Skip to main content
Top
Published in: Molecular Cancer 1/2013

Open Access 01-12-2013 | Research

Evaluation of p21 promoter for interleukin 12 radiation induced transcriptional targeting in a mouse tumor model

Authors: Urska Kamensek, Gregor Sersa, Maja Cemazar

Published in: Molecular Cancer | Issue 1/2013

Login to get access

Abstract

Background

Radiation induced transcriptional targeting is a gene therapy approach that takes advantage of the targeting abilities of radiotherapy by using radio inducible promoters to spatially and temporally limit the transgene expression. Cyclin dependent kinase inhibitor 1 (CDKN1A), also known as p21, is a crucial regulator of the cell cycle, mediating G1 phase arrest in response to a variety of stress stimuli, including DNA damaging agents like irradiation. The aim of the study was to evaluate the suitability of the p21 promoter for radiation induced transcriptional targeting with the objective to test the therapeutic effectiveness of the combined radio-gene therapy with p21 promoter driven therapeutic gene interleukin 12.

Methods

To test the inducibility of the p21 promoter, three reporter gene experimental models with green fluorescent protein (GFP) under the control of p21 promoter were established by gene electrotransfer of plasmid DNA: stably transfected cells, stably transfected tumors, and transiently transfected muscles. Induction of reporter gene expression after irradiation was determined using a fluorescence microplate reader in vitro and by non-invasive fluorescence imaging using fluorescence stereomicroscope in vivo. The antitumor effect of the plasmid encoding the p21 promoter driven interleukin 12 after radio-gene therapy was determined by tumor growth delay assay and by quantification of intratumoral and serum levels of interleukin 12 protein and intratumoral concentrations of interleukin 12 mRNA.

Results

Using the reporter gene experimental models, p21 promoter was proven to be inducible with radiation, the induction was not dose dependent, and it could be re-induced. Furthermore radio-gene therapy with interleukin 12 under control of the p21 promoter had a good antitumor therapeutic effect with the statistically relevant tumor growth delay, which was comparable to that of the same therapy using a constitutive promoter.

