Skip to main content
Top
Published in: Nutrition Journal 1/2013

Open Access 01-12-2013 | Review

Carbohydrates and exercise performance in non-fasted athletes: A systematic review of studies mimicking real-life

Authors: Paolo C Colombani, Christof Mannhart, Samuel Mettler

Published in: Nutrition Journal | Issue 1/2013

Login to get access

Abstract

There is a consensus claiming an ergogenic effect of carbohydrates ingested in the proximity of or during a performance bout. However, in performance studies, the protocols that are used are often highly standardized (e.g. fasted subjects, constant exercise intensity with time-to-exhaustion tests), and do not necessarily reflect competitive real-life situations. Therefore, we aimed at systematically summarizing all studies with a setting mimicking the situation of a real-life competition (e.g., subjects exercising in the postprandial state and with time-trial-like performance tests such as fixed distance or fixed time tests). We performed a PubMed search by using a selection of search terms covering inclusion criteria for sport, athletes, carbohydrates, and fluids, and exclusion criteria for diseases and animals. This search yielded 16,658 articles and the abstract of 16,508 articles contained sufficient information to identify the study as non-eligible for this review. The screening of the full text of the remaining 150 articles yielded 17 articles that were included in this review. These articles described 22 carbohydrate interventions covering test durations from 26 to 241 min (mostly cycling). We observed no performance improvement with half of the carbohydrate interventions, while the other half of the interventions had significant improvement between 1% and 13% (improvement with one of five interventions lasting up to 68 min and with 10 of 17 interventions lasting between 70 and 241 min). Thus, when considering only studies with a setting mimicking real-life competition, there is a mixed general picture about the ergogenic effect of carbohydrates ingested in the proximity of or during a performance bout with an unlikely effect with bouts up to perhaps 70 min and a possible but not compelling ergogenic effect with performance durations longer than about 70 min.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rodriguez NR, Di Marco NM, Langley S: American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc. 2009, 41: 709-731. 10.1249/MSS.0b013e31890eb86.CrossRefPubMed Rodriguez NR, Di Marco NM, Langley S: American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc. 2009, 41: 709-731. 10.1249/MSS.0b013e31890eb86.CrossRefPubMed
2.
go back to reference Burke LM, Hawley JA, Wong SHS, Jeukendrup AE: Carbohydrates for training and competition. J Sports Sci. 2011, 29: S17-S27. 10.1080/02640414.2011.585473.CrossRefPubMed Burke LM, Hawley JA, Wong SHS, Jeukendrup AE: Carbohydrates for training and competition. J Sports Sci. 2011, 29: S17-S27. 10.1080/02640414.2011.585473.CrossRefPubMed
4.
go back to reference Casey A, Mann R, Banister K, Fox J, Morris PG, Macdonald IA, Greenhaff PL: Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle, measured by C-13 MRS. Am J Physiol. 2000, 278: E65-E75. Casey A, Mann R, Banister K, Fox J, Morris PG, Macdonald IA, Greenhaff PL: Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle, measured by C-13 MRS. Am J Physiol. 2000, 278: E65-E75.
5.
go back to reference Taylor R, Magnusson I, Rothman DL, Cline GW, Caumo A, Cobelli C, Shulman GI: Direct assessment of liver glycogen storage by 13C nuclear magnetic resonance spectroscopy and regulation of glucose homeostasis after a mixed meal in normal subjects. J Clin Invest. 1996, 97: 126-132. 10.1172/JCI118379.CrossRefPubMedPubMedCentral Taylor R, Magnusson I, Rothman DL, Cline GW, Caumo A, Cobelli C, Shulman GI: Direct assessment of liver glycogen storage by 13C nuclear magnetic resonance spectroscopy and regulation of glucose homeostasis after a mixed meal in normal subjects. J Clin Invest. 1996, 97: 126-132. 10.1172/JCI118379.CrossRefPubMedPubMedCentral
6.
go back to reference Currell K, Jeukendrup AE: Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008, 38: 297-316. 10.2165/00007256-200838040-00003.CrossRefPubMed Currell K, Jeukendrup AE: Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008, 38: 297-316. 10.2165/00007256-200838040-00003.CrossRefPubMed
7.
go back to reference Temesi J, Johnson NA, Raymond J, Burdon CA, O'Connor HT: Carbohydrate ingestion during endurance exercise improves performance in adults. J Nutr. 2011, 141: 890-897. 10.3945/jn.110.137075.CrossRefPubMed Temesi J, Johnson NA, Raymond J, Burdon CA, O'Connor HT: Carbohydrate ingestion during endurance exercise improves performance in adults. J Nutr. 2011, 141: 890-897. 10.3945/jn.110.137075.CrossRefPubMed
8.
go back to reference Vandenbogaerde TJ, Hopkins WG: Effects of acute carbohydrate supplementation on endurance performance: a meta-analysis. Sports Med. 2011, 41: 773-792. 10.2165/11590520-000000000-00000.CrossRefPubMed Vandenbogaerde TJ, Hopkins WG: Effects of acute carbohydrate supplementation on endurance performance: a meta-analysis. Sports Med. 2011, 41: 773-792. 10.2165/11590520-000000000-00000.CrossRefPubMed
9.
go back to reference Mitchell JB, Costill DL, Houmard JA, Fink WJ, Pascoe DD, Pearson DR: Influence of carbohydrate dosage on exercise performance and glycogen metabolism. J Appl Physiol. 1989, 67: 1843-1849.PubMed Mitchell JB, Costill DL, Houmard JA, Fink WJ, Pascoe DD, Pearson DR: Influence of carbohydrate dosage on exercise performance and glycogen metabolism. J Appl Physiol. 1989, 67: 1843-1849.PubMed
10.
go back to reference Burke LM, Hawley JA, Schabort EJ, St Clair GA, Mujika I, Noakes TD: Carbohydrate loading failed to improve 100-km cycling performance in a placebo-controlled trial. J Appl Physiol. 2000, 88: 1284-1290.PubMed Burke LM, Hawley JA, Schabort EJ, St Clair GA, Mujika I, Noakes TD: Carbohydrate loading failed to improve 100-km cycling performance in a placebo-controlled trial. J Appl Physiol. 2000, 88: 1284-1290.PubMed
11.
go back to reference Burke LM, Hawley JA, Angus DJ, Cox GR, Clark SA, Cummings NK, Desbrow B, Hargreaves M: Adaptations to short-term high-fat diet persist during exercise despite high carbohydrate availability. Med Sci Sports Exerc. 2002, 34: 83-91.CrossRefPubMed Burke LM, Hawley JA, Angus DJ, Cox GR, Clark SA, Cummings NK, Desbrow B, Hargreaves M: Adaptations to short-term high-fat diet persist during exercise despite high carbohydrate availability. Med Sci Sports Exerc. 2002, 34: 83-91.CrossRefPubMed
12.
go back to reference Beelen M, Berghuis J, Bonaparte B, Ballak SB, Jeukendrup AE, van Loon LJ: Carbohydrate mouth rinsing in the fed state: lack of enhancement of time-trial performance. Int J Sport Nutr Exerc Metab. 2009, 19: 400-409.PubMed Beelen M, Berghuis J, Bonaparte B, Ballak SB, Jeukendrup AE, van Loon LJ: Carbohydrate mouth rinsing in the fed state: lack of enhancement of time-trial performance. Int J Sport Nutr Exerc Metab. 2009, 19: 400-409.PubMed
13.
go back to reference Jeukendrup AE, Hopkins S, Aragon-Vargas LF, Hulston C: No effect of carbohydrate feeding on 16 km cycling time trial performance. Eur J Appl Physiol. 2008, 104: 831-837. 10.1007/s00421-008-0838-z.CrossRefPubMed Jeukendrup AE, Hopkins S, Aragon-Vargas LF, Hulston C: No effect of carbohydrate feeding on 16 km cycling time trial performance. Eur J Appl Physiol. 2008, 104: 831-837. 10.1007/s00421-008-0838-z.CrossRefPubMed
14.
go back to reference El-Sayed MS, Balmer J, Rattu AJ: Carbohydrate ingestion improves endurance performance during a 1 h simulated cycling time trial. J Sports Sci. 1997, 15: 223-230. 10.1080/026404197367506.CrossRefPubMed El-Sayed MS, Balmer J, Rattu AJ: Carbohydrate ingestion improves endurance performance during a 1 h simulated cycling time trial. J Sports Sci. 1997, 15: 223-230. 10.1080/026404197367506.CrossRefPubMed
15.
go back to reference Desbrow B, Anderson S, Barrett J, Rao E, Hargreaves M: Carbohydrate-electrolyte feedings and 1 h time trial cycling performance. Int J Sport Nutr Exerc Metab. 2004, 14: 541-549.PubMed Desbrow B, Anderson S, Barrett J, Rao E, Hargreaves M: Carbohydrate-electrolyte feedings and 1 h time trial cycling performance. Int J Sport Nutr Exerc Metab. 2004, 14: 541-549.PubMed
16.
go back to reference van Essen M, Gibala MJ: Failure of protein to improve time trial performance when added to a sports drink. Med Sci Sports Exerc. 2006, 38: 1476-1483. 10.1249/01.mss.0000228958.82968.0a.CrossRefPubMed van Essen M, Gibala MJ: Failure of protein to improve time trial performance when added to a sports drink. Med Sci Sports Exerc. 2006, 38: 1476-1483. 10.1249/01.mss.0000228958.82968.0a.CrossRefPubMed
17.
go back to reference Angus DJ, Hargreaves M, Dancey J, Febbraio MA: Effect of carbohydrate or carbohydrate plus medium-chain triglyceride ingestion on cycling time trial performance. J Appl Physiol. 2000, 88: 113-119.PubMed Angus DJ, Hargreaves M, Dancey J, Febbraio MA: Effect of carbohydrate or carbohydrate plus medium-chain triglyceride ingestion on cycling time trial performance. J Appl Physiol. 2000, 88: 113-119.PubMed
18.
go back to reference Langenfeld ME, Seifert JG, Rudge SR, Bucher RJ: Effect of carbohydrate ingestion on performance of non-fasted cyclists during a simulated 80-mile time trial. J Sports Med Phys Fitness. 1994, 34: 263-270.PubMed Langenfeld ME, Seifert JG, Rudge SR, Bucher RJ: Effect of carbohydrate ingestion on performance of non-fasted cyclists during a simulated 80-mile time trial. J Sports Med Phys Fitness. 1994, 34: 263-270.PubMed
19.
go back to reference Rollo I, Williams C: Influence of ingesting a carbohydrate-electrolyte solution before and during a 1-hour run in fed endurance-trained runners. J Sports Sci. 2010, 28: 593-601. 10.1080/02640410903582784.CrossRefPubMed Rollo I, Williams C: Influence of ingesting a carbohydrate-electrolyte solution before and during a 1-hour run in fed endurance-trained runners. J Sports Sci. 2010, 28: 593-601. 10.1080/02640410903582784.CrossRefPubMed
20.
go back to reference El-Sayed MS, Rattu AJ, Roberts I: Effects of carbohydrate feeding before and during prolonged exercise on subsequent maximal exercise performance capacity. Int J Sport Nutr. 1995, 5: 215-224.PubMed El-Sayed MS, Rattu AJ, Roberts I: Effects of carbohydrate feeding before and during prolonged exercise on subsequent maximal exercise performance capacity. Int J Sport Nutr. 1995, 5: 215-224.PubMed
21.
go back to reference Campbell C, Prince D, Braun M, Applegate E, Casazza GA: Carbohydrate-supplement form and exercise performance. Int J Sport Nutr Exerc Metab. 2008, 18: 179-190.PubMed Campbell C, Prince D, Braun M, Applegate E, Casazza GA: Carbohydrate-supplement form and exercise performance. Int J Sport Nutr Exerc Metab. 2008, 18: 179-190.PubMed
22.
go back to reference Flynn MG, Michaud TJ, Rodriguez-Zayas J, Lambert CP, Boone JB, Moleski RW: Effects of 4- and 8-h preexercise feedings on substrate use and performance. J Appl Physiol. 1989, 67: 2066-2071.PubMed Flynn MG, Michaud TJ, Rodriguez-Zayas J, Lambert CP, Boone JB, Moleski RW: Effects of 4- and 8-h preexercise feedings on substrate use and performance. J Appl Physiol. 1989, 67: 2066-2071.PubMed
23.
go back to reference Ganio MS, Klau JF, Lee EC, Yeargin SW, McDermott BP, Buyckx M, Maresh CM, Armstrong LE: Effect of various carbohydrate-electrolyte fluids on cycling performance and maximal voluntary contraction. Int J Sport Nutr Exerc Metab. 2010, 20: 104-114.PubMed Ganio MS, Klau JF, Lee EC, Yeargin SW, McDermott BP, Buyckx M, Maresh CM, Armstrong LE: Effect of various carbohydrate-electrolyte fluids on cycling performance and maximal voluntary contraction. Int J Sport Nutr Exerc Metab. 2010, 20: 104-114.PubMed
24.
go back to reference Hulston CJ, Jeukendrup AE: No placebo effect from carbohydrate intake during prolonged exercise. Int J Sport Nutr Exerc Metab. 2009, 19: 275-284.PubMed Hulston CJ, Jeukendrup AE: No placebo effect from carbohydrate intake during prolonged exercise. Int J Sport Nutr Exerc Metab. 2009, 19: 275-284.PubMed
25.
go back to reference Clarke ND, Maclaren DP, Reilly T, Drust B: Carbohydrate ingestion and pre-cooling improves exercise capacity following soccer-specific intermittent exercise performed in the heat. Eur J Appl Physiol. 2011, 111: 1447-1455. 10.1007/s00421-010-1771-5.CrossRefPubMed Clarke ND, Maclaren DP, Reilly T, Drust B: Carbohydrate ingestion and pre-cooling improves exercise capacity following soccer-specific intermittent exercise performed in the heat. Eur J Appl Physiol. 2011, 111: 1447-1455. 10.1007/s00421-010-1771-5.CrossRefPubMed
26.
go back to reference Hawley J, Noakes T: Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. Eur J Appl Physiol Occup Physiol. 1992, 65: 79-83. 10.1007/BF01466278.CrossRefPubMed Hawley J, Noakes T: Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. Eur J Appl Physiol Occup Physiol. 1992, 65: 79-83. 10.1007/BF01466278.CrossRefPubMed
27.
go back to reference Larsen HB: Kenyan dominance in distance running. Comp Biochem Physiol A. 2003, 136: 161-170. 10.1016/S1095-6433(03)00227-7.CrossRef Larsen HB: Kenyan dominance in distance running. Comp Biochem Physiol A. 2003, 136: 161-170. 10.1016/S1095-6433(03)00227-7.CrossRef
28.
go back to reference Chalmers I: Trying to do more good than harm in policy and practice: The role of rigorous, transparent, up-to-date evaluations. Ann Am Acad Polit Soc Sci. 2003, 589: 22-40. 10.1177/0002716203254762.CrossRef Chalmers I: Trying to do more good than harm in policy and practice: The role of rigorous, transparent, up-to-date evaluations. Ann Am Acad Polit Soc Sci. 2003, 589: 22-40. 10.1177/0002716203254762.CrossRef
29.
go back to reference Oxman AD, Lavis JN, Fretheim A: Use of evidence in WHO recommendations. Lancet. 2007, 369: 1883-1889. 10.1016/S0140-6736(07)60675-8.CrossRefPubMed Oxman AD, Lavis JN, Fretheim A: Use of evidence in WHO recommendations. Lancet. 2007, 369: 1883-1889. 10.1016/S0140-6736(07)60675-8.CrossRefPubMed
30.
go back to reference Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6: e1000100-10.1371/journal.pmed.1000100.CrossRefPubMedPubMedCentral Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6: e1000100-10.1371/journal.pmed.1000100.CrossRefPubMedPubMedCentral
31.
go back to reference Meline T: Selecting studies for systematic review: Inclusion and exclusion criteria. CICSD. 2003, 33: 21-27. Meline T: Selecting studies for systematic review: Inclusion and exclusion criteria. CICSD. 2003, 33: 21-27.
Metadata
Title
Carbohydrates and exercise performance in non-fasted athletes: A systematic review of studies mimicking real-life
Authors
Paolo C Colombani
Christof Mannhart
Samuel Mettler
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Nutrition Journal / Issue 1/2013
Electronic ISSN: 1475-2891
DOI
https://doi.org/10.1186/1475-2891-12-16

Other articles of this Issue 1/2013

Nutrition Journal 1/2013 Go to the issue