Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2014

Open Access 01-12-2014 | Original investigation

Differential transendothelial transport of adiponectin complexes

Authors: Joseph M Rutkowski, Nils Halberg, Qiong A Wang, William L Holland, Jonathan Y Xia, Philipp E Scherer

Published in: Cardiovascular Diabetology | Issue 1/2014

Login to get access

Abstract

Background

Adiponectin’s effects on systemic physiology and cell-specific responses are well-defined, but little is known about how this insulin-sensitizing and anti-inflammatory adipokine reaches its target cells. All molecules face active and passive transport limitations, but adiponectin is particularly noteworthy due to the diverse size range and high molecular weights of its oligomers. Additionally, its metabolic target organs possess a range of endothelial permeability.

Methods

Full-length recombinant murine adiponectin was produced and oligomer fractions isolated by gel filtration. Adiponectin complex sizes were measured by dynamic light scattering to determine Stokes radii. Transendothelial transport of purified oligomers was quantitatively assessed under a number of different conditions in vitro using murine endothelial cells and in vivo using several mouse models of altered endothelial function.

Results

Adiponectin oligomers exhibit large transport radii that limit transendothelial transport. Oligomerization is a significant determinant of flux across endothelial monolayers in vitro; low molecular weight adiponectin is preferentially transported. In vivo sampled sera from the heart, liver, and tail vein demonstrated significantly different complex distribution of lower molecular weight oligomers. Pharmacological interventions, such as PPARγ agonist treatment, differentially affect adiponectin plasma clearance and tissue uptake. Exercise induces enhanced adiponectin uptake to oxidative skeletal muscles, wherein adiponectin potently lowers ceramide levels. In total, endothelial barriers control adiponectin transport in a cell- and tissue-specific manner.

Conclusions

Adiponectin oligomer efficacy in a given tissue may therefore be endothelial transport mediated. Targeting endothelial dysfunction in the metabolic syndrome through exercise and pharmaceuticals may afford an effective approach to increasing adiponectin’s beneficial effects.
Appendix
Available only for authorised users
Literature
1.
go back to reference Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF: A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995, 270 (45): 26746-26749. 10.1074/jbc.270.45.26746.CrossRefPubMed Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF: A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995, 270 (45): 26746-26749. 10.1074/jbc.270.45.26746.CrossRefPubMed
2.
go back to reference Schraw T, Wang ZV, Halberg N, Hawkins M, Scherer PE: Plasma adiponectin complexes have distinct biochemical characteristics. Endocrinology. 2008, 149 (5): 2270-2282. 10.1210/en.2007-1561.PubMedCentralCrossRefPubMed Schraw T, Wang ZV, Halberg N, Hawkins M, Scherer PE: Plasma adiponectin complexes have distinct biochemical characteristics. Endocrinology. 2008, 149 (5): 2270-2282. 10.1210/en.2007-1561.PubMedCentralCrossRefPubMed
3.
go back to reference Hamilton MP, Gore MO, Ayers CR, Xinyu W, McGuire DK, Scherer PE: Adiponectin and cardiovascular risk profile in patients with type 2 diabetes mellitus: parameters associated with adiponectin complex distribution. Diab Vasc Dis Res. 2011, 8 (3): 190-194. 10.1177/1479164111407784.CrossRefPubMed Hamilton MP, Gore MO, Ayers CR, Xinyu W, McGuire DK, Scherer PE: Adiponectin and cardiovascular risk profile in patients with type 2 diabetes mellitus: parameters associated with adiponectin complex distribution. Diab Vasc Dis Res. 2011, 8 (3): 190-194. 10.1177/1479164111407784.CrossRefPubMed
4.
go back to reference Lo MM, Salisbury S, Scherer PE, Furth SL, Warady BA, Mitsnefes MM: Serum adiponectin complexes and cardiovascular risk in children with chronic kidney disease. Pediatr Nephrol. 2011, 26 (11): 2009-2017. 10.1007/s00467-011-1906-x.PubMedCentralCrossRefPubMed Lo MM, Salisbury S, Scherer PE, Furth SL, Warady BA, Mitsnefes MM: Serum adiponectin complexes and cardiovascular risk in children with chronic kidney disease. Pediatr Nephrol. 2011, 26 (11): 2009-2017. 10.1007/s00467-011-1906-x.PubMedCentralCrossRefPubMed
5.
go back to reference Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T, Engel J, Brownlee M, Scherer PE: Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin, implications fpr metabolic regulation and bioactivity. J Biol Chem. 2003, 278 (11): 9073-9085. 10.1074/jbc.M207198200.CrossRefPubMed Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T, Engel J, Brownlee M, Scherer PE: Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin, implications fpr metabolic regulation and bioactivity. J Biol Chem. 2003, 278 (11): 9073-9085. 10.1074/jbc.M207198200.CrossRefPubMed
6.
go back to reference Pajvani UB, Hawkins M, Combs TP, Rajala MW, Doebber T, Berger JP, Wagner JA, Wu M, Knopps A, Xiang AH, Utzschneider KM, Kahn SE, Olefsky JM, Buchanan TA, Scherer PE: Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J Biol Chem. 2004, 279 (13): 12152-12162.CrossRefPubMed Pajvani UB, Hawkins M, Combs TP, Rajala MW, Doebber T, Berger JP, Wagner JA, Wu M, Knopps A, Xiang AH, Utzschneider KM, Kahn SE, Olefsky JM, Buchanan TA, Scherer PE: Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J Biol Chem. 2004, 279 (13): 12152-12162.CrossRefPubMed
7.
go back to reference Aird WC: Phenotypic heterogeneity of the endothelium: II, Representative vascular beds. Circ Res. 2007, 100 (2): 174-190. 10.1161/01.RES.0000255690.03436.ae.CrossRefPubMed Aird WC: Phenotypic heterogeneity of the endothelium: II, Representative vascular beds. Circ Res. 2007, 100 (2): 174-190. 10.1161/01.RES.0000255690.03436.ae.CrossRefPubMed
8.
go back to reference Aird WC: Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res. 2007, 100 (2): 158-173. 10.1161/01.RES.0000255691.76142.4a.CrossRefPubMed Aird WC: Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res. 2007, 100 (2): 158-173. 10.1161/01.RES.0000255691.76142.4a.CrossRefPubMed
9.
go back to reference Mehta D, Malik AB: Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006, 86 (1): 279-367. 10.1152/physrev.00012.2005.CrossRefPubMed Mehta D, Malik AB: Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006, 86 (1): 279-367. 10.1152/physrev.00012.2005.CrossRefPubMed
10.
go back to reference Cao R, Brakenhielm E, Wahlestedt C, Thyberg J, Cao Y: Leptin induces vascular permeability and synergistically stimulates angiogenesis with FGF-2 and VEGF. Proc Natl Acad Sci U S A. 2001, 98 (11): 6390-6395. 10.1073/pnas.101564798.PubMedCentralCrossRefPubMed Cao R, Brakenhielm E, Wahlestedt C, Thyberg J, Cao Y: Leptin induces vascular permeability and synergistically stimulates angiogenesis with FGF-2 and VEGF. Proc Natl Acad Sci U S A. 2001, 98 (11): 6390-6395. 10.1073/pnas.101564798.PubMedCentralCrossRefPubMed
11.
go back to reference Elbatarny HS, Netherton SJ, Ovens JD, Ferguson AV, Maurice DH: Adiponectin, ghrelin, and leptin differentially influence human platelet and human vascular endothelial cell functions: implication in obesity-associated cardiovascular diseases. Eur J Pharmacol. 2007, 558 (1–3): 7-13.CrossRefPubMed Elbatarny HS, Netherton SJ, Ovens JD, Ferguson AV, Maurice DH: Adiponectin, ghrelin, and leptin differentially influence human platelet and human vascular endothelial cell functions: implication in obesity-associated cardiovascular diseases. Eur J Pharmacol. 2007, 558 (1–3): 7-13.CrossRefPubMed
12.
go back to reference Kamba T, Tam BY, Hashizume H, Haskell A, Sennino B, Mancuso MR, Norberg SM, O'Brien SM, Davis RB, Gowen LC, Anderson KD, Thurston G, Joho S, Springer ML, Kuo CJ, McDonald DM: VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol. 2006, 290 (2): H560-H576.CrossRefPubMed Kamba T, Tam BY, Hashizume H, Haskell A, Sennino B, Mancuso MR, Norberg SM, O'Brien SM, Davis RB, Gowen LC, Anderson KD, Thurston G, Joho S, Springer ML, Kuo CJ, McDonald DM: VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol. 2006, 290 (2): H560-H576.CrossRefPubMed
13.
go back to reference Rutkowski JM, Davis KE, Scherer PE: Mechanisms of obesity and related pathologies: the macro- and microcirculation of adipose tissue. FEBS J. 2009, 276 (20): 5738-5746.PubMedCentralCrossRefPubMed Rutkowski JM, Davis KE, Scherer PE: Mechanisms of obesity and related pathologies: the macro- and microcirculation of adipose tissue. FEBS J. 2009, 276 (20): 5738-5746.PubMedCentralCrossRefPubMed
14.
go back to reference St-Pierre P, Bouffard L, Papirakis ME, Maheux P: Increased extravasation of macromolecules in skeletal muscles of the Zucker rat model. Obesity (Silver Spring). 2006, 14 (5): 787-793. 10.1038/oby.2006.91.CrossRef St-Pierre P, Bouffard L, Papirakis ME, Maheux P: Increased extravasation of macromolecules in skeletal muscles of the Zucker rat model. Obesity (Silver Spring). 2006, 14 (5): 787-793. 10.1038/oby.2006.91.CrossRef
15.
go back to reference Wang H, Liu Z, Li G, Barrett EJ: The vascular endothelial cell mediates insulin transport into skeletal muscle. Am J Physiol Endocrinol Metab. 2006, 291 (2): E323-E332. 10.1152/ajpendo.00047.2006.CrossRefPubMed Wang H, Liu Z, Li G, Barrett EJ: The vascular endothelial cell mediates insulin transport into skeletal muscle. Am J Physiol Endocrinol Metab. 2006, 291 (2): E323-E332. 10.1152/ajpendo.00047.2006.CrossRefPubMed
16.
go back to reference Raines SM, Richards OC, Schneider LR, Schueler KL, Rabaglia ME, Oler AT, Stapleton DS, Genove G, Dawson JA, Betsholtz C, Attie AD: Loss of PDGF-B activity increases hepatic vascular permeability and enhances insulin sensitivity. Am J Physiol Endocrinol Metab. 2011, 301 (3): E517-E526. 10.1152/ajpendo.00241.2011.PubMedCentralCrossRefPubMed Raines SM, Richards OC, Schneider LR, Schueler KL, Rabaglia ME, Oler AT, Stapleton DS, Genove G, Dawson JA, Betsholtz C, Attie AD: Loss of PDGF-B activity increases hepatic vascular permeability and enhances insulin sensitivity. Am J Physiol Endocrinol Metab. 2011, 301 (3): E517-E526. 10.1152/ajpendo.00241.2011.PubMedCentralCrossRefPubMed
17.
go back to reference Wang H, Wang AX, Barrett EJ: Caveolin-1 is required for vascular endothelial insulin uptake. Am J Physiol Endocrinol Metab. 2011, 300 (1): E134-E144. 10.1152/ajpendo.00498.2010.PubMedCentralCrossRefPubMed Wang H, Wang AX, Barrett EJ: Caveolin-1 is required for vascular endothelial insulin uptake. Am J Physiol Endocrinol Metab. 2011, 300 (1): E134-E144. 10.1152/ajpendo.00498.2010.PubMedCentralCrossRefPubMed
18.
go back to reference Halberg N, Schraw TD, Wang ZV, Kim JY, Yi J, Hamilton MP, Luby-Phelps K, Scherer PE: Systemic fate of the adipocyte-derived factor adiponectin. Diabetes. 2009, 58 (9): 1961-1970. 10.2337/db08-1750.PubMedCentralCrossRefPubMed Halberg N, Schraw TD, Wang ZV, Kim JY, Yi J, Hamilton MP, Luby-Phelps K, Scherer PE: Systemic fate of the adipocyte-derived factor adiponectin. Diabetes. 2009, 58 (9): 1961-1970. 10.2337/db08-1750.PubMedCentralCrossRefPubMed
20.
go back to reference Asterholm IW, Mundy DI, Weng J, Anderson RG, Scherer PE: Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1. Cell Metab. 2012, 15 (2): 171-185. 10.1016/j.cmet.2012.01.004.PubMedCentralCrossRefPubMed Asterholm IW, Mundy DI, Weng J, Anderson RG, Scherer PE: Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1. Cell Metab. 2012, 15 (2): 171-185. 10.1016/j.cmet.2012.01.004.PubMedCentralCrossRefPubMed
21.
go back to reference Berger J, Leibowitz MD, Doebber TW, Elbrecht A, Zhang B, Zhou G, Biswas C, Cullinan CA, Hayes NS, Li Y, Tanen M, Ventre J, Wu MS, Berger GD, Mosley R, Marquis R, Santini C, Sahoo SP, Tolman RL, Smith RG, Moller DE: Novel peroxisome proliferator-activated receptor (PPAR) gamma and PPARdelta ligands produce distinct biological effects. J Biol Chem. 1999, 274 (10): 6718-6725. 10.1074/jbc.274.10.6718.CrossRefPubMed Berger J, Leibowitz MD, Doebber TW, Elbrecht A, Zhang B, Zhou G, Biswas C, Cullinan CA, Hayes NS, Li Y, Tanen M, Ventre J, Wu MS, Berger GD, Mosley R, Marquis R, Santini C, Sahoo SP, Tolman RL, Smith RG, Moller DE: Novel peroxisome proliferator-activated receptor (PPAR) gamma and PPARdelta ligands produce distinct biological effects. J Biol Chem. 1999, 274 (10): 6718-6725. 10.1074/jbc.274.10.6718.CrossRefPubMed
22.
go back to reference Kim JY, van de Wall E, Laplante M, Azzara A, Trujillo ME, Hofmann SM, Schraw T, Durand JL, Li H, Li G, Jelicks LA, Mehler MF, Hui DY, Deshaies Y, Shulman GI, Schwartz GJ, Scherer PE: Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest. 2007, 117 (9): 2621-2637. 10.1172/JCI31021.PubMedCentralCrossRefPubMed Kim JY, van de Wall E, Laplante M, Azzara A, Trujillo ME, Hofmann SM, Schraw T, Durand JL, Li H, Li G, Jelicks LA, Mehler MF, Hui DY, Deshaies Y, Shulman GI, Schwartz GJ, Scherer PE: Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest. 2007, 117 (9): 2621-2637. 10.1172/JCI31021.PubMedCentralCrossRefPubMed
23.
go back to reference Sejima H, Tominaga K, Egawa T, Ikeda M, Shibuya K, Kameyama N, Yamauchi A, Shuto H, Kataoka Y: Gender differences in tail-skin flushing induced by nitrates and phosphodiesterase type 5 inhibitors in a climacteric mouse model. Eur J Pharmacol. 2009, 624 (1–3): 66-70.CrossRefPubMed Sejima H, Tominaga K, Egawa T, Ikeda M, Shibuya K, Kameyama N, Yamauchi A, Shuto H, Kataoka Y: Gender differences in tail-skin flushing induced by nitrates and phosphodiesterase type 5 inhibitors in a climacteric mouse model. Eur J Pharmacol. 2009, 624 (1–3): 66-70.CrossRefPubMed
24.
go back to reference Sendo T, Kataoka Y, Takeda Y, Furuta W, Oishi R: Nitric oxide protects against contrast media-increased pulmonary vascular permeability in rats. Invest Radiol. 2000, 35 (8): 472-478. 10.1097/00004424-200008000-00003.CrossRefPubMed Sendo T, Kataoka Y, Takeda Y, Furuta W, Oishi R: Nitric oxide protects against contrast media-increased pulmonary vascular permeability in rats. Invest Radiol. 2000, 35 (8): 472-478. 10.1097/00004424-200008000-00003.CrossRefPubMed
25.
go back to reference Schubert W, Frank PG, Woodman SE, Hyogo H, Cohen DE, Chow CW, Lisanti MP: Microvascular hyperpermeability in caveolin-1 (-/-) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem. 2002, 277 (42): 40091-40098. 10.1074/jbc.M205948200.CrossRefPubMed Schubert W, Frank PG, Woodman SE, Hyogo H, Cohen DE, Chow CW, Lisanti MP: Microvascular hyperpermeability in caveolin-1 (-/-) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem. 2002, 277 (42): 40091-40098. 10.1074/jbc.M205948200.CrossRefPubMed
26.
go back to reference Dixon JB, Raghunathan S, Swartz MA: A tissue-engineered model of the intestinal lacteal for evaluating lipid transport by lymphatics. Biotechnol Bioeng. 2009, 103 (6): 1224-1235. 10.1002/bit.22337.PubMedCentralCrossRefPubMed Dixon JB, Raghunathan S, Swartz MA: A tissue-engineered model of the intestinal lacteal for evaluating lipid transport by lymphatics. Biotechnol Bioeng. 2009, 103 (6): 1224-1235. 10.1002/bit.22337.PubMedCentralCrossRefPubMed
27.
go back to reference Holland WL, Bikman BT, Wang LP, Yuguang G, Sargent KM, Bulchand S, Knotts TA, Shui G, Clegg DJ, Wenk MR, Pagliassotti MJ, Scherer PE, Summers SA: Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest. 2011, 121 (5): 1858-1870. 10.1172/JCI43378.PubMedCentralCrossRefPubMed Holland WL, Bikman BT, Wang LP, Yuguang G, Sargent KM, Bulchand S, Knotts TA, Shui G, Clegg DJ, Wenk MR, Pagliassotti MJ, Scherer PE, Summers SA: Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest. 2011, 121 (5): 1858-1870. 10.1172/JCI43378.PubMedCentralCrossRefPubMed
28.
go back to reference Shetty S, Kusminski CM, Scherer PE: Adiponectin in health and disease: evaluation of adiponectin-targeted drug development strategies. Trends Pharmacol Sci. 2009, 30 (5): 234-239. 10.1016/j.tips.2009.02.004.CrossRefPubMed Shetty S, Kusminski CM, Scherer PE: Adiponectin in health and disease: evaluation of adiponectin-targeted drug development strategies. Trends Pharmacol Sci. 2009, 30 (5): 234-239. 10.1016/j.tips.2009.02.004.CrossRefPubMed
29.
go back to reference Dobrian AD: The complex role of PPARgamma in renal dysfunction in obesity: managing a Janus-faced receptor. Vascul Pharmacol. 2006, 45 (1): 36-45. 10.1016/j.vph.2006.01.017.CrossRefPubMed Dobrian AD: The complex role of PPARgamma in renal dysfunction in obesity: managing a Janus-faced receptor. Vascul Pharmacol. 2006, 45 (1): 36-45. 10.1016/j.vph.2006.01.017.CrossRefPubMed
30.
go back to reference Tang WH, Maroo A: PPARgamma agonists: safety issues in heart failure. Diabetes Obes Metab. 2007, 9 (4): 447-454. 10.1111/j.1463-1326.2006.00616.x.CrossRefPubMed Tang WH, Maroo A: PPARgamma agonists: safety issues in heart failure. Diabetes Obes Metab. 2007, 9 (4): 447-454. 10.1111/j.1463-1326.2006.00616.x.CrossRefPubMed
31.
go back to reference Liu Y, Sweeney G: Adiponectin action in skeletal muscle. Best Pract Res Clin Endocrinol Metab. 2014, 28 (1): 33-41. 10.1016/j.beem.2013.08.003.CrossRefPubMed Liu Y, Sweeney G: Adiponectin action in skeletal muscle. Best Pract Res Clin Endocrinol Metab. 2014, 28 (1): 33-41. 10.1016/j.beem.2013.08.003.CrossRefPubMed
32.
go back to reference Kolka CM, Bergman RN: The endothelium in diabetes: its role in insulin access and diabetic complications. Rev Endocr Metab Disord. 2013, 14 (1): 13-19. 10.1007/s11154-012-9233-5.PubMedCentralCrossRefPubMed Kolka CM, Bergman RN: The endothelium in diabetes: its role in insulin access and diabetic complications. Rev Endocr Metab Disord. 2013, 14 (1): 13-19. 10.1007/s11154-012-9233-5.PubMedCentralCrossRefPubMed
33.
go back to reference Hagberg CE, Mehlem A, Falkevall A, Muhl L, Fam BC, Ortsater H, Scotney P, Nyqvist D, Samen E, Lu L, Stone-Elander S, Proietto J, Andrikopoulos S, Sjoholm A, Nash A, Eriksson U: Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes. Nature. 2012, 490 (7420): 426-430. 10.1038/nature11464.CrossRefPubMed Hagberg CE, Mehlem A, Falkevall A, Muhl L, Fam BC, Ortsater H, Scotney P, Nyqvist D, Samen E, Lu L, Stone-Elander S, Proietto J, Andrikopoulos S, Sjoholm A, Nash A, Eriksson U: Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes. Nature. 2012, 490 (7420): 426-430. 10.1038/nature11464.CrossRefPubMed
34.
go back to reference Miller NE, Michel CC, Nanjee MN, Olszewski WL, Miller IP, Hazell M, Olivecrona G, Sutton P, Humphreys SM, Frayn KN: Secretion of adipokines by human adipose tissue in vivo: partitioning between capillary and lymphatic transport. Am J Physiol Endocrinol Metab. 2011, 301 (4): E659-E667. 10.1152/ajpendo.00058.2011.CrossRefPubMed Miller NE, Michel CC, Nanjee MN, Olszewski WL, Miller IP, Hazell M, Olivecrona G, Sutton P, Humphreys SM, Frayn KN: Secretion of adipokines by human adipose tissue in vivo: partitioning between capillary and lymphatic transport. Am J Physiol Endocrinol Metab. 2011, 301 (4): E659-E667. 10.1152/ajpendo.00058.2011.CrossRefPubMed
35.
go back to reference Plant S, Shand B, Elder P, Scott R: Adiponectin attenuates endothelial dysfunction induced by oxidised low-density lipoproteins. Diab Vasc Dis Res. 2008, 5 (2): 102-108. 10.3132/dvdr.2008.017.CrossRefPubMed Plant S, Shand B, Elder P, Scott R: Adiponectin attenuates endothelial dysfunction induced by oxidised low-density lipoproteins. Diab Vasc Dis Res. 2008, 5 (2): 102-108. 10.3132/dvdr.2008.017.CrossRefPubMed
36.
go back to reference Lee JF, Zeng Q, Ozaki H, Wang L, Hand AR, Hla T, Wang E, Lee MJ: Dual roles of tight junction-associated protein, zonula occludens-1, in sphingosine 1-phosphate-mediated endothelial chemotaxis and barrier integrity. J Biol Chem. 2006, 281 (39): 29190-29200. 10.1074/jbc.M604310200.CrossRefPubMed Lee JF, Zeng Q, Ozaki H, Wang L, Hand AR, Hla T, Wang E, Lee MJ: Dual roles of tight junction-associated protein, zonula occludens-1, in sphingosine 1-phosphate-mediated endothelial chemotaxis and barrier integrity. J Biol Chem. 2006, 281 (39): 29190-29200. 10.1074/jbc.M604310200.CrossRefPubMed
37.
go back to reference Zhang QJ, Holland WL, Wilson L, Tanner JM, Kearns D, Cahoon JM, Pettey D, Losee J, Duncan B, Gale D, Kowalski CA, Deeter N, Nichols A, Deesing M, Arrant C, Ruan T, Boehme C, McCamey DR, Rou J, Ambal K, Narra KK, Summers SA, Abel ED, Symons JD: Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex. Diabetes. 2012, 61 (7): 1848-1859. 10.2337/db11-1399.PubMedCentralCrossRefPubMed Zhang QJ, Holland WL, Wilson L, Tanner JM, Kearns D, Cahoon JM, Pettey D, Losee J, Duncan B, Gale D, Kowalski CA, Deeter N, Nichols A, Deesing M, Arrant C, Ruan T, Boehme C, McCamey DR, Rou J, Ambal K, Narra KK, Summers SA, Abel ED, Symons JD: Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex. Diabetes. 2012, 61 (7): 1848-1859. 10.2337/db11-1399.PubMedCentralCrossRefPubMed
38.
go back to reference Krause M, Rodrigues-Krause J, O'Hagan C, De Vito G, Boreham C, Susta D, Newsholme P, Murphy C: Differential Nitric Oxide levels in the blood and skeletal muscle of Type 2 diabetic subjects may be consequence of adiposity: a preliminary study. Metabolism. 2012, 61 (11): 1528-1537. 10.1016/j.metabol.2012.05.003.CrossRefPubMed Krause M, Rodrigues-Krause J, O'Hagan C, De Vito G, Boreham C, Susta D, Newsholme P, Murphy C: Differential Nitric Oxide levels in the blood and skeletal muscle of Type 2 diabetic subjects may be consequence of adiposity: a preliminary study. Metabolism. 2012, 61 (11): 1528-1537. 10.1016/j.metabol.2012.05.003.CrossRefPubMed
39.
go back to reference Yamauchi T, Kadowaki T: Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases. Int J Obes (Lond). 2008, 32 (Suppl 7): S13-S18.CrossRef Yamauchi T, Kadowaki T: Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases. Int J Obes (Lond). 2008, 32 (Suppl 7): S13-S18.CrossRef
40.
go back to reference Klein I, Sanchez-Alavez M, Tabarean I, Schaefer J, Holmberg KH, Klaus J, Xia F, Marcondes MC, Dubins JS, Morrison B, Zhukov V, Sanchez-Gonzalez A, Mitsukawa K, Hadcock JR, Bartfai T, Conti B: AdipoR1 and 2 are expressed on warm sensitive neurons of the hypothalamic preoptic area and contribute to central hyperthermic effects of adiponectin. Brain Res. 2011, 1423: 1-9.PubMedCentralCrossRefPubMed Klein I, Sanchez-Alavez M, Tabarean I, Schaefer J, Holmberg KH, Klaus J, Xia F, Marcondes MC, Dubins JS, Morrison B, Zhukov V, Sanchez-Gonzalez A, Mitsukawa K, Hadcock JR, Bartfai T, Conti B: AdipoR1 and 2 are expressed on warm sensitive neurons of the hypothalamic preoptic area and contribute to central hyperthermic effects of adiponectin. Brain Res. 2011, 1423: 1-9.PubMedCentralCrossRefPubMed
41.
go back to reference Park S, Kim DS, Kwon DY, Yang HJ: Long-term central infusion of adiponectin improves energy and glucose homeostasis by decreasing fat storage and suppressing hepatic gluconeogenesis without changing food intake. J Neuroendocrinol. 2011, 23 (8): 687-698. 10.1111/j.1365-2826.2011.02165.x.CrossRefPubMed Park S, Kim DS, Kwon DY, Yang HJ: Long-term central infusion of adiponectin improves energy and glucose homeostasis by decreasing fat storage and suppressing hepatic gluconeogenesis without changing food intake. J Neuroendocrinol. 2011, 23 (8): 687-698. 10.1111/j.1365-2826.2011.02165.x.CrossRefPubMed
42.
go back to reference Stark R, Ashley SE, Andrews ZB: AMPK and the neuroendocrine regulation of appetite and energy expenditure. Mol Cell Endocrinol. 2013, 366 (2): 215-223. 10.1016/j.mce.2012.06.012.CrossRefPubMed Stark R, Ashley SE, Andrews ZB: AMPK and the neuroendocrine regulation of appetite and energy expenditure. Mol Cell Endocrinol. 2013, 366 (2): 215-223. 10.1016/j.mce.2012.06.012.CrossRefPubMed
44.
go back to reference Thundyil J, Pavlovski D, Sobey CG, Arumugam TV: Adiponectin receptor signalling in the brain. Br J Pharmacol. 2012, 165 (2): 313-327. 10.1111/j.1476-5381.2011.01560.x.PubMedCentralCrossRefPubMed Thundyil J, Pavlovski D, Sobey CG, Arumugam TV: Adiponectin receptor signalling in the brain. Br J Pharmacol. 2012, 165 (2): 313-327. 10.1111/j.1476-5381.2011.01560.x.PubMedCentralCrossRefPubMed
45.
go back to reference Kusminski CM, McTernan PG, Schraw T, Kos K, O'Hare JP, Ahima R, Kumar S, Scherer PE: Adiponectin complexes in human cerebrospinal fluid: distinct complex distribution from serum. Diabetologia. 2007, 50 (3): 634-642. 10.1007/s00125-006-0577-9.CrossRefPubMed Kusminski CM, McTernan PG, Schraw T, Kos K, O'Hare JP, Ahima R, Kumar S, Scherer PE: Adiponectin complexes in human cerebrospinal fluid: distinct complex distribution from serum. Diabetologia. 2007, 50 (3): 634-642. 10.1007/s00125-006-0577-9.CrossRefPubMed
46.
go back to reference Bouskila M, Pajvani UB, Scherer PE: Adiponectin: a relevant player in PPARgamma-agonist-mediated improvements in hepatic insulin sensitivity?. Int J Obes (Lond). 2005, 29 (Suppl 1): S17-S23.CrossRef Bouskila M, Pajvani UB, Scherer PE: Adiponectin: a relevant player in PPARgamma-agonist-mediated improvements in hepatic insulin sensitivity?. Int J Obes (Lond). 2005, 29 (Suppl 1): S17-S23.CrossRef
47.
go back to reference Mansuy-Aubert V, Zhou QL, Xie X, Gong Z, Huang JY, Khan AR, Aubert G, Candelaria K, Thomas S, Shin DJ, Booth S, Baig SM, Bilal A, Hwang D, Zhang H, Lovell-Badge R, Smith SR, Awan FR, Jiang ZY: Imbalance between neutrophil elastase and its inhibitor alpha1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure. Cell Metab. 2013, 17 (4): 534-548. 10.1016/j.cmet.2013.03.005.PubMedCentralCrossRefPubMed Mansuy-Aubert V, Zhou QL, Xie X, Gong Z, Huang JY, Khan AR, Aubert G, Candelaria K, Thomas S, Shin DJ, Booth S, Baig SM, Bilal A, Hwang D, Zhang H, Lovell-Badge R, Smith SR, Awan FR, Jiang ZY: Imbalance between neutrophil elastase and its inhibitor alpha1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure. Cell Metab. 2013, 17 (4): 534-548. 10.1016/j.cmet.2013.03.005.PubMedCentralCrossRefPubMed
48.
go back to reference Vu V, Bui P, Eguchi M, Xu A, Sweeney G: Globular adiponectin induces LKB1/AMPK-dependent glucose uptake via actin cytoskeleton remodeling. J Mol Endocrinol. 2013, 51 (1): 155-165. 10.1530/JME-13-0059.CrossRefPubMed Vu V, Bui P, Eguchi M, Xu A, Sweeney G: Globular adiponectin induces LKB1/AMPK-dependent glucose uptake via actin cytoskeleton remodeling. J Mol Endocrinol. 2013, 51 (1): 155-165. 10.1530/JME-13-0059.CrossRefPubMed
49.
go back to reference Zhao L, Chai W, Fu Z, Dong Z, Aylor KW, Barrett EJ, Cao W, Liu Z: Globular adiponectin enhances muscle insulin action via microvascular recruitment and increased insulin delivery. Circ Res. 2013, 112 (9): 1263-1271. 10.1161/CIRCRESAHA.111.300388.PubMedCentralCrossRefPubMed Zhao L, Chai W, Fu Z, Dong Z, Aylor KW, Barrett EJ, Cao W, Liu Z: Globular adiponectin enhances muscle insulin action via microvascular recruitment and increased insulin delivery. Circ Res. 2013, 112 (9): 1263-1271. 10.1161/CIRCRESAHA.111.300388.PubMedCentralCrossRefPubMed
50.
go back to reference Goto M, Goto A, Morita A, Deura K, Sasaki S, Aiba N, Shimbo T, Terauchi Y, Miyachi M, Noda M, Watanabe S, Saku Cohort Study G: Low-molecular-weight adiponectin and high-molecular-weight adiponectin levels in relation to diabetes. Obesity (Silver Spring). 2013, 22 (2): 401-407.CrossRef Goto M, Goto A, Morita A, Deura K, Sasaki S, Aiba N, Shimbo T, Terauchi Y, Miyachi M, Noda M, Watanabe S, Saku Cohort Study G: Low-molecular-weight adiponectin and high-molecular-weight adiponectin levels in relation to diabetes. Obesity (Silver Spring). 2013, 22 (2): 401-407.CrossRef
51.
go back to reference Sulistyoningrum DC, Gasevic D, Lear SA, Ho J, Mente A, Devlin AM: Total and high molecular weight adiponectin and ethnic-specific differences in adiposity and insulin resistance: a cross-sectional study. Cardiovasc Diabetol. 2013, 12: 170-10.1186/1475-2840-12-170.PubMedCentralCrossRefPubMed Sulistyoningrum DC, Gasevic D, Lear SA, Ho J, Mente A, Devlin AM: Total and high molecular weight adiponectin and ethnic-specific differences in adiposity and insulin resistance: a cross-sectional study. Cardiovasc Diabetol. 2013, 12: 170-10.1186/1475-2840-12-170.PubMedCentralCrossRefPubMed
52.
go back to reference Karaca U, Schram MT, Houben AJ, Muris DM, Stehouwer CD: Microvascular dysfunction as a link between obesity, insulin resistance and hypertension. Diabetes Res Clin Pract. 2013, S0168-8227 (13): 00445-2. Karaca U, Schram MT, Houben AJ, Muris DM, Stehouwer CD: Microvascular dysfunction as a link between obesity, insulin resistance and hypertension. Diabetes Res Clin Pract. 2013, S0168-8227 (13): 00445-2.
Metadata
Title
Differential transendothelial transport of adiponectin complexes
Authors
Joseph M Rutkowski
Nils Halberg
Qiong A Wang
William L Holland
Jonathan Y Xia
Philipp E Scherer
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2014
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/1475-2840-13-47

Other articles of this Issue 1/2014

Cardiovascular Diabetology 1/2014 Go to the issue