Conclusions

In this study p21 promoter was proven to be a suitable candidate for radiation induced transcriptional targeting. As a proof of principle the therapeutic value was demonstrated with the radio-inducible interleukin 12 plasmid providing a synergistic antitumor effect to radiotherapy alone, which makes this approach feasible for the combined treatment with radiotherapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bernier J, Hall EJ, Giaccia A: Timeline - radiation oncology: a century of achievements. Nat Rev Cancer. 2004, 4: 737-U715.CrossRefPubMed Bernier J, Hall EJ, Giaccia A: Timeline - radiation oncology: a century of achievements. Nat Rev Cancer. 2004, 4: 737-U715.CrossRefPubMed
2.
go back to reference Weichselbaum RR, Hallahan DE, Sukhatme VP, Kufe DW: Gene-therapy targeted by ionizing-radiation. Int J Radiat Oncol Biol Phys. 1992, 24: 565-567.CrossRefPubMed Weichselbaum RR, Hallahan DE, Sukhatme VP, Kufe DW: Gene-therapy targeted by ionizing-radiation. Int J Radiat Oncol Biol Phys. 1992, 24: 565-567.CrossRefPubMed
3.
go back to reference Kufe D, Weichselbaum R: Radiation therapy - activation of gene transcription and the development of genetic radiotherapy - therapeutic strategies in oncology. Cancer Biol Ther. 2003, 2: 326-329.CrossRefPubMed Kufe D, Weichselbaum R: Radiation therapy - activation of gene transcription and the development of genetic radiotherapy - therapeutic strategies in oncology. Cancer Biol Ther. 2003, 2: 326-329.CrossRefPubMed
4.
go back to reference McCarthy O, Worthington J, Barrett E, Cosimo E, Boyd M, Mairs RJ, Ward C, McKeown SR, Hirst DG, Robson T: p(21(WAF1))-mediated transcriptional targeting of inducible nitric oxide synthase gene therapy sensitizes tumours to fractionated radiotherapy. Gene Ther. 2007, 14: 246-255.CrossRefPubMed McCarthy O, Worthington J, Barrett E, Cosimo E, Boyd M, Mairs RJ, Ward C, McKeown SR, Hirst DG, Robson T: p(21(WAF1))-mediated transcriptional targeting of inducible nitric oxide synthase gene therapy sensitizes tumours to fractionated radiotherapy. Gene Ther. 2007, 14: 246-255.CrossRefPubMed
5.
go back to reference Chastel C, Jiricny J, Jaussi R: Activation of stress-responsive promoters by ionizing radiation for deployment in targeted gene therapy. DNA Repair. 2004, 3: 683-684.CrossRef Chastel C, Jiricny J, Jaussi R: Activation of stress-responsive promoters by ionizing radiation for deployment in targeted gene therapy. DNA Repair. 2004, 3: 683-684.CrossRef
6.
go back to reference Harada K, Ogden GR: An overview of the cell cycle arrest protein, p21(WAF1). Oral Oncol. 2000, 36: 3-7.CrossRefPubMed Harada K, Ogden GR: An overview of the cell cycle arrest protein, p21(WAF1). Oral Oncol. 2000, 36: 3-7.CrossRefPubMed
7.
go back to reference Eldeiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B: Waf1, a potential mediator of P53 tumor suppression. Cell. 1993, 75: 817-825.CrossRef Eldeiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B: Waf1, a potential mediator of P53 tumor suppression. Cell. 1993, 75: 817-825.CrossRef
9.
go back to reference Robson T, Worthington J, McKeown SR, Hirst DG: Radiogenic therapy: novel approaches for enhancing tumor radiosensitivity. Technol Cancer Res Treat. 2005, 4: 343-361.CrossRefPubMed Robson T, Worthington J, McKeown SR, Hirst DG: Radiogenic therapy: novel approaches for enhancing tumor radiosensitivity. Technol Cancer Res Treat. 2005, 4: 343-361.CrossRefPubMed
10.
go back to reference Worthington J, Robson T, Murray M, O'Rourke M, Keilty G, Hirst DG: Modification of vascular tone using iNOS under the control of a radiation-inducible promoter. Gene Ther. 2000, 7: 1126-1131.CrossRefPubMed Worthington J, Robson T, Murray M, O'Rourke M, Keilty G, Hirst DG: Modification of vascular tone using iNOS under the control of a radiation-inducible promoter. Gene Ther. 2000, 7: 1126-1131.CrossRefPubMed
11.
go back to reference Worthington J, Robson T, O'Keeffe M, Hirst DG: Tumour cell radiosensitization using constitutive (CMV) and radiation inducible (WAF1) promoters to drive the iNOS gene: a novel suicide gene therapy. Gene Ther. 2002, 9: 263-269.CrossRefPubMed Worthington J, Robson T, O'Keeffe M, Hirst DG: Tumour cell radiosensitization using constitutive (CMV) and radiation inducible (WAF1) promoters to drive the iNOS gene: a novel suicide gene therapy. Gene Ther. 2002, 9: 263-269.CrossRefPubMed
12.
go back to reference Worthington J, McCarthy HO, Barrett E, Adams C, Robson T, Hirst DG: Use of the radiation-inducible WAF1 promoter to drive iNOS gene therapy as a novel anti-cancer treatment. J Gene Med. 2004, 6: 673-680.CrossRefPubMed Worthington J, McCarthy HO, Barrett E, Adams C, Robson T, Hirst DG: Use of the radiation-inducible WAF1 promoter to drive iNOS gene therapy as a novel anti-cancer treatment. J Gene Med. 2004, 6: 673-680.CrossRefPubMed
13.
go back to reference Nenoi M, Daino K, Ichimura S, Takahash S, Akuta T: Low-dose radiation response of the p21WAF1/CIP1 gene promoter transduced by adeno-associated virus vector. Exp Mol Med. 2006, 38: 553-564.CrossRefPubMed Nenoi M, Daino K, Ichimura S, Takahash S, Akuta T: Low-dose radiation response of the p21WAF1/CIP1 gene promoter transduced by adeno-associated virus vector. Exp Mol Med. 2006, 38: 553-564.CrossRefPubMed
14.
go back to reference Trinchieri G: Interleukin-12 - a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol. 1995, 13: 251-276.CrossRefPubMed Trinchieri G: Interleukin-12 - a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol. 1995, 13: 251-276.CrossRefPubMed
15.
go back to reference Trinchieri G: Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003, 3: 133-146.CrossRefPubMed Trinchieri G: Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003, 3: 133-146.CrossRefPubMed
16.
go back to reference Voest EE, Kenyon BB, Oreilly MS, Truitt G, Damato RJ, Folkman J: Inhibition of angiogenesis in-vivo by interleukin-12. J Natl Cancer Inst. 1995, 87: 581-586.CrossRefPubMed Voest EE, Kenyon BB, Oreilly MS, Truitt G, Damato RJ, Folkman J: Inhibition of angiogenesis in-vivo by interleukin-12. J Natl Cancer Inst. 1995, 87: 581-586.CrossRefPubMed
17.
go back to reference Ogawa M, Yu WG, Umehara K, Iwasaki M, Wijesuriya R, Tsujimura T, Kubo T, Fujiwara H, Hamaoka T: Multiple roles of interferon-gamma in the mediation of interleukin 12-induced tumor regression. Cancer Res. 1998, 58: 2426-2432.PubMed Ogawa M, Yu WG, Umehara K, Iwasaki M, Wijesuriya R, Tsujimura T, Kubo T, Fujiwara H, Hamaoka T: Multiple roles of interferon-gamma in the mediation of interleukin 12-induced tumor regression. Cancer Res. 1998, 58: 2426-2432.PubMed
18.
19.
go back to reference Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, Murphy M, Wolf SF, Gately MK: Antitumor and antimetastatic activity of interleukin-12 against murine tumors. J Exp Med. 1993, 178: 1223-1230.CrossRefPubMed Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, Murphy M, Wolf SF, Gately MK: Antitumor and antimetastatic activity of interleukin-12 against murine tumors. J Exp Med. 1993, 178: 1223-1230.CrossRefPubMed
21.
go back to reference Leonard JP, Sherman ML, Fisher GL, Buchanan LJ, Larsen G, Atkins MB, Sosman JA, Dutcher JP, Vogelzang NJ, Ryan JL: Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood. 1997, 90: 2541-2548.PubMed Leonard JP, Sherman ML, Fisher GL, Buchanan LJ, Larsen G, Atkins MB, Sosman JA, Dutcher JP, Vogelzang NJ, Ryan JL: Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood. 1997, 90: 2541-2548.PubMed
22.
go back to reference Mahvi DM, Henry MB, Albertini MR, Weber S, Meredith K, Schalch H, Rakhmilevich A, Hank J, Sondel P: Intratumoral injection of IL-12 plasmid DNA–results of a phase I/IB clinical trial. Cancer Gene Ther. 2007, 14: 717-723.CrossRefPubMed Mahvi DM, Henry MB, Albertini MR, Weber S, Meredith K, Schalch H, Rakhmilevich A, Hank J, Sondel P: Intratumoral injection of IL-12 plasmid DNA–results of a phase I/IB clinical trial. Cancer Gene Ther. 2007, 14: 717-723.CrossRefPubMed
23.
go back to reference Kang WK, Park C, Yoon HL, Kim WS, Yoon SS, Lee MH, Park K, Kim K, Jeong HS, Kim JA: Interleukin 12 gene therapy of cancer by peritumoral injection of transduced autologous fibroblasts: outcome of a phase I study. Hum Gene Ther. 2001, 12: 671-684.CrossRefPubMed Kang WK, Park C, Yoon HL, Kim WS, Yoon SS, Lee MH, Park K, Kim K, Jeong HS, Kim JA: Interleukin 12 gene therapy of cancer by peritumoral injection of transduced autologous fibroblasts: outcome of a phase I study. Hum Gene Ther. 2001, 12: 671-684.CrossRefPubMed
24.
go back to reference Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R: Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol. 2008, 26: 5896-5903.PubMedCentralCrossRefPubMed Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R: Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol. 2008, 26: 5896-5903.PubMedCentralCrossRefPubMed
25.
go back to reference Heller LC, Heller R: Electroporation gene therapy preclinical and clinical trials for melanoma. Curr Gene Ther. 2010, 10: 312-317.CrossRefPubMed Heller LC, Heller R: Electroporation gene therapy preclinical and clinical trials for melanoma. Curr Gene Ther. 2010, 10: 312-317.CrossRefPubMed
26.
go back to reference Spector SA, Tyndall M, Kelley E: Effects of acyclovir combined with other antiviral agents on human cytomegalovirus. Am J Med. 1982, 73: 36-39.CrossRefPubMed Spector SA, Tyndall M, Kelley E: Effects of acyclovir combined with other antiviral agents on human cytomegalovirus. Am J Med. 1982, 73: 36-39.CrossRefPubMed
28.
go back to reference Joiner M, van der Kogel A: Basic Cilnical Radiobiology. 2009, Great Britain: Hodder Arnold Joiner M, van der Kogel A: Basic Cilnical Radiobiology. 2009, Great Britain: Hodder Arnold
29.
go back to reference Vaupel P, Mayer A: Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007, 26: 225-239.CrossRefPubMed Vaupel P, Mayer A: Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007, 26: 225-239.CrossRefPubMed
30.
go back to reference Brown JM, William WR: Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004, 4: 437-447.CrossRefPubMed Brown JM, William WR: Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004, 4: 437-447.CrossRefPubMed
31.
go back to reference Brown JM: Tumor hypoxia in cancer therapy. Oxygen Biology and Hypoxia. 2007, 435: 297-321 Brown JM: Tumor hypoxia in cancer therapy. Oxygen Biology and Hypoxia. 2007, 435: 297-321
32.
go back to reference Kizaka-Kondoh S, Inoue M, Harada H, Hiraoka M: Tumor hypoxia: a target for selective cancer therapy. Cancer Sci. 2003, 94: 1021-1028.CrossRefPubMed Kizaka-Kondoh S, Inoue M, Harada H, Hiraoka M: Tumor hypoxia: a target for selective cancer therapy. Cancer Sci. 2003, 94: 1021-1028.CrossRefPubMed
33.
go back to reference Scott SD, Greco O: Radiation and hypoxia inducible gene therapy systems. Cancer Metastasis Rev. 2004, 23: 269-276.CrossRefPubMed Scott SD, Greco O: Radiation and hypoxia inducible gene therapy systems. Cancer Metastasis Rev. 2004, 23: 269-276.CrossRefPubMed
34.
go back to reference Greco O, Marples B, Dachs GU, Williams KJ, Patterson AV, Scott SD: Novel chimeric gene promoters responsive to hypoxia and ionizing radiation. Gene Ther. 2002, 9: 1403-1411.CrossRefPubMed Greco O, Marples B, Dachs GU, Williams KJ, Patterson AV, Scott SD: Novel chimeric gene promoters responsive to hypoxia and ionizing radiation. Gene Ther. 2002, 9: 1403-1411.CrossRefPubMed
35.
go back to reference Scott SD, Marples B, Hendry JH, Lashford LS, Embleton MJ, Hunter RD, Howell A, Margison GP: A radiation-controlled molecular switch for use in gene therapy of cancer. Gene Ther. 2000, 7: 1121-1125.CrossRefPubMed Scott SD, Marples B, Hendry JH, Lashford LS, Embleton MJ, Hunter RD, Howell A, Margison GP: A radiation-controlled molecular switch for use in gene therapy of cancer. Gene Ther. 2000, 7: 1121-1125.CrossRefPubMed
36.
go back to reference Greco O, Joiner MC, Doleh A, Powell AD, Hillman GG, Scott SD: Hypoxia- and radiation-activated Cre/loxP 'molecular switch' vectors for gene therapy of cancer. Gene Ther. 2006, 13: 206-215.CrossRefPubMed Greco O, Joiner MC, Doleh A, Powell AD, Hillman GG, Scott SD: Hypoxia- and radiation-activated Cre/loxP 'molecular switch' vectors for gene therapy of cancer. Gene Ther. 2006, 13: 206-215.CrossRefPubMed
37.
go back to reference Gill DR, Pringle IA, Hyde SC: Progress and prospects: the design and production of plasmid vectors. Gene Ther. 2009, 16: 165-171.CrossRefPubMed Gill DR, Pringle IA, Hyde SC: Progress and prospects: the design and production of plasmid vectors. Gene Ther. 2009, 16: 165-171.CrossRefPubMed
38.
go back to reference Kamensek U, Sersa G, Vidic S, Tevz G, Kranjc S, Cemazar M: Irradiation, cisplatin and 5-azacytidine up-regulate cytomegalovirus promoter in tumors and muscles: implementation of noninvasive fluorescence imaging. Mol Imaging Biol. 2010, 13 (1): 43-52.PubMedCentralCrossRef Kamensek U, Sersa G, Vidic S, Tevz G, Kranjc S, Cemazar M: Irradiation, cisplatin and 5-azacytidine up-regulate cytomegalovirus promoter in tumors and muscles: implementation of noninvasive fluorescence imaging. Mol Imaging Biol. 2010, 13 (1): 43-52.PubMedCentralCrossRef
39.
go back to reference Fattori E, La MN, Ciliberto G, Toniatti C: Electro-gene-transfer: a new approach for muscle gene delivery. Somat Cell Mol Genet. 2002, 27: 75-83.CrossRefPubMed Fattori E, La MN, Ciliberto G, Toniatti C: Electro-gene-transfer: a new approach for muscle gene delivery. Somat Cell Mol Genet. 2002, 27: 75-83.CrossRefPubMed
40.
go back to reference Tevz G, Pavlin D, Kamensek U, Kranjc S, Mesojednik S, Coer A, Sersa G, Cemazar M: Gene electrotransfer into murine skeletal muscle: a systematic analysis of parameters for long-term gene expression. Technol Cancer Res Treat. 2008, 7: 91-101.CrossRefPubMed Tevz G, Pavlin D, Kamensek U, Kranjc S, Mesojednik S, Coer A, Sersa G, Cemazar M: Gene electrotransfer into murine skeletal muscle: a systematic analysis of parameters for long-term gene expression. Technol Cancer Res Treat. 2008, 7: 91-101.CrossRefPubMed
41.
go back to reference Charge SB, Rudnicki MA: Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004, 84: 209-238.CrossRefPubMed Charge SB, Rudnicki MA: Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004, 84: 209-238.CrossRefPubMed
42.
go back to reference Prijic S, Prosen L, Cemazar M, Scancar J, Romih R, Lavrencak J, Bregar VB, Coer A, Krzan M, Znidarsic A, Sersa G: Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma. Biomaterials. 2012, 33: 4379-4391.CrossRefPubMed Prijic S, Prosen L, Cemazar M, Scancar J, Romih R, Lavrencak J, Bregar VB, Coer A, Krzan M, Znidarsic A, Sersa G: Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma. Biomaterials. 2012, 33: 4379-4391.CrossRefPubMed
43.
go back to reference Nanni P, Degiovanni C, Lollini PL, Nicoletti G, Prodi G: Ts/A - a new metastasizing cell-line from a Balb/C spontaneous mammary adenocarcinoma. Clin Exp Metastasis. 1983, 1: 373-380.CrossRefPubMed Nanni P, Degiovanni C, Lollini PL, Nicoletti G, Prodi G: Ts/A - a new metastasizing cell-line from a Balb/C spontaneous mammary adenocarcinoma. Clin Exp Metastasis. 1983, 1: 373-380.CrossRefPubMed
44.
go back to reference Seetharam S, Staba MJ, Schumm LP, Schreiber K, Schreiber H, Kufe DW, Weichselbaum RR: Enhanced eradication of local and distant tumors by genetically produced interleukin-12 and radiation. Int J Oncol. 1999, 15: 769-773.PubMed Seetharam S, Staba MJ, Schumm LP, Schreiber K, Schreiber H, Kufe DW, Weichselbaum RR: Enhanced eradication of local and distant tumors by genetically produced interleukin-12 and radiation. Int J Oncol. 1999, 15: 769-773.PubMed
45.
go back to reference Alatrash G, Hutson TE, Molto L, Richmond A, Nemec C, Mekhail T, Elson P, Tannenbaum C, Olencki T, Finke J, Bukowski RM: Clinical and immunologic effects of subcutaneously administered interleukin-12 and interferon alfa-2b: phase I trial of patients with metastatic renal cell carcinoma or malignant melanoma. J Clin Oncol. 2004, 22: 2891-2900.CrossRefPubMed Alatrash G, Hutson TE, Molto L, Richmond A, Nemec C, Mekhail T, Elson P, Tannenbaum C, Olencki T, Finke J, Bukowski RM: Clinical and immunologic effects of subcutaneously administered interleukin-12 and interferon alfa-2b: phase I trial of patients with metastatic renal cell carcinoma or malignant melanoma. J Clin Oncol. 2004, 22: 2891-2900.CrossRefPubMed
46.
go back to reference Fujita T, Timme TL, Tabata K, Naruishi K, Kusaka N, Watanabe M, Abdelfattah E, Zhu JX, Ren C, Ren C: Cooperative effects of adenoviral vector-mediated interleukin 12 gene therapy with radiotherapy in a preclinical model of metastatic prostate cancer. Gene Ther. 2007, 14: 227-236.CrossRefPubMed Fujita T, Timme TL, Tabata K, Naruishi K, Kusaka N, Watanabe M, Abdelfattah E, Zhu JX, Ren C, Ren C: Cooperative effects of adenoviral vector-mediated interleukin 12 gene therapy with radiotherapy in a preclinical model of metastatic prostate cancer. Gene Ther. 2007, 14: 227-236.CrossRefPubMed
47.
go back to reference Tevz G, Kranjc S, Cemazar M, Kamensek U, Coer A, Krzan M, Vidic S, Pavlin D, Sersa G: Controlled systemic release of interleukin-12 after gene electrotransfer to muscle for cancer gene therapy alone or in combination with ionizing radiation in murine sarcomas. J Gene Med. 2009, 11: 1125-1137.CrossRefPubMed Tevz G, Kranjc S, Cemazar M, Kamensek U, Coer A, Krzan M, Vidic S, Pavlin D, Sersa G: Controlled systemic release of interleukin-12 after gene electrotransfer to muscle for cancer gene therapy alone or in combination with ionizing radiation in murine sarcomas. J Gene Med. 2009, 11: 1125-1137.CrossRefPubMed
48.
go back to reference Xian JM, Yang HA, Lin YH, Liu SX: Combination nonviral murine interleukin 2 and interleukin 12 gene therapy and radiotherapy for head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2005, 131: 1079-1085.CrossRefPubMed Xian JM, Yang HA, Lin YH, Liu SX: Combination nonviral murine interleukin 2 and interleukin 12 gene therapy and radiotherapy for head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2005, 131: 1079-1085.CrossRefPubMed
49.
go back to reference Cemazar M, Jarm T, Sersa G: Cancer electrogene therapy with interleukin-12. Curr Gene Ther. 2010, 10: 300-311.CrossRefPubMed Cemazar M, Jarm T, Sersa G: Cancer electrogene therapy with interleukin-12. Curr Gene Ther. 2010, 10: 300-311.CrossRefPubMed
50.
go back to reference Lohr F: Combination treatment of murine tumors by adenovirus-mediated local B7/IL12 immunotherapy and radiotherapy. Mol Ther. 2000, 2: 195-203.CrossRefPubMed Lohr F: Combination treatment of murine tumors by adenovirus-mediated local B7/IL12 immunotherapy and radiotherapy. Mol Ther. 2000, 2: 195-203.CrossRefPubMed
51.
go back to reference Sedlar A, Kranjc S, Dolinsek T, Cemazar M, Coer A, Sersa G: Radiosensitizing effect of intratumoral interleukin-12 gene electrotransfer in murine sarcoma. BMC Cancer. 2013, 13: 38-PubMedCentralCrossRefPubMed Sedlar A, Kranjc S, Dolinsek T, Cemazar M, Coer A, Sersa G: Radiosensitizing effect of intratumoral interleukin-12 gene electrotransfer in murine sarcoma. BMC Cancer. 2013, 13: 38-PubMedCentralCrossRefPubMed
52.
go back to reference De Ridder M, Verellen D, Verovski V, Storme G: Hypoxic tumor cell radiosensitization through nitric oxide. Nitric Oxide. 2008, 19: 164-169.CrossRefPubMed De Ridder M, Verellen D, Verovski V, Storme G: Hypoxic tumor cell radiosensitization through nitric oxide. Nitric Oxide. 2008, 19: 164-169.CrossRefPubMed
53.
go back to reference Jinushi M, Tahara H: Cytokine gene-mediated immunotherapy: current status and future perspectives. Cancer Sci. 2009, 100: 1389-1396.CrossRefPubMed Jinushi M, Tahara H: Cytokine gene-mediated immunotherapy: current status and future perspectives. Cancer Sci. 2009, 100: 1389-1396.CrossRefPubMed
54.
go back to reference Yang Y, Liu SZ, Fu SB: Anti-tumor effects of pNEgr-mIL-12 recombinant plasmid induced by X-irradiation and its mechanisms. Biomed Environ Sci. 2004, 17: 135-143.PubMed Yang Y, Liu SZ, Fu SB: Anti-tumor effects of pNEgr-mIL-12 recombinant plasmid induced by X-irradiation and its mechanisms. Biomed Environ Sci. 2004, 17: 135-143.PubMed
55.
go back to reference Pavlin D, Cemazar M, Kamensek U, Tozon N, Pogacnik A, Sersa G: Local and systemic antitumor effect of intratumoral and peritumoral IL-12 electrogene therapy on murine sarcoma. Cancer Biol Ther. 2009, 8: 2114-2122.CrossRefPubMed Pavlin D, Cemazar M, Kamensek U, Tozon N, Pogacnik A, Sersa G: Local and systemic antitumor effect of intratumoral and peritumoral IL-12 electrogene therapy on murine sarcoma. Cancer Biol Ther. 2009, 8: 2114-2122.CrossRefPubMed
56.
go back to reference Heller L: Evaluation of toxicity following electrically mediated interleukin-12 gene delivery in a B16 mouse melanoma model. Clin Cancer Res. 2006, 12: 3177-3183.CrossRefPubMed Heller L: Evaluation of toxicity following electrically mediated interleukin-12 gene delivery in a B16 mouse melanoma model. Clin Cancer Res. 2006, 12: 3177-3183.CrossRefPubMed
57.
go back to reference Corish P, Tyler-Smith C: Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng. 1999, 12: 1035-1040.CrossRefPubMed Corish P, Tyler-Smith C: Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng. 1999, 12: 1035-1040.CrossRefPubMed
58.
go back to reference Bajetta E, Del Vecchio M, Mortarini R, Nadeau R, Rakhit A, Rimassa L, Fowst C, Borri A, Anichini A, Parmiani G: Pilot study of subcutaneous recombinant human interleukin 12 in metastatic melanoma. Clin Cancer Res. 1998, 4: 75-85.PubMed Bajetta E, Del Vecchio M, Mortarini R, Nadeau R, Rakhit A, Rimassa L, Fowst C, Borri A, Anichini A, Parmiani G: Pilot study of subcutaneous recombinant human interleukin 12 in metastatic melanoma. Clin Cancer Res. 1998, 4: 75-85.PubMed
Metadata
Title
Evaluation of p21 promoter for interleukin 12 radiation induced transcriptional targeting in a mouse tumor model
Authors
Urska Kamensek
Gregor Sersa
Maja Cemazar
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2013
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-12-136

Other articles of this Issue 1/2013

Molecular Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine