Skip to main content
Top
Published in: Cancer Cell International 1/2008

Open Access 01-12-2008 | Hypothesis

A novel and generalizable organotypic slice platform to evaluate stem cell potential for targeting pediatric brain tumors

Authors: Shengwen Calvin Li, William Gunter Loudon

Published in: Cancer Cell International | Issue 1/2008

Login to get access

Abstract

Brain tumors are now the leading cause of cancer-related deaths in children under age 15. Malignant gliomas are, for all practical purposes, incurable and new therapeutic approaches are desperately needed. One emerging strategy is to use the tumor tracking capacity inherent in many stem cell populations to deliver therapeutic agents to the brain cancer cells. Current limitations of the stem cell therapy strategy include that stem cells are treated as a single entity and lack of uniform technology is adopted for selection of clinically relevant sub-populations of stem cells. Specifically, therapeutic success relies on the selection of a clinically competent stem cell population based on their capacity of targeting brain tumors. A novel and generalizable organotypic slice platform to evaluate stem cell potential for targeting pediatric brain tumors is proposed to fill the gap in the current work flow of stem cell-based therapy. The organotypic slice platform has advantages of being mimic in vivo model, easier to manipulate to optimize parameters than in vivo models such as rodents and primates. This model serves as a framework to address the discrepancy between anticipated in vivo results and actual in vivo results, a critical barrier to timely progress in the field of the use of stem cells for the treatment of neurological disorders.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bradley S, Sherwood PR, Donovan HS, Hamilton R, Rosenzweig M, Hricik A, Newberry A, Bender C: I could lose everything: understanding the cost of a brain tumor. J Neurooncol. 2007, 85 (3): 329-338. 10.1007/s11060-007-9425-0.CrossRefPubMed Bradley S, Sherwood PR, Donovan HS, Hamilton R, Rosenzweig M, Hricik A, Newberry A, Bender C: I could lose everything: understanding the cost of a brain tumor. J Neurooncol. 2007, 85 (3): 329-338. 10.1007/s11060-007-9425-0.CrossRefPubMed
2.
go back to reference Fisk GJ, Inokuma MS: Endoderm cells from human embryonic stem cells. United States Patent US7326572B2. 2008, USA , Geron Corporation, 1-40. Fisk GJ, Inokuma MS: Endoderm cells from human embryonic stem cells. United States Patent US7326572B2. 2008, USA , Geron Corporation, 1-40.
3.
go back to reference Kutikova L, Bowman L, Chang S, Long SR, Thornton DE, Crown WH: Utilization and cost of health care services associated with primary malignant brain tumors in the United States. J Neurooncol. 2007, 81 (1): 61-65. 10.1007/s11060-006-9197-y.CrossRefPubMed Kutikova L, Bowman L, Chang S, Long SR, Thornton DE, Crown WH: Utilization and cost of health care services associated with primary malignant brain tumors in the United States. J Neurooncol. 2007, 81 (1): 61-65. 10.1007/s11060-006-9197-y.CrossRefPubMed
4.
go back to reference Louis DN: Molecular pathology of malignant gliomas. Annu Rev Pathol. 2006, 1: 97-117. 10.1146/annurev.pathol.1.110304.100043.CrossRefPubMed Louis DN: Molecular pathology of malignant gliomas. Annu Rev Pathol. 2006, 1: 97-117. 10.1146/annurev.pathol.1.110304.100043.CrossRefPubMed
5.
go back to reference Knab B, Connell PP: Radiotherapy for pediatric brain tumors: when and how. Expert Rev Anticancer Ther. 2007, 7 (12 Suppl): S69-77. 10.1586/14737140.7.12s.S69.CrossRefPubMed Knab B, Connell PP: Radiotherapy for pediatric brain tumors: when and how. Expert Rev Anticancer Ther. 2007, 7 (12 Suppl): S69-77. 10.1586/14737140.7.12s.S69.CrossRefPubMed
6.
go back to reference Loudon WG, Sutton LN: Childhood Malignant Gliomas. Contemporary Neurosurgery. 2000, 22; (19:): 1-9.CrossRef Loudon WG, Sutton LN: Childhood Malignant Gliomas. Contemporary Neurosurgery. 2000, 22; (19:): 1-9.CrossRef
7.
go back to reference Briere ME, Scott JG, McNall-Knapp RY, Adams RL: Cognitive outcome in pediatric brain tumor survivors: delayed attention deficit at long-term follow-up. Pediatr Blood Cancer. 2008, 50 (2): 337-340. 10.1002/pbc.21223.CrossRefPubMed Briere ME, Scott JG, McNall-Knapp RY, Adams RL: Cognitive outcome in pediatric brain tumor survivors: delayed attention deficit at long-term follow-up. Pediatr Blood Cancer. 2008, 50 (2): 337-340. 10.1002/pbc.21223.CrossRefPubMed
8.
go back to reference Meeske KA, Patel SK, Palmer SN, Nelson MB, Parow AM: Factors associated with health-related quality of life in pediatric cancer survivors. Pediatr Blood Cancer. 2007, 49 (3): 298-305. 10.1002/pbc.20923.CrossRefPubMed Meeske KA, Patel SK, Palmer SN, Nelson MB, Parow AM: Factors associated with health-related quality of life in pediatric cancer survivors. Pediatr Blood Cancer. 2007, 49 (3): 298-305. 10.1002/pbc.20923.CrossRefPubMed
9.
go back to reference Zebrack BJ, Gurney JG, Oeffinger K, Whitton J, Packer RJ, Mertens A, Turk N, Castleberry R, Dreyer Z, Robison LL, Zeltzer LK: Psychological outcomes in long-term survivors of childhood brain cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2004, 22 (6): 999-1006. 10.1200/JCO.2004.06.148.CrossRefPubMed Zebrack BJ, Gurney JG, Oeffinger K, Whitton J, Packer RJ, Mertens A, Turk N, Castleberry R, Dreyer Z, Robison LL, Zeltzer LK: Psychological outcomes in long-term survivors of childhood brain cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2004, 22 (6): 999-1006. 10.1200/JCO.2004.06.148.CrossRefPubMed
10.
go back to reference Benesch M, Lackner H, Moser A, Kerbl R, Schwinger W, Oberbauer R, Eder HG, Mayer R, Wiegele K, Urban C: Outcome and long-term side effects after synchronous radiochemotherapy for childhood brain stem gliomas. Pediatr Neurosurg. 2001, 35 (4): 173-180. 10.1159/000050418.CrossRefPubMed Benesch M, Lackner H, Moser A, Kerbl R, Schwinger W, Oberbauer R, Eder HG, Mayer R, Wiegele K, Urban C: Outcome and long-term side effects after synchronous radiochemotherapy for childhood brain stem gliomas. Pediatr Neurosurg. 2001, 35 (4): 173-180. 10.1159/000050418.CrossRefPubMed
11.
go back to reference Foreman NK, Faestel PM, Pearson J, Disabato J, Poole M, Wilkening G, Arenson EB, Greffe B, Thorne R: Health status in 52 long-term survivors of pediatric brain tumors. J Neurooncol. 1999, 41 (1): 47-53. 10.1023/A:1006145724500.CrossRefPubMed Foreman NK, Faestel PM, Pearson J, Disabato J, Poole M, Wilkening G, Arenson EB, Greffe B, Thorne R: Health status in 52 long-term survivors of pediatric brain tumors. J Neurooncol. 1999, 41 (1): 47-53. 10.1023/A:1006145724500.CrossRefPubMed
12.
go back to reference Sanai N, Mirzadeh Z, Berger MS: Functional outcome after language mapping for glioma resection. N Engl J Med. 2008, 358 (1): 18-27. 10.1056/NEJMoa067819.CrossRefPubMed Sanai N, Mirzadeh Z, Berger MS: Functional outcome after language mapping for glioma resection. N Engl J Med. 2008, 358 (1): 18-27. 10.1056/NEJMoa067819.CrossRefPubMed
13.
go back to reference Vernooij MW, Ikram MA, Tanghe HL, Vincent AJ, Hofman A, Krestin GP, Niessen WJ, Breteler MM, van der Lugt A: Incidental findings on brain MRI in the general population. N Engl J Med. 2007, 357 (18): 1821-1828. 10.1056/NEJMoa070972.CrossRefPubMed Vernooij MW, Ikram MA, Tanghe HL, Vincent AJ, Hofman A, Krestin GP, Niessen WJ, Breteler MM, van der Lugt A: Incidental findings on brain MRI in the general population. N Engl J Med. 2007, 357 (18): 1821-1828. 10.1056/NEJMoa070972.CrossRefPubMed
14.
go back to reference Partap S, Fisher PG: Update on new treatments and developments in childhood brain tumors. Curr Opin Pediatr. 2007, 19 (6): 670-674.CrossRefPubMed Partap S, Fisher PG: Update on new treatments and developments in childhood brain tumors. Curr Opin Pediatr. 2007, 19 (6): 670-674.CrossRefPubMed
15.
go back to reference Muller FJ, Snyder EY, Loring JF: Gene therapy: can neural stem cells deliver?. Nat Rev Neurosci. 2006, 7 (1): 75-84. 10.1038/nrn1829.CrossRefPubMed Muller FJ, Snyder EY, Loring JF: Gene therapy: can neural stem cells deliver?. Nat Rev Neurosci. 2006, 7 (1): 75-84. 10.1038/nrn1829.CrossRefPubMed
16.
go back to reference Bierings M, Nachman JB, Zwaan CM: Stem cell transplantation in pediatric leukemia and myelodysplasia: state of the art and current challenges. Curr Stem Cell Res Ther. 2007, 2 (1): 53-63. 10.2174/157488807779317035.CrossRefPubMed Bierings M, Nachman JB, Zwaan CM: Stem cell transplantation in pediatric leukemia and myelodysplasia: state of the art and current challenges. Curr Stem Cell Res Ther. 2007, 2 (1): 53-63. 10.2174/157488807779317035.CrossRefPubMed
17.
go back to reference Mapara KY, Stevenson CB, Thompson RC, Ehtesham M: Stem cells as vehicles for the treatment of brain cancer. Neurosurg Clin N Am. 2007, 18 (1): 71-80, ix. 10.1016/j.nec.2006.10.001.CrossRefPubMed Mapara KY, Stevenson CB, Thompson RC, Ehtesham M: Stem cells as vehicles for the treatment of brain cancer. Neurosurg Clin N Am. 2007, 18 (1): 71-80, ix. 10.1016/j.nec.2006.10.001.CrossRefPubMed
18.
go back to reference Sagar J, Chaib B, Sales K, Winslet M, Seifalian A: Role of stem cells in cancer therapy and cancer stem cells: a review. Cancer Cell Int. 2007, 7: 9-10.1186/1475-2867-7-9.PubMedCentralCrossRefPubMed Sagar J, Chaib B, Sales K, Winslet M, Seifalian A: Role of stem cells in cancer therapy and cancer stem cells: a review. Cancer Cell Int. 2007, 7: 9-10.1186/1475-2867-7-9.PubMedCentralCrossRefPubMed
19.
go back to reference Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, Breakefield XO, Snyder EY: Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A. 2000, 97 (23): 12846-12851. 10.1073/pnas.97.23.12846.PubMedCentralCrossRefPubMed Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, Breakefield XO, Snyder EY: Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A. 2000, 97 (23): 12846-12851. 10.1073/pnas.97.23.12846.PubMedCentralCrossRefPubMed
20.
go back to reference Glass R, Synowitz M, Kronenberg G, Walzlein JH, Markovic DS, Wang LP, Gast D, Kiwit J, Kempermann G, Kettenmann H: Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved survival. J Neurosci. 2005, 25 (10): 2637-2646. 10.1523/JNEUROSCI.5118-04.2005.CrossRefPubMed Glass R, Synowitz M, Kronenberg G, Walzlein JH, Markovic DS, Wang LP, Gast D, Kiwit J, Kempermann G, Kettenmann H: Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved survival. J Neurosci. 2005, 25 (10): 2637-2646. 10.1523/JNEUROSCI.5118-04.2005.CrossRefPubMed
21.
go back to reference Synowitz M, Kiwit J, Kettenmann H, Glass R: Tumor Young Investigator Award: tropism and antitumorigenic effect of endogenous neural precursors for gliomas. Clin Neurosurg. 2006, 53: 336-344.PubMed Synowitz M, Kiwit J, Kettenmann H, Glass R: Tumor Young Investigator Award: tropism and antitumorigenic effect of endogenous neural precursors for gliomas. Clin Neurosurg. 2006, 53: 336-344.PubMed
22.
go back to reference Benedetti S, Pirola B, Pollo B, Magrassi L, Bruzzone MG, Rigamonti D, Galli R, Selleri S, Di MF, De FC, Vescovi A, Cattaneo E, Finocchiaro G: Gene therapy of experimental brain tumors using neural progenitor cells. NatMed. 2000, 6 (4): 447-450. Benedetti S, Pirola B, Pollo B, Magrassi L, Bruzzone MG, Rigamonti D, Galli R, Selleri S, Di MF, De FC, Vescovi A, Cattaneo E, Finocchiaro G: Gene therapy of experimental brain tumors using neural progenitor cells. NatMed. 2000, 6 (4): 447-450.
23.
go back to reference Birnbaum T, Roider J, Schankin CJ, Padovan CS, Schichor C, Goldbrunner R, Straube A: Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J Neurooncol. 2007, 83 (3): 241-247. 10.1007/s11060-007-9332-4.CrossRefPubMed Birnbaum T, Roider J, Schankin CJ, Padovan CS, Schichor C, Goldbrunner R, Straube A: Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J Neurooncol. 2007, 83 (3): 241-247. 10.1007/s11060-007-9332-4.CrossRefPubMed
24.
go back to reference Sonabend AM, Dana K, Lesniak MS: Targeting epidermal growth factor receptor variant III: a novel strategy for the therapy of malignant glioma. Expert Rev Anticancer Ther. 2007, 7 (12 Suppl): S45-50. 10.1586/14737140.7.12s.S45.CrossRefPubMed Sonabend AM, Dana K, Lesniak MS: Targeting epidermal growth factor receptor variant III: a novel strategy for the therapy of malignant glioma. Expert Rev Anticancer Ther. 2007, 7 (12 Suppl): S45-50. 10.1586/14737140.7.12s.S45.CrossRefPubMed
25.
go back to reference Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS: Mesenchymal Stem Cells Effectively Deliver an Oncolytic Adenovirus to Intracranial Glioma. Stem Cells. 2008 Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS: Mesenchymal Stem Cells Effectively Deliver an Oncolytic Adenovirus to Intracranial Glioma. Stem Cells. 2008
26.
go back to reference Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M: Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 2002, 62 (13): 3603-3608.PubMed Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M: Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 2002, 62 (13): 3603-3608.PubMed
27.
go back to reference Yuan X, Hu J, Belladonna ML, Black KL, Yu JS: Interleukin-23-expressing bone marrow-derived neural stem-like cells exhibit antitumor activity against intracranial glioma. Cancer Res. 2006, 66 (5): 2630-2638. 10.1158/0008-5472.CAN-05-1682.CrossRefPubMed Yuan X, Hu J, Belladonna ML, Black KL, Yu JS: Interleukin-23-expressing bone marrow-derived neural stem-like cells exhibit antitumor activity against intracranial glioma. Cancer Res. 2006, 66 (5): 2630-2638. 10.1158/0008-5472.CAN-05-1682.CrossRefPubMed
28.
go back to reference Cheuk DK, Lee TL, Chiang AK, Ha SY, Chan GC: Autologous hematopoietic stem cell transplantation for high-risk brain tumors in children. J Neurooncol. 2008, 86 (3): 337-347. 10.1007/s11060-007-9478-0.CrossRefPubMed Cheuk DK, Lee TL, Chiang AK, Ha SY, Chan GC: Autologous hematopoietic stem cell transplantation for high-risk brain tumors in children. J Neurooncol. 2008, 86 (3): 337-347. 10.1007/s11060-007-9478-0.CrossRefPubMed
29.
go back to reference Chen HI, Bakshi A, Royo NC, Magge SN, Watson DJ: Neural stem cells as biological minipumps: a faster route to cell therapy for the CNS?. Curr Stem Cell Res Ther. 2007, 2 (1): 13-22. 10.2174/157488807779317044.CrossRefPubMed Chen HI, Bakshi A, Royo NC, Magge SN, Watson DJ: Neural stem cells as biological minipumps: a faster route to cell therapy for the CNS?. Curr Stem Cell Res Ther. 2007, 2 (1): 13-22. 10.2174/157488807779317044.CrossRefPubMed
30.
go back to reference Ben-Hur T: Human embryonic stem cells for neuronal repair. Isr Med Assoc J. 2006, 8 (2): 122-126.PubMed Ben-Hur T: Human embryonic stem cells for neuronal repair. Isr Med Assoc J. 2006, 8 (2): 122-126.PubMed
31.
go back to reference Phinney DG, Prockop DJ: Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells. 2007, 25 (11): 2896-2902. 10.1634/stemcells.2007-0637.CrossRefPubMed Phinney DG, Prockop DJ: Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells. 2007, 25 (11): 2896-2902. 10.1634/stemcells.2007-0637.CrossRefPubMed
32.
go back to reference Kioi M, Husain SR, Croteau D, Kunwar S, Puri RK: Convection-enhanced delivery of interleukin-13 receptor-directed cytotoxin for malignant glioma therapy. Technol Cancer Res Treat. 2006, 5 (3): 239-250.CrossRefPubMed Kioi M, Husain SR, Croteau D, Kunwar S, Puri RK: Convection-enhanced delivery of interleukin-13 receptor-directed cytotoxin for malignant glioma therapy. Technol Cancer Res Treat. 2006, 5 (3): 239-250.CrossRefPubMed
33.
go back to reference Mimeault M, Hauke R, Batra SK: Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther. 2007, 82 (3): 252-264. 10.1038/sj.clpt.6100301.CrossRefPubMed Mimeault M, Hauke R, Batra SK: Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther. 2007, 82 (3): 252-264. 10.1038/sj.clpt.6100301.CrossRefPubMed
34.
go back to reference Lee JP, Jeyakumar M, Gonzalez R, Takahashi H, Lee PJ, Baek RC, Clark D, Rose H, Fu G, Clarke J, McKercher S, Meerloo J, Muller FJ, Park KI, Butters TD, Dwek RA, Schwartz P, Tong G, Wenger D, Lipton SA, Seyfried TN, Platt FM, Snyder EY: Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat Med. 2007, 13 (4): 439-447. 10.1038/nm1548.CrossRefPubMed Lee JP, Jeyakumar M, Gonzalez R, Takahashi H, Lee PJ, Baek RC, Clark D, Rose H, Fu G, Clarke J, McKercher S, Meerloo J, Muller FJ, Park KI, Butters TD, Dwek RA, Schwartz P, Tong G, Wenger D, Lipton SA, Seyfried TN, Platt FM, Snyder EY: Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat Med. 2007, 13 (4): 439-447. 10.1038/nm1548.CrossRefPubMed
35.
go back to reference Isakova IA, Baker K, DuTreil M, Dufour J, Gaupp D, Phinney DG: Age- and dose-related effects on MSC engraftment levels and anatomical distribution in the central nervous systems of nonhuman primates: identification of novel MSC subpopulations that respond to guidance cues in brain. Stem Cells. 2007, 25 (12): 3261-3270. 10.1634/stemcells.2007-0543.CrossRefPubMed Isakova IA, Baker K, DuTreil M, Dufour J, Gaupp D, Phinney DG: Age- and dose-related effects on MSC engraftment levels and anatomical distribution in the central nervous systems of nonhuman primates: identification of novel MSC subpopulations that respond to guidance cues in brain. Stem Cells. 2007, 25 (12): 3261-3270. 10.1634/stemcells.2007-0543.CrossRefPubMed
36.
go back to reference Weidt C, Niggemann B, Kasenda B, Drell TL, Zanker KS, Dittmar T: Stem cell migration: a quintessential stepping stone to successful therapy. Curr Stem Cell Res Ther. 2007, 2 (1): 89-103. 10.2174/157488807779317008.CrossRefPubMed Weidt C, Niggemann B, Kasenda B, Drell TL, Zanker KS, Dittmar T: Stem cell migration: a quintessential stepping stone to successful therapy. Curr Stem Cell Res Ther. 2007, 2 (1): 89-103. 10.2174/157488807779317008.CrossRefPubMed
37.
go back to reference Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ: Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A. 2004, 101 (52): 18117-18122. 10.1073/pnas.0408258102.PubMedCentralCrossRefPubMed Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ: Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A. 2004, 101 (52): 18117-18122. 10.1073/pnas.0408258102.PubMedCentralCrossRefPubMed
38.
go back to reference Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P: MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood. 2007, 109 (9): 4055-4063. 10.1182/blood-2006-10-051060.CrossRefPubMed Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P: MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood. 2007, 109 (9): 4055-4063. 10.1182/blood-2006-10-051060.CrossRefPubMed
39.
go back to reference Wynn RF, Hart CA, Corradi-Perini C, O'Neill L, Evans CA, Wraith JE, Fairbairn LJ, Bellantuono I: A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood. 2004, 104 (9): 2643-2645. 10.1182/blood-2004-02-0526.CrossRefPubMed Wynn RF, Hart CA, Corradi-Perini C, O'Neill L, Evans CA, Wraith JE, Fairbairn LJ, Bellantuono I: A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood. 2004, 104 (9): 2643-2645. 10.1182/blood-2004-02-0526.CrossRefPubMed
40.
go back to reference Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L: Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood. 2005, 106 (2): 419-427. 10.1182/blood-2004-09-3507.CrossRefPubMed Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L: Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood. 2005, 106 (2): 419-427. 10.1182/blood-2004-09-3507.CrossRefPubMed
41.
go back to reference Weidt C, Niggemann B, Hatzmann W, Zanker KS, Dittmar T: Differential effects of culture conditions on the migration pattern of stromal cell-derived factor-stimulated hematopoietic stem cells. Stem Cells. 2004, 22 (6): 890-896. 10.1634/stemcells.22-6-890.CrossRefPubMed Weidt C, Niggemann B, Hatzmann W, Zanker KS, Dittmar T: Differential effects of culture conditions on the migration pattern of stromal cell-derived factor-stimulated hematopoietic stem cells. Stem Cells. 2004, 22 (6): 890-896. 10.1634/stemcells.22-6-890.CrossRefPubMed
42.
go back to reference Niggemann B, Drell TL, Joseph J, Weidt C, Lang K, Zaenker KS, Entschladen F: Tumor cell locomotion: differential dynamics of spontaneous and induced migration in a 3D collagen matrix. Exp Cell Res. 2004, 298 (1): 178-187. 10.1016/j.yexcr.2004.04.001.CrossRefPubMed Niggemann B, Drell TL, Joseph J, Weidt C, Lang K, Zaenker KS, Entschladen F: Tumor cell locomotion: differential dynamics of spontaneous and induced migration in a 3D collagen matrix. Exp Cell Res. 2004, 298 (1): 178-187. 10.1016/j.yexcr.2004.04.001.CrossRefPubMed
43.
go back to reference Lin D, Najbauer J, Salvaterra PM, Mamelak AN, Barish ME, Garcia E, Metz MZ, Kendall SE, Bowers M, Kateb B, Kim SU, Johnson M, Aboody KS: Novel method for visualizing and modeling the spatial distribution of neural stem cells within intracranial glioma. Neuroimage. 2007, 37 Suppl 1: S18-26. 10.1016/j.neuroimage.2007.03.076.CrossRefPubMed Lin D, Najbauer J, Salvaterra PM, Mamelak AN, Barish ME, Garcia E, Metz MZ, Kendall SE, Bowers M, Kateb B, Kim SU, Johnson M, Aboody KS: Novel method for visualizing and modeling the spatial distribution of neural stem cells within intracranial glioma. Neuroimage. 2007, 37 Suppl 1: S18-26. 10.1016/j.neuroimage.2007.03.076.CrossRefPubMed
Metadata
Title
A novel and generalizable organotypic slice platform to evaluate stem cell potential for targeting pediatric brain tumors
Authors
Shengwen Calvin Li
William Gunter Loudon
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2008
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-8-9

Other articles of this Issue 1/2008

Cancer Cell International 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine