotrimeric G-proteins and cyclic nucleotides. J Biol Chem. 2001, 276: 47906-47913.PubMed Gratacap MP, Payrastre B, Nieswandt B, Offermanns S: Differential regulation of Rho and Rac through heterotrimeric G-proteins and cyclic nucleotides. J Biol Chem. 2001, 276: 47906-47913.PubMed
44.
go back to reference Booden MA, Siderovski DP, Der CJ: Leukemia-associated Rho guanine nucleotide exchange factor promotes G alpha q-coupled activation of RhoA. Mol Cell Biol. 2002, 22: 4053-4061. 10.1128/MCB.22.12.4053-4061.2002PubMedCentralCrossRefPubMed Booden MA, Siderovski DP, Der CJ: Leukemia-associated Rho guanine nucleotide exchange factor promotes G alpha q-coupled activation of RhoA. Mol Cell Biol. 2002, 22: 4053-4061. 10.1128/MCB.22.12.4053-4061.2002PubMedCentralCrossRefPubMed
45.
go back to reference Whitehead IP, Zohn IE, Der CJ: Rho GTPase-dependent transformation by G protein-coupled receptors. Oncogene. 2001, 20: 1547-1555. 10.1038/sj.onc.1204188CrossRefPubMed Whitehead IP, Zohn IE, Der CJ: Rho GTPase-dependent transformation by G protein-coupled receptors. Oncogene. 2001, 20: 1547-1555. 10.1038/sj.onc.1204188CrossRefPubMed
46.
go back to reference Mellado M, Rodríguez-Frade JM, Vila-Coro AJ, Fernández S, Jones DR, Torán JL, Martínez-A C, : Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO J. 2001, 20: 2497-2507. 10.1093/emboj/20.10.2497PubMedCentralCrossRefPubMed Mellado M, Rodríguez-Frade JM, Vila-Coro AJ, Fernández S, Jones DR, Torán JL, Martínez-A C, : Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO J. 2001, 20: 2497-2507. 10.1093/emboj/20.10.2497PubMedCentralCrossRefPubMed
47.
go back to reference Rodríguez-Frade JM, del Real G, Serrano A, Hernanz-Falcón P, Soriano SF, Vila-Coro AJ, de Ana AM, Lucas P, Prieto I, Martínez-A C, Mellado M: Blocking HIV-1 infection via CCR5 and CXCR4 receptors by acting in trans on the CCR2 chemokine receptor. EMBO J. 2004, 23: 66-76. 10.1038/sj.emboj.7600020PubMedCentralCrossRefPubMed Rodríguez-Frade JM, del Real G, Serrano A, Hernanz-Falcón P, Soriano SF, Vila-Coro AJ, de Ana AM, Lucas P, Prieto I, Martínez-A C, Mellado M: Blocking HIV-1 infection via CCR5 and CXCR4 receptors by acting in trans on the CCR2 chemokine receptor. EMBO J. 2004, 23: 66-76. 10.1038/sj.emboj.7600020PubMedCentralCrossRefPubMed
48.
go back to reference Vàzquez-Salat N, Yuhki N, Beck T, O’Brien SJ, Murphy WJ: Gene conversion between mammalian CCR2 and CCR5 chemokine receptor genes: a potential mechanism for receptor dimerization. Genomics. 2007, 90: 213-224. 10.1016/j.ygeno.2007.04.009CrossRefPubMed Vàzquez-Salat N, Yuhki N, Beck T, O’Brien SJ, Murphy WJ: Gene conversion between mammalian CCR2 and CCR5 chemokine receptor genes: a potential mechanism for receptor dimerization. Genomics. 2007, 90: 213-224. 10.1016/j.ygeno.2007.04.009CrossRefPubMed
49.
go back to reference Chen C, Li J, Bot G, Szabo I, Rogers TJ, Liu-Chen LY: Heterodimerization and cross-desensitization between the mu-opioid receptor and the chemokine CCR5 receptor. Eur J Pharmacol. 2004, 483: 175-186. 10.1016/j.ejphar.2003.10.033CrossRefPubMed Chen C, Li J, Bot G, Szabo I, Rogers TJ, Liu-Chen LY: Heterodimerization and cross-desensitization between the mu-opioid receptor and the chemokine CCR5 receptor. Eur J Pharmacol. 2004, 483: 175-186. 10.1016/j.ejphar.2003.10.033CrossRefPubMed
50.
go back to reference Meijer J, Zeelenberg IS, Sipos B, Roos E: The CXCR5 chemokine receptor is expressed by carcinoma cells and promotes growth of colon carcinoma in the liver. Cancer Res. 2006, 66: 9576-9582. 10.1158/0008-5472.CAN-06-1507CrossRefPubMed Meijer J, Zeelenberg IS, Sipos B, Roos E: The CXCR5 chemokine receptor is expressed by carcinoma cells and promotes growth of colon carcinoma in the liver. Cancer Res. 2006, 66: 9576-9582. 10.1158/0008-5472.CAN-06-1507CrossRefPubMed
Metadata
Title
Differential G protein subunit expression by prostate cancer cells and their interaction with CXCR5
Authors
Christelle P El-Haibi
Praveen Sharma
Rajesh Singh
Pranav Gupta
Dennis D Taub
Shailesh Singh
James W Lillard, Jr
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2013
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-12-64

Other articles of this Issue 1/2013

Molecular Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine