Skip to main content
Top
Published in: Cancer Cell International 1/2012

Open Access 01-12-2012 | Editorial

Granulocyte-macrophage stimulating factor (GM-CSF) increases circulating dendritic cells but does not abrogate suppression of adaptive cellular immunity in patients with metastatic colorectal cancer receiving chemotherapy

Authors: Micaela Martinez, Nadia Ono, Marina Planutiene, Kestutis Planutis, Edward L Nelson, Randall F Holcombe

Published in: Cancer Cell International | Issue 1/2012

Login to get access

Abstract

Background

Advanced cancer and chemotherapy are both associated with immune system suppression. We initiated a clinical trial in patients receiving chemotherapy for metastatic colorectal cancer to determine if administration of GM-CSF in this setting was immunostimulatory.

Methods

Between June, 2003 and January, 2007, 20 patients were enrolled in a clinical trial (NCT00257322) in which they received 500 ug GM-CSF daily for 4 days starting 24 hours after each chemotherapy cycle. There were no toxicities or adverse events reported. Blood was obtained before chemotherapy/GM-CSF administration and 24 hours following the final dose of GM-CSF and evaluated for circulating dendritic cells and adaptive immune cellular subsets by flow cytometry. Peripheral blood mononuclear cell (PBMC) expression of γ-interferon and T-bet transcription factor (Tbx21) by quantitative real-time PCR was performed as a measure of Th1 adaptive cellular immunity. Pre- and post-treatment (i.e., chemotherapy and GM-CSF) samples were evaluable for 16 patients, ranging from 1 to 5 cycles (median 3 cycles, 6 biologic sample time points). Dendritic cells were defined as lineage (-) and MHC class II high (+).

Results

73% of patients had significant increases in circulating dendritic cells of ~3x for the overall group (5.8% to 13.6%, p = 0.02) and ~5x excluding non-responders (3.2% to 14.5%, p < 0.001). This effect was sustained over multiple cycles for approximately half of the responders, but tachyphylaxis over subsequent chemotherapy cycles was noted for the remainder. Treatment also led to a significant reduction in the proportion of circulating regulatory T-cells (Treg; p = 0.0042). PBMC Tbx21 levels declined by 75% following each chemotherapy cycle despite administration of GM-CSF (p = 0.02). PBMC γ-interferon expression, however was unchanged.

Conclusions

This clinical trial confirms the suppressive effects of chemotherapy on Th1 cellular immunity in patients with metastatic colorectal cancer but demonstrates that mid-cycle administration of GM-CSF can significantly increase the proportion of circulating dendritic cells. As the role of dendritic cells in anti-tumor immunity becomes better defined, GM-CSF administration may provide a non-toxic intervention to augment this arm of the immune system for cancer patients receiving cytotoxic therapy.

Trial Registration

ClinicalTrials.gov: NCT00257322
Appendix
Available only for authorised users
Literature
1.
go back to reference Menon AG: Immune system and prognosis in colorectal cancer: a detailed immunohistochemical analysis. Lab Invest. 2004, 84 (4): 493-501. 10.1038/labinvest.3700055.CrossRefPubMed Menon AG: Immune system and prognosis in colorectal cancer: a detailed immunohistochemical analysis. Lab Invest. 2004, 84 (4): 493-501. 10.1038/labinvest.3700055.CrossRefPubMed
2.
go back to reference Atreya I, Neurath MF: Immune cells in colorectal cancer: prognostic relevance and therapeutic strategies. Expert Rev Anticancer Ther. 2008, 8 (4): 561-72. 10.1586/14737140.8.4.561.CrossRefPubMed Atreya I, Neurath MF: Immune cells in colorectal cancer: prognostic relevance and therapeutic strategies. Expert Rev Anticancer Ther. 2008, 8 (4): 561-72. 10.1586/14737140.8.4.561.CrossRefPubMed
3.
go back to reference Mlecnik B: Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol. 2011, 29 (6): 610-8. 10.1200/JCO.2010.30.5425.CrossRefPubMed Mlecnik B: Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol. 2011, 29 (6): 610-8. 10.1200/JCO.2010.30.5425.CrossRefPubMed
4.
go back to reference Rao B: Clinical outcomes of active specific immunotherapy in advanced colorectal cancer and suspected minimal residual colorectal cancer: a meta-analysis and system review. J Transl Med. 2011, 9 (1): 17-10.1186/1479-5876-9-17.PubMedCentralCrossRefPubMed Rao B: Clinical outcomes of active specific immunotherapy in advanced colorectal cancer and suspected minimal residual colorectal cancer: a meta-analysis and system review. J Transl Med. 2011, 9 (1): 17-10.1186/1479-5876-9-17.PubMedCentralCrossRefPubMed
6.
go back to reference Whiteside TL: Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol. 2006, 16 (1): 3-15. 10.1016/j.semcancer.2005.07.008.CrossRefPubMed Whiteside TL: Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol. 2006, 16 (1): 3-15. 10.1016/j.semcancer.2005.07.008.CrossRefPubMed
7.
go back to reference Metcalf D: The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors. Blood. 1986, 67 (2): 257-67.PubMed Metcalf D: The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors. Blood. 1986, 67 (2): 257-67.PubMed
8.
go back to reference Arruda LB: Dendritic cell-lysosomal-associated membrane protein (LAMP) and LAMP-1-HIV-1 gag chimeras have distinct cellular trafficking pathways and prime T and B cell responses to a diverse repertoire of epitopes. J Immunol. 2006, 177 (4): 2265-75.CrossRefPubMed Arruda LB: Dendritic cell-lysosomal-associated membrane protein (LAMP) and LAMP-1-HIV-1 gag chimeras have distinct cellular trafficking pathways and prime T and B cell responses to a diverse repertoire of epitopes. J Immunol. 2006, 177 (4): 2265-75.CrossRefPubMed
9.
go back to reference Blumenthal A: The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood. 2006, 108 (3): 965-73. 10.1182/blood-2005-12-5046.CrossRefPubMed Blumenthal A: The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood. 2006, 108 (3): 965-73. 10.1182/blood-2005-12-5046.CrossRefPubMed
10.
go back to reference Frucht DM: IFN-gamma production by antigen-presenting cells: mechanisms emerge. Trends Immunol. 2001, 22 (10): 556-60. 10.1016/S1471-4906(01)02005-1.CrossRefPubMed Frucht DM: IFN-gamma production by antigen-presenting cells: mechanisms emerge. Trends Immunol. 2001, 22 (10): 556-60. 10.1016/S1471-4906(01)02005-1.CrossRefPubMed
11.
go back to reference Wang J: Transcription factor T-bet regulates inflammatory arthritis through its function in dendritic cells. J Clin Invest. 2006, 116 (2): 414-21. 10.1172/JCI26631.PubMedCentralCrossRefPubMed Wang J: Transcription factor T-bet regulates inflammatory arthritis through its function in dendritic cells. J Clin Invest. 2006, 116 (2): 414-21. 10.1172/JCI26631.PubMedCentralCrossRefPubMed
12.
go back to reference Lapteva N: Attraction and activation of dendritic cells at the site of tumor elicits potent antitumor immunity. Mol Ther. 2009, 17 (9): 1626-36. 10.1038/mt.2009.111.PubMedCentralCrossRefPubMed Lapteva N: Attraction and activation of dendritic cells at the site of tumor elicits potent antitumor immunity. Mol Ther. 2009, 17 (9): 1626-36. 10.1038/mt.2009.111.PubMedCentralCrossRefPubMed
13.
go back to reference Taieb J: A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med. 2006, 12 (2): 214-9. 10.1038/nm1356.CrossRefPubMed Taieb J: A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med. 2006, 12 (2): 214-9. 10.1038/nm1356.CrossRefPubMed
14.
go back to reference Petersen TR: Potent anti-tumor responses to immunization with dendritic cells loaded with tumor tissue and an NKT cell ligand. Immunol Cell Biol. 2010, 88 (5): 596-604. 10.1038/icb.2010.9.CrossRefPubMed Petersen TR: Potent anti-tumor responses to immunization with dendritic cells loaded with tumor tissue and an NKT cell ligand. Immunol Cell Biol. 2010, 88 (5): 596-604. 10.1038/icb.2010.9.CrossRefPubMed
15.
go back to reference Song YC: Presentation of lipopeptide by dendritic cells induces anti-tumor responses via an endocytosis-independent pathway in vivo. J Leukoc Biol. 2011 Song YC: Presentation of lipopeptide by dendritic cells induces anti-tumor responses via an endocytosis-independent pathway in vivo. J Leukoc Biol. 2011
16.
go back to reference Koch M: Tumor infiltrating T lymphocytes in colorectal cancer: Tumor-selective activation and cytotoxic activity in situ. Ann Surg. 2006, 244 (6): 986-92. 10.1097/01.sla.0000247058.43243.7b. discussion 992-3PubMedCentralCrossRefPubMed Koch M: Tumor infiltrating T lymphocytes in colorectal cancer: Tumor-selective activation and cytotoxic activity in situ. Ann Surg. 2006, 244 (6): 986-92. 10.1097/01.sla.0000247058.43243.7b. discussion 992-3PubMedCentralCrossRefPubMed
17.
go back to reference Salama P: Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 2009, 27 (2): 186-92. 10.1200/JCO.2008.18.7229.CrossRefPubMed Salama P: Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 2009, 27 (2): 186-92. 10.1200/JCO.2008.18.7229.CrossRefPubMed
18.
go back to reference Condamine T, Gabrilovich DI: Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 2011, 32 (1): 19-25. 10.1016/j.it.2010.10.002.PubMedCentralCrossRefPubMed Condamine T, Gabrilovich DI: Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 2011, 32 (1): 19-25. 10.1016/j.it.2010.10.002.PubMedCentralCrossRefPubMed
19.
go back to reference Anthony DD: Lower peripheral blood CD14+ monocyte frequency and higher CD34+ progenitor cell frequency are associated with HBV vaccine induced response in HIV infected individuals. Vaccine. 2011, 29 (19): 3558-63. 10.1016/j.vaccine.2011.02.092.PubMedCentralCrossRefPubMed Anthony DD: Lower peripheral blood CD14+ monocyte frequency and higher CD34+ progenitor cell frequency are associated with HBV vaccine induced response in HIV infected individuals. Vaccine. 2011, 29 (19): 3558-63. 10.1016/j.vaccine.2011.02.092.PubMedCentralCrossRefPubMed
20.
go back to reference Daud AI: Phenotypic and functional analysis of dendritic cells and clinical outcome in patients with high-risk melanoma treated with adjuvant granulocyte macrophage colony-stimulating factor. J Clin Oncol. 2008, 26 (19): 3235-41. 10.1200/JCO.2007.13.9048.CrossRefPubMed Daud AI: Phenotypic and functional analysis of dendritic cells and clinical outcome in patients with high-risk melanoma treated with adjuvant granulocyte macrophage colony-stimulating factor. J Clin Oncol. 2008, 26 (19): 3235-41. 10.1200/JCO.2007.13.9048.CrossRefPubMed
21.
go back to reference Filipazzi P: Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol. 2007, 25 (18): 2546-53. 10.1200/JCO.2006.08.5829.CrossRefPubMed Filipazzi P: Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol. 2007, 25 (18): 2546-53. 10.1200/JCO.2006.08.5829.CrossRefPubMed
22.
go back to reference Kaufman HL: Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol. 2010, 17 (3): 718-30. 10.1245/s10434-009-0809-6.CrossRefPubMed Kaufman HL: Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol. 2010, 17 (3): 718-30. 10.1245/s10434-009-0809-6.CrossRefPubMed
Metadata
Title
Granulocyte-macrophage stimulating factor (GM-CSF) increases circulating dendritic cells but does not abrogate suppression of adaptive cellular immunity in patients with metastatic colorectal cancer receiving chemotherapy
Authors
Micaela Martinez
Nadia Ono
Marina Planutiene
Kestutis Planutis
Edward L Nelson
Randall F Holcombe
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2012
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-12-2

Other articles of this Issue 1/2012

Cancer Cell International 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine