Skip to main content
Top
Published in: Molecular Cancer 1/2013

Open Access 01-12-2013 | Research

Frequency of NFKBIA deletions is low in glioblastomas and skewed in glioblastoma neurospheres

Authors: Monica Patanè, Paola Porrati, Elisa Bottega, Sara Morosini, Gabriele Cantini, Vita Girgenti, Ambra Rizzo, Marica Eoli, Bianca Pollo, Francesca L Sciacca, Serena Pellegatta, Gaetano Finocchiaro

Published in: Molecular Cancer | Issue 1/2013

Login to get access

Abstract

The NF-kB family of transcription factors is up-regulated in inflammation and different cancers. Recent data described heterozygous deletions of the NF-kB Inhibitor alpha gene (NFKBIA) in about 20% of glioblastomas (GBM): deletions were mutually exclusive with epidermal growth factor receptor (EGFR) amplification, a frequent event in GBM. We assessed the status of NFKBIA and EGFR in 69 primary GBMs and in corresponding neurospheres (NS). NFKBIA deletion was investigated by the copy number variation assay (CNV); EGFR amplification by CNV ratio with HGF; expression of EGFR and EGFRvIII by quantitative PCR or ReverseTranscriptase PCR. Heterozygous deletions of NFKBIA were present in 3 of 69 primary GBMs and, surprisingly, in 30 of 69 NS. EGFR amplification was detected in 36 GBMs: in corresponding NS, amplification was lost in 13 cases and reduced in 23 (10 vs 47 folds in NS vs primary tumors; p < 0.001). The CNV assay was validated investigating HPRT1 on chromosome X in females and males. Results of array-CGH performed on 3 primary GBMs and 1 NS line were compatible with the CNV assay. NS cells with NFKBIA deletion had increased nuclear activity of p65 (RelA) and increased expression of the NF-kB target IL-6. In absence of EGF in the medium, EGFR amplification was more conserved and NFKBIA deletion less frequent point to a low frequency of NFKBIA deletions in GBM and suggest that EGF in the culture medium of NS may affect frequency not only of EGFR amplifications but also of NFKBIA deletions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ohgaki H, Kleihues P: Epidemiology and etiology of gliomas. Acta Neuropathol. 2005, 109: 93-108. 10.1007/s00401-005-0991-yCrossRefPubMed Ohgaki H, Kleihues P: Epidemiology and etiology of gliomas. Acta Neuropathol. 2005, 109: 93-108. 10.1007/s00401-005-0991-yCrossRefPubMed
2.
go back to reference Kotliarova S, Fine HA: Snapshot: glioblastoma multiforme. Cancer Cell. 2012, 21: 710-710. e1, 10.1016/j.ccr.2012.04.031CrossRefPubMed Kotliarova S, Fine HA: Snapshot: glioblastoma multiforme. Cancer Cell. 2012, 21: 710-710. e1, 10.1016/j.ccr.2012.04.031CrossRefPubMed
3.
go back to reference Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K:Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006, 9: 157-173. 10.1016/j.ccr.2006.02.019CrossRefPubMed Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K:Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006, 9: 157-173. 10.1016/j.ccr.2006.02.019CrossRefPubMed
4.
go back to reference Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010, 17: 98-110. 10.1016/j.ccr.2009.12.020PubMedCentralCrossRefPubMed Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010, 17: 98-110. 10.1016/j.ccr.2009.12.020PubMedCentralCrossRefPubMed
5.
go back to reference Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN, Dunn IF, Agarwalla PK, Chheda MG, Campos B, Wang A, Brennan C, Ligon KL, Furnari F, Cavenee WK, Depinho RA, Chin L, Hahn WC: Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev. 2012, 26: 756-784. 10.1101/gad.187922.112PubMedCentralCrossRefPubMed Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN, Dunn IF, Agarwalla PK, Chheda MG, Campos B, Wang A, Brennan C, Ligon KL, Furnari F, Cavenee WK, Depinho RA, Chin L, Hahn WC: Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev. 2012, 26: 756-784. 10.1101/gad.187922.112PubMedCentralCrossRefPubMed
6.
go back to reference Bonavia R, Inda MM, Vandenberg S, Cheng S-Y, Nagane M, Hadwiger P, Tan P, Sah DWY, Cavenee WK, Furnari FB: EGFRvIII promotes glioma angiogenesis and growth through the NF-κB, interleukin-8 pathway. Oncogene. 2011, 31: 4054-4066.PubMedCentralCrossRefPubMed Bonavia R, Inda MM, Vandenberg S, Cheng S-Y, Nagane M, Hadwiger P, Tan P, Sah DWY, Cavenee WK, Furnari FB: EGFRvIII promotes glioma angiogenesis and growth through the NF-κB, interleukin-8 pathway. Oncogene. 2011, 31: 4054-4066.PubMedCentralCrossRefPubMed
7.
go back to reference Tanaka K, Babic I, Nathanson D, Akhavan D, Guo D, Gini B, Dang J, Zhu S, Yang H, De Jesus J, Amzajerdi AN, Zhang Y, Dibble CC, Dan H, Rinkenbaugh A, Yong WH, Vinters HV, Gera JF, Cavenee WK, Cloughesy TF, Manning BD, Baldwin AS, Mischel PS:Oncogenic EGFR signaling activates an mTORC2-NF-κB pathway that promotes chemotherapy resistance. Cancer Discov. 2011, 1: 524-538. 10.1158/2159-8290.CD-11-0124PubMedCentralCrossRefPubMed Tanaka K, Babic I, Nathanson D, Akhavan D, Guo D, Gini B, Dang J, Zhu S, Yang H, De Jesus J, Amzajerdi AN, Zhang Y, Dibble CC, Dan H, Rinkenbaugh A, Yong WH, Vinters HV, Gera JF, Cavenee WK, Cloughesy TF, Manning BD, Baldwin AS, Mischel PS:Oncogenic EGFR signaling activates an mTORC2-NF-κB pathway that promotes chemotherapy resistance. Cancer Discov. 2011, 1: 524-538. 10.1158/2159-8290.CD-11-0124PubMedCentralCrossRefPubMed
8.
go back to reference Jiang T, Grabiner B, Zhu Y, Jiang C, Li H, You Y, Lang J, Hung M-C, Lin X: CARMA3 is crucial for EGFR-Induced activation of NF-κB and tumor progression. Cancer Res. 2011, 71: 2183-2192. 10.1158/0008-5472.CAN-10-3626PubMedCentralCrossRefPubMed Jiang T, Grabiner B, Zhu Y, Jiang C, Li H, You Y, Lang J, Hung M-C, Lin X: CARMA3 is crucial for EGFR-Induced activation of NF-κB and tumor progression. Cancer Res. 2011, 71: 2183-2192. 10.1158/0008-5472.CAN-10-3626PubMedCentralCrossRefPubMed
9.
go back to reference Viatour P, Merville M-P, Bours V, Chariot A: Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci. 2005, 30: 43-52. 10.1016/j.tibs.2004.11.009CrossRefPubMed Viatour P, Merville M-P, Bours V, Chariot A: Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci. 2005, 30: 43-52. 10.1016/j.tibs.2004.11.009CrossRefPubMed
10.
go back to reference Bassères DS, Baldwin AS: Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene. 2006, 25: 6817-6830. 10.1038/sj.onc.1209942CrossRefPubMed Bassères DS, Baldwin AS: Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene. 2006, 25: 6817-6830. 10.1038/sj.onc.1209942CrossRefPubMed
11.
go back to reference Mazzoleni S, Politi LS, Pala M, Cominelli M, Franzin A, Sergi Sergi L, Falini A, De Palma M, Bulfone A, Poliani PL, Galli R: Epidermal growth factor receptor expression identifies functionally and molecularly distinct tumor-initiating cells in human glioblastoma multiforme and is required for gliomagenesis. Cancer Res. 2010, 70: 7500-7513. 10.1158/0008-5472.CAN-10-2353CrossRefPubMed Mazzoleni S, Politi LS, Pala M, Cominelli M, Franzin A, Sergi Sergi L, Falini A, De Palma M, Bulfone A, Poliani PL, Galli R: Epidermal growth factor receptor expression identifies functionally and molecularly distinct tumor-initiating cells in human glioblastoma multiforme and is required for gliomagenesis. Cancer Res. 2010, 70: 7500-7513. 10.1158/0008-5472.CAN-10-2353CrossRefPubMed
12.
go back to reference Huang HS, Nagane M, Klingbeil CK, Lin H, Nishikawa R, Ji XD, Huang CM, Gill GN, Wiley HS, Cavenee WK: The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling. J Biol Chem. 1997, 272: 2927-2935. 10.1074/jbc.272.5.2927CrossRefPubMed Huang HS, Nagane M, Klingbeil CK, Lin H, Nishikawa R, Ji XD, Huang CM, Gill GN, Wiley HS, Cavenee WK: The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling. J Biol Chem. 1997, 272: 2927-2935. 10.1074/jbc.272.5.2927CrossRefPubMed
13.
go back to reference Hegi ME, Rajakannu P, Weller M: Epidermal growth factor receptor: a re-emerging target in glioblastoma. Curr Opin Neurol. 2012, 25: 774-779. 10.1097/WCO.0b013e328359b0bcCrossRefPubMed Hegi ME, Rajakannu P, Weller M: Epidermal growth factor receptor: a re-emerging target in glioblastoma. Curr Opin Neurol. 2012, 25: 774-779. 10.1097/WCO.0b013e328359b0bcCrossRefPubMed
14.
go back to reference Fan Q-W, Cheng CK, Gustafson WC, Charron E, Zipper P, Wong RA, Chen J, Lau J, Knobbe-Thomsen C, Weller M, Jura N, Reifenberger G, Shokat KM, Weiss WA: EGFR Phosphorylates Tumor-Derived EGFRvIII Driving STAT3/5 and Progression in Glioblastoma. Cancer Cell. 2013, 24: 438-449. 10.1016/j.ccr.2013.09.004CrossRefPubMed Fan Q-W, Cheng CK, Gustafson WC, Charron E, Zipper P, Wong RA, Chen J, Lau J, Knobbe-Thomsen C, Weller M, Jura N, Reifenberger G, Shokat KM, Weiss WA: EGFR Phosphorylates Tumor-Derived EGFRvIII Driving STAT3/5 and Progression in Glioblastoma. Cancer Cell. 2013, 24: 438-449. 10.1016/j.ccr.2013.09.004CrossRefPubMed
15.
go back to reference Lopez-Gines C, Gil-Benso R, Ferrer-Luna R, Benito R, Serna E, Gonzalez-Darder J, Quilis V, Monleon D, Celda B, Cerdá-Nicolas M: New pattern of EGFR amplification in glioblastoma and the relationship of gene copy number with gene expression profile. Mod Pathol. 2010, 23: 856-865. 10.1038/modpathol.2010.62CrossRefPubMed Lopez-Gines C, Gil-Benso R, Ferrer-Luna R, Benito R, Serna E, Gonzalez-Darder J, Quilis V, Monleon D, Celda B, Cerdá-Nicolas M: New pattern of EGFR amplification in glioblastoma and the relationship of gene copy number with gene expression profile. Mod Pathol. 2010, 23: 856-865. 10.1038/modpathol.2010.62CrossRefPubMed
16.
go back to reference Biswas DK, Cruz AP, Gansberger E, Pardee AB: Epidermal growth factor-induced nuclear factor kappa B activation: a major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells. Proc Natl Acad Sci USA. 2000, 97: 8542-8547. 10.1073/pnas.97.15.8542PubMedCentralCrossRefPubMed Biswas DK, Cruz AP, Gansberger E, Pardee AB: Epidermal growth factor-induced nuclear factor kappa B activation: a major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells. Proc Natl Acad Sci USA. 2000, 97: 8542-8547. 10.1073/pnas.97.15.8542PubMedCentralCrossRefPubMed
17.
go back to reference Yang W, Xia Y, Cao Y, Zheng Y, Bu W, Zhang L, You MJ, Koh MY, Cote G, Aldape K, Li Y, Verma IM, Chiao PJ, Lu Z: EGFR-induced and PKCϵ monoubiquitylation-dependent NF-κB activation upregulates PKM2 expression and promotes tumorigenesis. Mol Cell. 2012, 48: 771-784. 10.1016/j.molcel.2012.09.028PubMedCentralCrossRefPubMed Yang W, Xia Y, Cao Y, Zheng Y, Bu W, Zhang L, You MJ, Koh MY, Cote G, Aldape K, Li Y, Verma IM, Chiao PJ, Lu Z: EGFR-induced and PKCϵ monoubiquitylation-dependent NF-κB activation upregulates PKM2 expression and promotes tumorigenesis. Mol Cell. 2012, 48: 771-784. 10.1016/j.molcel.2012.09.028PubMedCentralCrossRefPubMed
18.
go back to reference Kapoor GS, Zhan Y, Johnson GR, O’Rourke DM: Distinct domains in the SHP-2 phosphatase differentially regulate epidermal growth factor receptor/NF-kappaB activation through Gab1 in glioblastoma cells. Mol Cell Biol. 2004, 24: 823-836. 10.1128/MCB.24.2.823-836.2004PubMedCentralCrossRefPubMed Kapoor GS, Zhan Y, Johnson GR, O’Rourke DM: Distinct domains in the SHP-2 phosphatase differentially regulate epidermal growth factor receptor/NF-kappaB activation through Gab1 in glioblastoma cells. Mol Cell Biol. 2004, 24: 823-836. 10.1128/MCB.24.2.823-836.2004PubMedCentralCrossRefPubMed
19.
go back to reference Alvarez AA, Sc B, Renfrow JJ, Chandler JP, Yu ILY, Sc M, Carro MS, Ph D, Dai F, Tagge MJ, Ferrarese R, Bredel C, Weyerbrock A, Vogel H, Dubner S, Mobley B, He X, Scheck AC, Iv GRH, Bredel M, Scholtens DM, Yadav AK, Phillips HS, Lukac PJ, Robe PA, Sikic BI, Aldape KD, Chakravarti A, Harsh GR: NFKBIA deletion in glioblastomas. N Engl J Med. 2011, 364: 627-637. 10.1056/NEJMoa1006312PubMedCentralCrossRefPubMed Alvarez AA, Sc B, Renfrow JJ, Chandler JP, Yu ILY, Sc M, Carro MS, Ph D, Dai F, Tagge MJ, Ferrarese R, Bredel C, Weyerbrock A, Vogel H, Dubner S, Mobley B, He X, Scheck AC, Iv GRH, Bredel M, Scholtens DM, Yadav AK, Phillips HS, Lukac PJ, Robe PA, Sikic BI, Aldape KD, Chakravarti A, Harsh GR: NFKBIA deletion in glioblastomas. N Engl J Med. 2011, 364: 627-637. 10.1056/NEJMoa1006312PubMedCentralCrossRefPubMed
20.
go back to reference Yin D, Ogawa S, Kawamata N, Tunici P, Finocchiaro G, Eoli M, Ruckert C, Huynh T, Liu G, Kato M, Sanada M, Jauch A, Dugas M, Black KL, Koeffler HP: High-resolution genomic copy number profiling of glioblastoma multiforme by single nucleotide polymorphism DNA microarray. Mol Cancer Res. 2009, 7: 665-677. 10.1158/1541-7786.MCR-08-0270CrossRefPubMed Yin D, Ogawa S, Kawamata N, Tunici P, Finocchiaro G, Eoli M, Ruckert C, Huynh T, Liu G, Kato M, Sanada M, Jauch A, Dugas M, Black KL, Koeffler HP: High-resolution genomic copy number profiling of glioblastoma multiforme by single nucleotide polymorphism DNA microarray. Mol Cancer Res. 2009, 7: 665-677. 10.1158/1541-7786.MCR-08-0270CrossRefPubMed
21.
go back to reference Stiles CD, Rowitch DH: Glioma stem cells: a midterm exam. Neuron. 2008, 58: 832-846. 10.1016/j.neuron.2008.05.031CrossRefPubMed Stiles CD, Rowitch DH: Glioma stem cells: a midterm exam. Neuron. 2008, 58: 832-846. 10.1016/j.neuron.2008.05.031CrossRefPubMed
22.
go back to reference Tunici P, Bissola L, Lualdi E, Pollo B, Cajola L, Broggi G, Sozzi G, Finocchiaro G: Genetic alterations and in vivo tumorigenicity of neurospheres derived from an adult glioblastoma. Mol Cancer. 2004, 3: 25- 10.1186/1476-4598-3-25PubMedCentralCrossRefPubMed Tunici P, Bissola L, Lualdi E, Pollo B, Cajola L, Broggi G, Sozzi G, Finocchiaro G: Genetic alterations and in vivo tumorigenicity of neurospheres derived from an adult glioblastoma. Mol Cancer. 2004, 3: 25- 10.1186/1476-4598-3-25PubMedCentralCrossRefPubMed
23.
go back to reference Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA: Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006, 9: 391-403. 10.1016/j.ccr.2006.03.030CrossRefPubMed Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA: Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006, 9: 391-403. 10.1016/j.ccr.2006.03.030CrossRefPubMed
24.
25.
go back to reference Inda M-M, Bonavia R, Mukasa A, Narita Y, Sah DWY, Vandenberg S, Brennan C, Johns TG, Bachoo R, Hadwiger P, Tan P, Depinho RA, Cavenee W, Furnari F: Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev. 2010, 24: 1731-1745. 10.1101/gad.1890510PubMedCentralCrossRefPubMed Inda M-M, Bonavia R, Mukasa A, Narita Y, Sah DWY, Vandenberg S, Brennan C, Johns TG, Bachoo R, Hadwiger P, Tan P, Depinho RA, Cavenee W, Furnari F: Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev. 2010, 24: 1731-1745. 10.1101/gad.1890510PubMedCentralCrossRefPubMed
26.
go back to reference Schulte A, Günther HS, Martens T, Zapf S, Riethdorf S, Wülfing C, Stoupiec M, Westphal M, Lamszus K: Glioblastoma stem-like cell lines with either maintenance or loss of high-level EGFR amplification, generated via modulation of ligand concentration. Clin Cancer Res. 2012, 18: 1901-1913. 10.1158/1078-0432.CCR-11-3084CrossRefPubMed Schulte A, Günther HS, Martens T, Zapf S, Riethdorf S, Wülfing C, Stoupiec M, Westphal M, Lamszus K: Glioblastoma stem-like cell lines with either maintenance or loss of high-level EGFR amplification, generated via modulation of ligand concentration. Clin Cancer Res. 2012, 18: 1901-1913. 10.1158/1078-0432.CCR-11-3084CrossRefPubMed
27.
go back to reference Hobbs J, Nikiforova MN, Fardo DW, Bortoluzzi S, Cieply K, Hamilton RL, Horbinski C: Paradoxical relationship between the degree of EGFR amplification and outcome in glioblastomas. Am J Surg Pathol. 2012, 36: 1186-1193. 10.1097/PAS.0b013e3182518e12PubMedCentralCrossRefPubMed Hobbs J, Nikiforova MN, Fardo DW, Bortoluzzi S, Cieply K, Hamilton RL, Horbinski C: Paradoxical relationship between the degree of EGFR amplification and outcome in glioblastomas. Am J Surg Pathol. 2012, 36: 1186-1193. 10.1097/PAS.0b013e3182518e12PubMedCentralCrossRefPubMed
28.
go back to reference Idbaih A, Marie Y, Sanson M: NFKBIA deletion in glioblastomas. N Engl J Med. 2011, 365: 277-author reply 277–8PubMed Idbaih A, Marie Y, Sanson M: NFKBIA deletion in glioblastomas. N Engl J Med. 2011, 365: 277-author reply 277–8PubMed
29.
go back to reference Frattini V, Trifonov V, Chan JM, Castano A, Lia M, Abate F, Keir ST, Ji AX, Zoppoli P, Niola F, Danussi C, Dolgalev I, Porrati P, Pellegatta S, Heguy A, Gupta G, Pisapia DJ, Canoll P, Bruce JN, McLendon RE, Yan H, Aldape K, Finocchiaro G, Mikkelsen T, Privé GG, Bigner DD, Lasorella A, Rabadan R, Iavarone A: The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet. 2013, 45: 1141-1149. 10.1038/ng.2734PubMedCentralCrossRefPubMed Frattini V, Trifonov V, Chan JM, Castano A, Lia M, Abate F, Keir ST, Ji AX, Zoppoli P, Niola F, Danussi C, Dolgalev I, Porrati P, Pellegatta S, Heguy A, Gupta G, Pisapia DJ, Canoll P, Bruce JN, McLendon RE, Yan H, Aldape K, Finocchiaro G, Mikkelsen T, Privé GG, Bigner DD, Lasorella A, Rabadan R, Iavarone A: The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet. 2013, 45: 1141-1149. 10.1038/ng.2734PubMedCentralCrossRefPubMed
30.
go back to reference Brennan CWW, Verhaak RGWGW, McKenna A, Campos B, Noushmehr H, Salama SRR, Zheng S, Chakravarty D, Sanborn JZZ, Berman SHH, Beroukhim R, Bernard B, Wu C-J, Genovese G, Shmulevich I, Barnholtz-Sloan J, Zou L, Vegesna R, Shukla SA, Ciriello G, Yung WKK, Zhang W, Sougnez C, Mikkelsen T, Aldape K, Bigner DDD, Van Meir EG, Prados M, Sloan A, Black KLL: The somatic genomic landscape of glioblastoma. Cell. 2013, 155: 462-477. 10.1016/j.cell.2013.09.034PubMedCentralCrossRefPubMed Brennan CWW, Verhaak RGWGW, McKenna A, Campos B, Noushmehr H, Salama SRR, Zheng S, Chakravarty D, Sanborn JZZ, Berman SHH, Beroukhim R, Bernard B, Wu C-J, Genovese G, Shmulevich I, Barnholtz-Sloan J, Zou L, Vegesna R, Shukla SA, Ciriello G, Yung WKK, Zhang W, Sougnez C, Mikkelsen T, Aldape K, Bigner DDD, Van Meir EG, Prados M, Sloan A, Black KLL: The somatic genomic landscape of glioblastoma. Cell. 2013, 155: 462-477. 10.1016/j.cell.2013.09.034PubMedCentralCrossRefPubMed
31.
go back to reference Wooten EC, Fults D, Duggirala R, Williams K, Kyritsis AP, Bondy ML, Levin VA, O’Connell P: A study of loss of heterozygosity at 70 loci in anaplastic astrocytoma and glioblastoma multiforme with implications for tumor evolution. Neuro Oncol. 1999, 1: 169-176.PubMedCentralPubMed Wooten EC, Fults D, Duggirala R, Williams K, Kyritsis AP, Bondy ML, Levin VA, O’Connell P: A study of loss of heterozygosity at 70 loci in anaplastic astrocytoma and glioblastoma multiforme with implications for tumor evolution. Neuro Oncol. 1999, 1: 169-176.PubMedCentralPubMed
32.
go back to reference Hu J, Pang JC-S, Tong CY-K, Lau B, Yin X-L, Poon W-S, Jiang C-C, Zhou L-F, Ng H-K: High-resolution genome-wide allelotype analysis identifies loss of chromosome 14q as a recurrent genetic alteration in astrocytic tumours. Br J Cancer. 2002, 87: 218-224. 10.1038/sj.bjc.6600430PubMedCentralCrossRefPubMed Hu J, Pang JC-S, Tong CY-K, Lau B, Yin X-L, Poon W-S, Jiang C-C, Zhou L-F, Ng H-K: High-resolution genome-wide allelotype analysis identifies loss of chromosome 14q as a recurrent genetic alteration in astrocytic tumours. Br J Cancer. 2002, 87: 218-224. 10.1038/sj.bjc.6600430PubMedCentralCrossRefPubMed
33.
go back to reference Nogueira L, Ruiz-Ontañon P, Vazquez-Barquero A, Moris F, Fernandez-Luna JL: The NFκB pathway: a therapeutic target in glioblastoma. Oncotarget. 2011, 2: 646-653.PubMedCentralCrossRefPubMed Nogueira L, Ruiz-Ontañon P, Vazquez-Barquero A, Moris F, Fernandez-Luna JL: The NFκB pathway: a therapeutic target in glioblastoma. Oncotarget. 2011, 2: 646-653.PubMedCentralCrossRefPubMed
34.
go back to reference Young KM, Bartlett PF, Coulson EJ: Neural progenitor number is regulated by nuclear factor-kappaB p65 and p50 subunit-dependent proliferation rather than cell survival. J Neurosci Res. 2006, 83: 39-49. 10.1002/jnr.20702CrossRefPubMed Young KM, Bartlett PF, Coulson EJ: Neural progenitor number is regulated by nuclear factor-kappaB p65 and p50 subunit-dependent proliferation rather than cell survival. J Neurosci Res. 2006, 83: 39-49. 10.1002/jnr.20702CrossRefPubMed
35.
go back to reference Widera D, Mikenberg I, Elvers M, Kaltschmidt C, Kaltschmidt B: Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. BMC Neurosci. 2006, 7: 64- 10.1186/1471-2202-7-64PubMedCentralCrossRefPubMed Widera D, Mikenberg I, Elvers M, Kaltschmidt C, Kaltschmidt B: Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. BMC Neurosci. 2006, 7: 64- 10.1186/1471-2202-7-64PubMedCentralCrossRefPubMed
36.
go back to reference Zbinden M, Duquet A, Lorente-Trigos A, Ngwabyt S-N, Borges I: Ruiz i Altaba A: NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53. EMBO J. 2010, 29: 2659-2674. 10.1038/emboj.2010.137PubMedCentralCrossRefPubMed Zbinden M, Duquet A, Lorente-Trigos A, Ngwabyt S-N, Borges I: Ruiz i Altaba A: NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53. EMBO J. 2010, 29: 2659-2674. 10.1038/emboj.2010.137PubMedCentralCrossRefPubMed
37.
go back to reference Torres J, Watt FM: Nanog maintains pluripotency of mouse embryonic stem cells by inhibiting NFkappaB and cooperating with Stat3. Nat Cell Biol. 2008, 10: 194-201. 10.1038/ncb1680CrossRefPubMed Torres J, Watt FM: Nanog maintains pluripotency of mouse embryonic stem cells by inhibiting NFkappaB and cooperating with Stat3. Nat Cell Biol. 2008, 10: 194-201. 10.1038/ncb1680CrossRefPubMed
38.
go back to reference Nogueira L, Ruiz-Ontañon P, Vazquez-Barquero A, Lafarga M, Berciano MT, Aldaz B, Grande L, Casafont I, Segura V, Robles EF, Suarez D, Garcia LF, Martinez-Climent JA, Fernandez-Luna JL: Blockade of the NFκB pathway drives differentiating glioblastoma-initiating cells into senescence both in vitro and in vivo. Oncogene. 2011, 30: 3537-3548. 10.1038/onc.2011.74CrossRefPubMed Nogueira L, Ruiz-Ontañon P, Vazquez-Barquero A, Lafarga M, Berciano MT, Aldaz B, Grande L, Casafont I, Segura V, Robles EF, Suarez D, Garcia LF, Martinez-Climent JA, Fernandez-Luna JL: Blockade of the NFκB pathway drives differentiating glioblastoma-initiating cells into senescence both in vitro and in vivo. Oncogene. 2011, 30: 3537-3548. 10.1038/onc.2011.74CrossRefPubMed
39.
go back to reference Talasila KM, Soentgerath A, Euskirchen P, Rosland GV, Wang J, Huszthy PC, Prestegarden L, Skaftnesmo KO, Sakariassen PØ, Eskilsson E, Stieber D, Keunen O, Brekka N, Moen I, Nigro JM, Vintermyr OK, Lund-Johansen M, Niclou S, Mørk SJ, Enger PO, Bjerkvig R, Miletic H: EGFR wild-type amplification and activation promote invasion and development of glioblastoma independent of angiogenesis. Acta Neuropathol. 2013, 125: 683-698. 10.1007/s00401-013-1101-1PubMedCentralCrossRefPubMed Talasila KM, Soentgerath A, Euskirchen P, Rosland GV, Wang J, Huszthy PC, Prestegarden L, Skaftnesmo KO, Sakariassen PØ, Eskilsson E, Stieber D, Keunen O, Brekka N, Moen I, Nigro JM, Vintermyr OK, Lund-Johansen M, Niclou S, Mørk SJ, Enger PO, Bjerkvig R, Miletic H: EGFR wild-type amplification and activation promote invasion and development of glioblastoma independent of angiogenesis. Acta Neuropathol. 2013, 125: 683-698. 10.1007/s00401-013-1101-1PubMedCentralCrossRefPubMed
40.
go back to reference Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK: Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007, 21: 2683-2710. 10.1101/gad.1596707CrossRefPubMed Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK: Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007, 21: 2683-2710. 10.1101/gad.1596707CrossRefPubMed
41.
go back to reference De Bacco F, Casanova E, Medico E, Pellegatta S, Orzan F, Albano R, Luraghi P, Reato G, D’Ambrosio A, Porrati P, Patanè M, Maderna E, Pollo B, Comoglio PM, Finocchiaro G, Boccaccio C, Patane M: The MET oncogene is a functional marker of a glioblastoma stem cell subtype. Cancer Res. 2012, 72: 22738909-CrossRef De Bacco F, Casanova E, Medico E, Pellegatta S, Orzan F, Albano R, Luraghi P, Reato G, D’Ambrosio A, Porrati P, Patanè M, Maderna E, Pollo B, Comoglio PM, Finocchiaro G, Boccaccio C, Patane M: The MET oncogene is a functional marker of a glioblastoma stem cell subtype. Cancer Res. 2012, 72: 22738909-CrossRef
42.
go back to reference Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, Wani K, Heathcock L, James JD, Goodman LD, Conroy S, Long L, Lelic N, Wang S, Gumin J, Raj D, Kodama Y, Raghunathan A, Olar A, Joshi K, Pelloski CE, Heimberger A, Kim SH, Cahill DP, Rao G, Den Dunnen WFA, Boddeke HWGM, Phillips HS, Nakano I, Lang FF: Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell. 2013, 24: 331-346. 10.1016/j.ccr.2013.08.001CrossRefPubMed Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, Wani K, Heathcock L, James JD, Goodman LD, Conroy S, Long L, Lelic N, Wang S, Gumin J, Raj D, Kodama Y, Raghunathan A, Olar A, Joshi K, Pelloski CE, Heimberger A, Kim SH, Cahill DP, Rao G, Den Dunnen WFA, Boddeke HWGM, Phillips HS, Nakano I, Lang FF: Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell. 2013, 24: 331-346. 10.1016/j.ccr.2013.08.001CrossRefPubMed
Metadata
Title
Frequency of NFKBIA deletions is low in glioblastomas and skewed in glioblastoma neurospheres
Authors
Monica Patanè
Paola Porrati
Elisa Bottega
Sara Morosini
Gabriele Cantini
Vita Girgenti
Ambra Rizzo
Marica Eoli
Bianca Pollo
Francesca L Sciacca
Serena Pellegatta
Gaetano Finocchiaro
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2013
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-12-160

Other articles of this Issue 1/2013

Molecular Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine