Skip to main content
Top
Published in: Cancer Cell International 1/2008

Open Access 01-12-2008 | Primary research

Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells

Authors: Hideo Watanabe, Kenzo Soejima, Hiroyuki Yasuda, Ichiro Kawada, Ichiro Nakachi, Satoshi Yoda, Katsuhiko Naoki, Akitoshi Ishizaka

Published in: Cancer Cell International | Issue 1/2008

Login to get access

Abstract

Background

Alterations in the processing of the genetic information in carcinogenesis result from stable genetic mutations or epigenetic modifications. It is becoming clear that nucleosomal histones are central to proper gene expression and that aberrant DNA methylation of genes and histone methylation plays important roles in tumor progression. To date, several histone lysine methyltransferases (HKMTs) have been identified and histone lysine methylation is now considered to be a critical regulator of transcription. However, still relatively little is known about the role of HKMTs in tumorigenesis.

Results

We observed differential HKMT expression in a lung cancer model in which normal human bronchial epithelial (NHBE) cells expressing telomerase, SV40 large T antigen, and Ras were immortal, formed colonies in soft agar, and expressed specific HKMTs for H3 lysine 9 and 27 residues but not for H3 lysine 4 residue. Modifications in the H3 tails affect the binding of proteins to the histone tails and regulate protein function and the position of lysine methylation marks a gene to be either activated or repressed. In the present study, suppression by siRNA of HKMTs (EZH2, G9A, SETDB1 and SUV39H1) that are over-expressed in immortalized and transformed cells lead to reduced cell proliferation and much less anchorage-independent colony growth. We also found that the suppression of H3-K9, G9A and SUV39H1 induced apoptosis and the suppression of H3-K27, EZH2 caused G1 arrest.

Conclusion

Our results indicate the potential of these HKMTs in addition to the other targets for epigenetics such as DNMTs and HDACs to be interesting therapeutic targets.
Appendix
Available only for authorised users
Literature
1.
go back to reference Egger G, Liang G, Aparicio A, Jones PA: Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004, 429 (6990): 457-463.CrossRefPubMed Egger G, Liang G, Aparicio A, Jones PA: Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004, 429 (6990): 457-463.CrossRefPubMed
2.
go back to reference Vogelstein B, Kinzler KW: Cancer genes and the pathways they control. Nat Med. 2004, 10 (8): 789-799.CrossRefPubMed Vogelstein B, Kinzler KW: Cancer genes and the pathways they control. Nat Med. 2004, 10 (8): 789-799.CrossRefPubMed
4.
go back to reference Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R: New nomenclature for chromatin-modifying enzymes. Cell. 2007, 131 (4): 633-636.CrossRefPubMed Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R: New nomenclature for chromatin-modifying enzymes. Cell. 2007, 131 (4): 633-636.CrossRefPubMed
5.
go back to reference Kouzarides T: Histone methylation in transcriptional control. Curr Opin Genet Dev. 2002, 12 (2): 198-209.CrossRefPubMed Kouzarides T: Histone methylation in transcriptional control. Curr Opin Genet Dev. 2002, 12 (2): 198-209.CrossRefPubMed
6.
go back to reference Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K: High-resolution profiling of histone methylations in the human genome. Cell. 2007, 129 (4): 823-837.CrossRefPubMed Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K: High-resolution profiling of histone methylations in the human genome. Cell. 2007, 129 (4): 823-837.CrossRefPubMed
7.
go back to reference Martin C, Zhang Y: The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 2005, 6 (11): 838-849.CrossRefPubMed Martin C, Zhang Y: The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 2005, 6 (11): 838-849.CrossRefPubMed
8.
go back to reference Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R, Nakamura Y: SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol. 2004, 6 (8): 731-740.CrossRefPubMed Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R, Nakamura Y: SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol. 2004, 6 (8): 731-740.CrossRefPubMed
9.
go back to reference Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD: Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature. 2000, 406 (6796): 593-599.CrossRefPubMed Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD: Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature. 2000, 406 (6796): 593-599.CrossRefPubMed
10.
go back to reference Yang L, Xia L, Wu DY, Wang H, Chansky HA, Schubach WH, Hickstein DD, Zhang Y: Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene. 2002, 21 (1): 148-152.CrossRefPubMed Yang L, Xia L, Wu DY, Wang H, Chansky HA, Schubach WH, Hickstein DD, Zhang Y: Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene. 2002, 21 (1): 148-152.CrossRefPubMed
11.
go back to reference Tachibana M, Sugimoto K, Fukushima T, Shinkai Y: Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem. 2001, 276 (27): 25309-25317.CrossRefPubMed Tachibana M, Sugimoto K, Fukushima T, Shinkai Y: Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem. 2001, 276 (27): 25309-25317.CrossRefPubMed
12.
go back to reference Su IH, Basavaraj A, Krutchinsky AN, Hobert O, Ullrich A, Chait BT, Tarakhovsky A: Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat Immunol. 2003, 4 (2): 124-131.CrossRefPubMed Su IH, Basavaraj A, Krutchinsky AN, Hobert O, Ullrich A, Chait BT, Tarakhovsky A: Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat Immunol. 2003, 4 (2): 124-131.CrossRefPubMed
13.
go back to reference Min J, Feng Q, Li Z, Zhang Y, Xu RM: Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell. 2003, 112 (5): 711-723.CrossRefPubMed Min J, Feng Q, Li Z, Zhang Y, Xu RM: Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell. 2003, 112 (5): 711-723.CrossRefPubMed
14.
go back to reference Baylin SB, Ohm JE: Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction?. Nat Rev Cancer. 2006, 6 (2): 107-116.CrossRefPubMed Baylin SB, Ohm JE: Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction?. Nat Rev Cancer. 2006, 6 (2): 107-116.CrossRefPubMed
15.
go back to reference Yoo CB, Jones PA: Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006, 5 (1): 37-50.CrossRefPubMed Yoo CB, Jones PA: Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006, 5 (1): 37-50.CrossRefPubMed
16.
17.
go back to reference Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA: Creation of human tumour cells with defined genetic elements. Nature. 1999, 400 (6743): 464-468.CrossRefPubMed Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA: Creation of human tumour cells with defined genetic elements. Nature. 1999, 400 (6743): 464-468.CrossRefPubMed
18.
go back to reference Soejima K, Fang W, Rollins BJ: DNA methyltransferase 3b contributes to oncogenic transformation induced by SV40T antigen and activated Ras. Oncogene. 2003, 22 (30): 4723-4733.CrossRefPubMed Soejima K, Fang W, Rollins BJ: DNA methyltransferase 3b contributes to oncogenic transformation induced by SV40T antigen and activated Ras. Oncogene. 2003, 22 (30): 4723-4733.CrossRefPubMed
19.
go back to reference Davie JK, Dent SY: Histone modifications in corepressor functions. Curr Top Dev Biol. 2004, 59: 145-163.CrossRefPubMed Davie JK, Dent SY: Histone modifications in corepressor functions. Curr Top Dev Biol. 2004, 59: 145-163.CrossRefPubMed
20.
go back to reference Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature. 2001, 410 (6824): 120-124.CrossRefPubMed Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature. 2001, 410 (6824): 120-124.CrossRefPubMed
21.
go back to reference Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature. 2001, 410 (6824): 116-120.CrossRefPubMed Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature. 2001, 410 (6824): 116-120.CrossRefPubMed
22.
go back to reference Melcher M, Schmid M, Aagaard L, Selenko P, Laible G, Jenuwein T: Structure-function analysis of SUV39H1 reveals a dominant role in heterochromatin organization, chromosome segregation, and mitotic progression. Mol Cell Biol. 2000, 20 (10): 3728-3741.PubMedCentralCrossRefPubMed Melcher M, Schmid M, Aagaard L, Selenko P, Laible G, Jenuwein T: Structure-function analysis of SUV39H1 reveals a dominant role in heterochromatin organization, chromosome segregation, and mitotic progression. Mol Cell Biol. 2000, 20 (10): 3728-3741.PubMedCentralCrossRefPubMed
23.
go back to reference Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI: Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science. 2001, 292 (5514): 110-113.CrossRefPubMed Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI: Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science. 2001, 292 (5514): 110-113.CrossRefPubMed
24.
go back to reference Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A, Kouzarides T, Murzin AG, Murzina NV, Laue ED: Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature. 2002, 416 (6876): 103-107.CrossRefPubMed Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A, Kouzarides T, Murzin AG, Murzina NV, Laue ED: Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature. 2002, 416 (6876): 103-107.CrossRefPubMed
25.
go back to reference Maison C, Bailly D, Peters AH, Quivy JP, Roche D, Taddei A, Lachner M, Jenuwein T, Almouzni G: Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet. 2002, 30 (3): 329-334.CrossRefPubMed Maison C, Bailly D, Peters AH, Quivy JP, Roche D, Taddei A, Lachner M, Jenuwein T, Almouzni G: Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet. 2002, 30 (3): 329-334.CrossRefPubMed
26.
go back to reference Yamamoto K, Sonoda M: Self-interaction of heterochromatin protein 1 is required for direct binding to histone methyltransferase, SUV39H1. Biochem Biophys Res Commun. 2003, 301 (2): 287-292.CrossRefPubMed Yamamoto K, Sonoda M: Self-interaction of heterochromatin protein 1 is required for direct binding to histone methyltransferase, SUV39H1. Biochem Biophys Res Commun. 2003, 301 (2): 287-292.CrossRefPubMed
27.
go back to reference Montgomery ND, Yee D, Chen A, Kalantry S, Chamberlain SJ, Otte AP, Magnuson T: The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation. Curr Biol. 2005, 15 (10): 942-947.CrossRefPubMed Montgomery ND, Yee D, Chen A, Kalantry S, Chamberlain SJ, Otte AP, Magnuson T: The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation. Curr Biol. 2005, 15 (10): 942-947.CrossRefPubMed
28.
go back to reference Cao R, Zhang Y: The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev. 2004, 14 (2): 155-164.CrossRefPubMed Cao R, Zhang Y: The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev. 2004, 14 (2): 155-164.CrossRefPubMed
29.
go back to reference Erhardt S, Su IH, Schneider R, Barton S, Bannister AJ, Perez-Burgos L, Jenuwein T, Kouzarides T, Tarakhovsky A, Surani MA: Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development. 2003, 130 (18): 4235-4248.CrossRefPubMed Erhardt S, Su IH, Schneider R, Barton S, Bannister AJ, Perez-Burgos L, Jenuwein T, Kouzarides T, Tarakhovsky A, Surani MA: Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development. 2003, 130 (18): 4235-4248.CrossRefPubMed
30.
go back to reference Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA, Salvesen HB, Otte AP, Akslen LA: EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol. 2006, 24 (2): 268-273.CrossRefPubMed Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA, Salvesen HB, Otte AP, Akslen LA: EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol. 2006, 24 (2): 268-273.CrossRefPubMed
31.
go back to reference Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP: The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002, 419 (6907): 624-629.CrossRefPubMed Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP: The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002, 419 (6907): 624-629.CrossRefPubMed
32.
go back to reference Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF: EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA. 2003, 100 (20): 11606-11611.PubMedCentralCrossRefPubMed Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF: EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA. 2003, 100 (20): 11606-11611.PubMedCentralCrossRefPubMed
33.
go back to reference Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K: EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. Embo J. 2003, 22 (20): 5323-5335.PubMedCentralCrossRefPubMed Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K: EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. Embo J. 2003, 22 (20): 5323-5335.PubMedCentralCrossRefPubMed
34.
go back to reference Jacobs JJ, van Lohuizen M: Polycomb repression: from cellular memory to cellular proliferation and cancer. Biochim Biophys Acta. 2002, 1602 (2): 151-161.PubMed Jacobs JJ, van Lohuizen M: Polycomb repression: from cellular memory to cellular proliferation and cancer. Biochim Biophys Acta. 2002, 1602 (2): 151-161.PubMed
35.
go back to reference Tonini T, Bagella L, D'Andrilli G, Claudio PP, Giordano A: Ezh2 reduces the ability of HDAC1-dependent pRb2/p130 transcriptional repression of cyclin A. Oncogene. 2004, 23 (28): 4930-4937.CrossRefPubMed Tonini T, Bagella L, D'Andrilli G, Claudio PP, Giordano A: Ezh2 reduces the ability of HDAC1-dependent pRb2/p130 transcriptional repression of cyclin A. Oncogene. 2004, 23 (28): 4930-4937.CrossRefPubMed
36.
go back to reference Tang X, Milyavsky M, Shats I, Erez N, Goldfinger N, Rotter V: Activated p53 suppresses the histone methyltransferase EZH2 gene. Oncogene. 2004, 23 (34): 5759-5769.CrossRefPubMed Tang X, Milyavsky M, Shats I, Erez N, Goldfinger N, Rotter V: Activated p53 suppresses the histone methyltransferase EZH2 gene. Oncogene. 2004, 23 (34): 5759-5769.CrossRefPubMed
37.
go back to reference Sparmann A, van Lohuizen M: Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006, 6 (11): 846-856.CrossRefPubMed Sparmann A, van Lohuizen M: Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006, 6 (11): 846-856.CrossRefPubMed
38.
go back to reference Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Mohammad HP, Chen W, Daniel VC, Yu W: A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet. 2007, 39 (2): 237-242.PubMedCentralCrossRefPubMed Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Mohammad HP, Chen W, Daniel VC, Yu W: A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet. 2007, 39 (2): 237-242.PubMedCentralCrossRefPubMed
39.
go back to reference Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisenberger DJ, Campan M, Young J, Jacobs I: Epigenetic stem cell signature in cancer. Nat Genet. 2007, 39 (2): 157-158.CrossRefPubMed Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisenberger DJ, Campan M, Young J, Jacobs I: Epigenetic stem cell signature in cancer. Nat Genet. 2007, 39 (2): 157-158.CrossRefPubMed
40.
go back to reference Kondo Y, Shen L, Ahmed S, Boumber Y, Sekido Y, Haddad BR, Issa JP: Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells. PLoS ONE. 2008, 3 (4): e2037-PubMedCentralCrossRefPubMed Kondo Y, Shen L, Ahmed S, Boumber Y, Sekido Y, Haddad BR, Issa JP: Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells. PLoS ONE. 2008, 3 (4): e2037-PubMedCentralCrossRefPubMed
41.
go back to reference Atkinson SP, Hoare SF, Glasspool RM, Keith WN: Lack of telomerase gene expression in alternative lengthening of telomere cells is associated with chromatin remodeling of the hTR and hTERT gene promoters. Cancer Res. 2005, 65 (17): 7585-7590.PubMed Atkinson SP, Hoare SF, Glasspool RM, Keith WN: Lack of telomerase gene expression in alternative lengthening of telomere cells is associated with chromatin remodeling of the hTR and hTERT gene promoters. Cancer Res. 2005, 65 (17): 7585-7590.PubMed
42.
go back to reference Liu C, Fang X, Ge Z, Jalink M, Kyo S, Bjorkholm M, Gruber A, Sjoberg J, Xu D: The telomerase reverse transcriptase (hTERT) gene is a direct target of the histone methyltransferase SMYD3. Cancer Res. 2007, 67 (6): 2626-2631.CrossRefPubMed Liu C, Fang X, Ge Z, Jalink M, Kyo S, Bjorkholm M, Gruber A, Sjoberg J, Xu D: The telomerase reverse transcriptase (hTERT) gene is a direct target of the histone methyltransferase SMYD3. Cancer Res. 2007, 67 (6): 2626-2631.CrossRefPubMed
43.
go back to reference Okada Y, Jiang Q, Lemieux M, Jeannotte L, Su L, Zhang Y: Leukaemic transformation by CALM-AF10 involves upregulation of Hoxa5 by hDOT1L. Nat Cell Biol. 2006, 8 (9): 1017-1024.PubMedCentralCrossRefPubMed Okada Y, Jiang Q, Lemieux M, Jeannotte L, Su L, Zhang Y: Leukaemic transformation by CALM-AF10 involves upregulation of Hoxa5 by hDOT1L. Nat Cell Biol. 2006, 8 (9): 1017-1024.PubMedCentralCrossRefPubMed
44.
go back to reference Nishioka K, Chuikov S, Sarma K, Erdjument-Bromage H, Allis CD, Tempst P, Reinberg D: Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev. 2002, 16 (4): 479-489.PubMedCentralCrossRefPubMed Nishioka K, Chuikov S, Sarma K, Erdjument-Bromage H, Allis CD, Tempst P, Reinberg D: Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev. 2002, 16 (4): 479-489.PubMedCentralCrossRefPubMed
45.
go back to reference Schotta G, Ebert A, Krauss V, Fischer A, Hoffmann J, Rea S, Jenuwein T, Dorn R, Reuter G: Central role of Drosophila SU(VAR)3–9 in histone H3-K9 methylation and heterochromatic gene silencing. Embo J. 2002, 21 (5): 1121-1131.PubMedCentralCrossRefPubMed Schotta G, Ebert A, Krauss V, Fischer A, Hoffmann J, Rea S, Jenuwein T, Dorn R, Reuter G: Central role of Drosophila SU(VAR)3–9 in histone H3-K9 methylation and heterochromatic gene silencing. Embo J. 2002, 21 (5): 1121-1131.PubMedCentralCrossRefPubMed
Metadata
Title
Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells
Authors
Hideo Watanabe
Kenzo Soejima
Hiroyuki Yasuda
Ichiro Kawada
Ichiro Nakachi
Satoshi Yoda
Katsuhiko Naoki
Akitoshi Ishizaka
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2008
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-8-15

Other articles of this Issue 1/2008

Cancer Cell International 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine