Skip to main content
Top
Published in: Cancer Cell International 1/2012

Open Access 01-12-2012 | Primary research

Cycloartane-3,24,25-triol inhibits MRCKα kinase and demonstrates promising anti prostate cancer activity in vitro

Authors: Henry I C Lowe, Charah T Watson, Simone Badal, Ngeh J Toyang, Joseph Bryant

Published in: Cancer Cell International | Issue 1/2012

Login to get access

Abstract

Background

Given the high occurrence of prostate cancer worldwide and one of the major sources of the discovery of new lead molecules being medicinal plants, this research undertook to investigate the possible anti-cancer activity of two natural cycloartanes; cycloartane-3,24,25-diol (extracted in our lab from Tillandsia recurvata) and cycloartane-3,24,25-triol (purchased). The inhibition of MRCKα kinase has emerged as a potential solution to restoring the tight regulation of normal cellular growth, the loss of which leads to cancer cell formation.

Methods

Kinase inhibition was investigated using competition binding (to the ATP sites) assays which have been previously established and authenticated and cell proliferation was measured using the WST-1 assay.

Results

Cycloartane-3,24,25-triol demonstrated strong selectivity towards the MRCKα kinase with a Kd50 of 0.26 μM from a total of 451 kinases investigated. Cycloartane-3,24,25-triol reduced the viability of PC-3 and DU145 cell lines with IC50 values of 2.226 ± 0.28 μM and 1.67 ± 0.18 μM respectively.

Conclusions

These results will prove useful in drug discovery as Cycloartane-3,24,25-triol has shown potential for development as an anti-cancer agent against prostate cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Bray F, Center M, Jacques Ferlay M, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61: 69-90.CrossRefPubMed Jemal A, Bray F, Center M, Jacques Ferlay M, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61: 69-90.CrossRefPubMed
2.
go back to reference Lowe H: Anti-Tumor and Anti-Inflammatory Extracts of Plant Biomass and Their Uses. 2010, Jamaica, 1-14. US 7,713,556 B2 Lowe H: Anti-Tumor and Anti-Inflammatory Extracts of Plant Biomass and Their Uses. 2010, Jamaica, 1-14. US 7,713,556 B2
3.
go back to reference Cabrera GM, Seldes AM: Hydroperoxycycloartanes from Til landsia recurvata. J Nat Prod. 1995, 58: 1920-1924.CrossRef Cabrera GM, Seldes AM: Hydroperoxycycloartanes from Til landsia recurvata. J Nat Prod. 1995, 58: 1920-1924.CrossRef
4.
go back to reference Kikuchi T, Akihisa T, Tokuda H, Ukiya M, Watanabe K, Nishino H: Cancer chemopreventive effects of cycloartane-type and related triterpenoids in in vitro and in vivo models. J Nat Prod. 2007, 70: 918-922.CrossRefPubMed Kikuchi T, Akihisa T, Tokuda H, Ukiya M, Watanabe K, Nishino H: Cancer chemopreventive effects of cycloartane-type and related triterpenoids in in vitro and in vivo models. J Nat Prod. 2007, 70: 918-922.CrossRefPubMed
5.
go back to reference Hall A: Rho GTPases and the actin cytoskeleton. Science. 1998, 23: 509-514.CrossRef Hall A: Rho GTPases and the actin cytoskeleton. Science. 1998, 23: 509-514.CrossRef
6.
go back to reference Heikkila T, Wheatley E, Crghton D, Schroder E, Boakes A, Kaye S, Mezna M, Pang L, Rushbrooke M, Turnbull A: Co-crystal structures of inhibitors with MRCKβ, a key regulator of tumor cell invasion. PloSOne. 2011, 6: 1-12.CrossRef Heikkila T, Wheatley E, Crghton D, Schroder E, Boakes A, Kaye S, Mezna M, Pang L, Rushbrooke M, Turnbull A: Co-crystal structures of inhibitors with MRCKβ, a key regulator of tumor cell invasion. PloSOne. 2011, 6: 1-12.CrossRef
7.
go back to reference Jaffe A, Hall A: RHO GTPASES: biochemistry and biology. Annu Rev Cell Dev Bi. 2005, 21: 247-269.CrossRef Jaffe A, Hall A: RHO GTPASES: biochemistry and biology. Annu Rev Cell Dev Bi. 2005, 21: 247-269.CrossRef
8.
go back to reference Sahai E, Marshall CJ: ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nat Cell Biol. 2002, 4: 408-412.CrossRefPubMed Sahai E, Marshall CJ: ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nat Cell Biol. 2002, 4: 408-412.CrossRefPubMed
9.
go back to reference Benitaha SA, Valeróna PF, Aelstb L, Marshallc CJ, Lacala JC: Rho GTPases in human cancer: an unresolved link to upstream and downstream transcriptional regulation. Biochimica et Biophysica Acta. 2005, 1705: 121-132. Benitaha SA, Valeróna PF, Aelstb L, Marshallc CJ, Lacala JC: Rho GTPases in human cancer: an unresolved link to upstream and downstream transcriptional regulation. Biochimica et Biophysica Acta. 2005, 1705: 121-132.
10.
go back to reference Wilkinson S, Paterson HF, Marshall CJ: Cdc42–MRCK and Rho–ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nat Cell Biol. 2005, 7: 255-261.CrossRefPubMed Wilkinson S, Paterson HF, Marshall CJ: Cdc42–MRCK and Rho–ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nat Cell Biol. 2005, 7: 255-261.CrossRefPubMed
11.
go back to reference Terracciano D, Mazzarella C, Di Carlo A, Mariano A, Ferro M, Di Lorenzo G, Giordano A, Altieri V, De Placido S, Macchia V: Effects of the ErbB1/ErbB2 kinase inhibitor GW2974 on androgen-independent prostate cancer PC-3 cell line growth and NSE, chromogranin A and osteopontin content. Oncol Rep 2010. 2010, 24: 213-217. Terracciano D, Mazzarella C, Di Carlo A, Mariano A, Ferro M, Di Lorenzo G, Giordano A, Altieri V, De Placido S, Macchia V: Effects of the ErbB1/ErbB2 kinase inhibitor GW2974 on androgen-independent prostate cancer PC-3 cell line growth and NSE, chromogranin A and osteopontin content. Oncol Rep 2010. 2010, 24: 213-217.
12.
go back to reference Rose D, Connolly J: Effects of fatty acids and eicosanoid synthesis inhibitors on the growth of two human prostate cancer cell lines. The Prostate. 1991, 18: 243-254.CrossRefPubMed Rose D, Connolly J: Effects of fatty acids and eicosanoid synthesis inhibitors on the growth of two human prostate cancer cell lines. The Prostate. 1991, 18: 243-254.CrossRefPubMed
13.
go back to reference Ngamwongsatit P, Banada PP, Panbangred W, Bhunia AK: WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line. J Microbiol Meth. 2008, 73: 211-215.CrossRef Ngamwongsatit P, Banada PP, Panbangred W, Bhunia AK: WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line. J Microbiol Meth. 2008, 73: 211-215.CrossRef
14.
go back to reference Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M: A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol. 2005, 23: 329-336.CrossRefPubMed Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M: A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol. 2005, 23: 329-336.CrossRefPubMed
15.
go back to reference Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT: A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008, 26: 127-132.CrossRefPubMed Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT: A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008, 26: 127-132.CrossRefPubMed
Metadata
Title
Cycloartane-3,24,25-triol inhibits MRCKα kinase and demonstrates promising anti prostate cancer activity in vitro
Authors
Henry I C Lowe
Charah T Watson
Simone Badal
Ngeh J Toyang
Joseph Bryant
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2012
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-12-46

Other articles of this Issue 1/2012

Cancer Cell International 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine