Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2014

Open Access 01-12-2014 | Review

Optimising cardioprotection during myocardial ischaemia: targeting potential intracellular pathways with glucagon-like peptide-1

Authors: Sophie J Clarke, Liam M McCormick, David P Dutka

Published in: Cardiovascular Diabetology | Issue 1/2014

Login to get access

Abstract

Coronary heart disease and type-2 diabetes are both major global health burdens associated with an increased risk of myocardial infarction (MI). Following MI, ischaemia-reperfusion injury (IRI) remains a significant contributor to myocardial injury at the cellular level. Research has focussed on identifying a strategy or intervention to minimise IRI to optimise reperfusion therapy, with the aim of delivering a superior clinical outcome. The incretin hormone glucagon-like peptide-1, already an established basis for the treatment of type-2 diabetes, also has the potential to protect against IRI. We explain the physiology and cellular processes involved in IRI, and the intracellular pathways activated by GLP-1, which could intercept IRI and deliver cardioprotection. The review also examines the current preclinical and clinical evidence for GLP-1 in cardioprotection and future directions for research as we look for an effective adjunctive treatment to minimise IRI.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nagendran J, Oudit GY, Bakal JA, Light PE, Dyck JR, McAlister FA: Are users of sulfonylureas at the time of an acute coronary syndrome at risk of poorer outcomes?. Diabetes Obes Metab. 2013, 15: 1022-1028. 10.1111/dom.12126.CrossRefPubMed Nagendran J, Oudit GY, Bakal JA, Light PE, Dyck JR, McAlister FA: Are users of sulfonylureas at the time of an acute coronary syndrome at risk of poorer outcomes?. Diabetes Obes Metab. 2013, 15: 1022-1028. 10.1111/dom.12126.CrossRefPubMed
2.
go back to reference Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M: Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998, 339: 229-234. 10.1056/NEJM199807233390404.CrossRefPubMed Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M: Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998, 339: 229-234. 10.1056/NEJM199807233390404.CrossRefPubMed
3.
go back to reference Frohlich GM, Meier P, White SK, Yellon DM, Hausenloy DJ: Myocardial reperfusion injury: looking beyond primary PCI. Eur Heart J. 2013, 32 (23): 1714-1722.CrossRef Frohlich GM, Meier P, White SK, Yellon DM, Hausenloy DJ: Myocardial reperfusion injury: looking beyond primary PCI. Eur Heart J. 2013, 32 (23): 1714-1722.CrossRef
4.
go back to reference Hausenloy DJ, Botker HE, Condorelli G, Ferdinandy P, Garcia-Dorado D, Heusch G, Lecour S, van Laake LW, Madonna R, Ruiz-Meana M, et al: Translating cardioprotection for patient benefit: position paper from the working group of cellular biology of the heart of the european society of cardiology. Cardiovasc Res. 2013, 98 (1): 7-27. 10.1093/cvr/cvt004.CrossRefPubMed Hausenloy DJ, Botker HE, Condorelli G, Ferdinandy P, Garcia-Dorado D, Heusch G, Lecour S, van Laake LW, Madonna R, Ruiz-Meana M, et al: Translating cardioprotection for patient benefit: position paper from the working group of cellular biology of the heart of the european society of cardiology. Cardiovasc Res. 2013, 98 (1): 7-27. 10.1093/cvr/cvt004.CrossRefPubMed
5.
6.
go back to reference Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J: Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003, 285: H579-H588.CrossRefPubMed Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J: Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003, 285: H579-H588.CrossRefPubMed
7.
go back to reference Taegtmeyer H, King LM, Jones BE: Energy substrate metabolism, myocardial ischemia, and targets for pharmacotherapy. Am J Cardiol. 1998, 82: 54K-60K. 10.1016/S0002-9149(98)00538-4.CrossRefPubMed Taegtmeyer H, King LM, Jones BE: Energy substrate metabolism, myocardial ischemia, and targets for pharmacotherapy. Am J Cardiol. 1998, 82: 54K-60K. 10.1016/S0002-9149(98)00538-4.CrossRefPubMed
8.
go back to reference Page E, McCallister LP: Quantitative electron microscopic description of heart muscle cells. Application to normal, hypertrophied and thyroxin-stimulated hearts. Am J Cardiol. 1973, 31: 172-181. 10.1016/0002-9149(73)91030-8.CrossRefPubMed Page E, McCallister LP: Quantitative electron microscopic description of heart muscle cells. Application to normal, hypertrophied and thyroxin-stimulated hearts. Am J Cardiol. 1973, 31: 172-181. 10.1016/0002-9149(73)91030-8.CrossRefPubMed
9.
go back to reference Depre C, Vanoverschelde JLJ, Taegtmeyer H: Glucose for the heart. Circulation. 1999, 99: 578-588. 10.1161/01.CIR.99.4.578.CrossRefPubMed Depre C, Vanoverschelde JLJ, Taegtmeyer H: Glucose for the heart. Circulation. 1999, 99: 578-588. 10.1161/01.CIR.99.4.578.CrossRefPubMed
10.
go back to reference Zaninetti D, Greco-Perotto R, Jeanrenaud B: Heart glucose transport and transporters in rat heart: regulation by insulin, workload and glucose. Diabetologia. 1988, 31: 108-113. 10.1007/BF00395557.CrossRefPubMed Zaninetti D, Greco-Perotto R, Jeanrenaud B: Heart glucose transport and transporters in rat heart: regulation by insulin, workload and glucose. Diabetologia. 1988, 31: 108-113. 10.1007/BF00395557.CrossRefPubMed
11.
go back to reference Ferdinandy P, Schulz R, Baxter GF: Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev. 2007, 59: 418-458. 10.1124/pr.107.06002.CrossRefPubMed Ferdinandy P, Schulz R, Baxter GF: Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev. 2007, 59: 418-458. 10.1124/pr.107.06002.CrossRefPubMed
12.
go back to reference Kloner RA, Nesto RW: Glucose-insulin-potassium for acute myocardial infarction: continuing controversy over cardioprotection. Circulation. 2008, 117: 2523-2533. 10.1161/CIRCULATIONAHA.107.697979.CrossRefPubMed Kloner RA, Nesto RW: Glucose-insulin-potassium for acute myocardial infarction: continuing controversy over cardioprotection. Circulation. 2008, 117: 2523-2533. 10.1161/CIRCULATIONAHA.107.697979.CrossRefPubMed
13.
go back to reference Selker HP, Beshansky JR, Sheehan PR, Massaro JM, Griffith JL, D’Agostino RB, Ruthazer R, Atkins JM, Sayah AJ, Levy MK, et al: Out-of-hospital administration of intravenous glucose-insulin-potassium in patients with suspected acute coronary syndromes: the IMMEDIATE randomized controlled trial. JAMA. 2012, 307: 1925-1933. 10.1001/jama.2012.426.PubMedCentralCrossRefPubMed Selker HP, Beshansky JR, Sheehan PR, Massaro JM, Griffith JL, D’Agostino RB, Ruthazer R, Atkins JM, Sayah AJ, Levy MK, et al: Out-of-hospital administration of intravenous glucose-insulin-potassium in patients with suspected acute coronary syndromes: the IMMEDIATE randomized controlled trial. JAMA. 2012, 307: 1925-1933. 10.1001/jama.2012.426.PubMedCentralCrossRefPubMed
14.
go back to reference Murry CE, Jennings RB, Reimer KA: Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986, 74: 1124-1136. 10.1161/01.CIR.74.5.1124.CrossRefPubMed Murry CE, Jennings RB, Reimer KA: Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986, 74: 1124-1136. 10.1161/01.CIR.74.5.1124.CrossRefPubMed
15.
go back to reference Reimer KA, Murry CE, Yamasawa I, Hill ML, Jennings RB: Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis. Am J Physiol. 1986, 251: H1306-H1315.PubMed Reimer KA, Murry CE, Yamasawa I, Hill ML, Jennings RB: Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis. Am J Physiol. 1986, 251: H1306-H1315.PubMed
16.
go back to reference Davies WR, Brown AJ, Watson W, McCormick LM, West NE, Dutka DP, Hoole SP: Remote ischemic preconditioning improves outcome at 6 years after elective percutaneous coronary intervention: the CRISP stent trial long-term follow-up. Circ Cardiovasc Interv. 2013, 6: 246-251. 10.1161/CIRCINTERVENTIONS.112.000184.CrossRefPubMed Davies WR, Brown AJ, Watson W, McCormick LM, West NE, Dutka DP, Hoole SP: Remote ischemic preconditioning improves outcome at 6 years after elective percutaneous coronary intervention: the CRISP stent trial long-term follow-up. Circ Cardiovasc Interv. 2013, 6: 246-251. 10.1161/CIRCINTERVENTIONS.112.000184.CrossRefPubMed
17.
go back to reference Hoole SP, Dutka DP: Does remote ischemic conditioning salvage left ventricular function after successful primary PCI?. Expert Rev Cardiovasc Ther. 2011, 9: 563-566. 10.1586/erc.11.30.CrossRefPubMed Hoole SP, Dutka DP: Does remote ischemic conditioning salvage left ventricular function after successful primary PCI?. Expert Rev Cardiovasc Ther. 2011, 9: 563-566. 10.1586/erc.11.30.CrossRefPubMed
18.
go back to reference Hausenloy DJ, Yellon DM: Preconditioning and postconditioning: underlying mechanisms and clinical application. Atherosclerosis. 2009, 204: 334-341. 10.1016/j.atherosclerosis.2008.10.029.CrossRefPubMed Hausenloy DJ, Yellon DM: Preconditioning and postconditioning: underlying mechanisms and clinical application. Atherosclerosis. 2009, 204: 334-341. 10.1016/j.atherosclerosis.2008.10.029.CrossRefPubMed
19.
go back to reference Lehrke M, Marx N: Cardiovascular effects of incretin based therapies. Diabet Stud. 2011, 8: 382-391. 10.1900/RDS.2011.8.382.CrossRef Lehrke M, Marx N: Cardiovascular effects of incretin based therapies. Diabet Stud. 2011, 8: 382-391. 10.1900/RDS.2011.8.382.CrossRef
20.
go back to reference Schulman D, Latchman DS, Yellon DM: Urocortin protects the heart from reperfusion injury via upregulation of p42/p44 MAPK signaling pathway. Am J Physiol Heart Circ Physiol. 2002, 283: H1481-H1488.CrossRefPubMed Schulman D, Latchman DS, Yellon DM: Urocortin protects the heart from reperfusion injury via upregulation of p42/p44 MAPK signaling pathway. Am J Physiol Heart Circ Physiol. 2002, 283: H1481-H1488.CrossRefPubMed
21.
go back to reference Hausenloy DJ, Lecour S, Yellon DM: Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid Redox Signal. 2011, 14: 893-907. 10.1089/ars.2010.3360.CrossRefPubMed Hausenloy DJ, Lecour S, Yellon DM: Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid Redox Signal. 2011, 14: 893-907. 10.1089/ars.2010.3360.CrossRefPubMed
22.
go back to reference Hausenloy DJ, Tsang A, Yellon DM: The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med. 2005, 15: 69-75. 10.1016/j.tcm.2005.03.001.CrossRefPubMed Hausenloy DJ, Tsang A, Yellon DM: The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med. 2005, 15: 69-75. 10.1016/j.tcm.2005.03.001.CrossRefPubMed
23.
go back to reference Hausenloy DJ, Yellon DM: Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res. 2006, 70: 240-253. 10.1016/j.cardiores.2006.01.017.CrossRefPubMed Hausenloy DJ, Yellon DM: Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res. 2006, 70: 240-253. 10.1016/j.cardiores.2006.01.017.CrossRefPubMed
24.
go back to reference Hausenloy DJ, Ong SB, Yellon DM: The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Res Cardiol. 2009, 104: 189-202. 10.1007/s00395-009-0010-x.CrossRefPubMed Hausenloy DJ, Ong SB, Yellon DM: The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Res Cardiol. 2009, 104: 189-202. 10.1007/s00395-009-0010-x.CrossRefPubMed
25.
go back to reference Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KH, Halestrap AP: Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol. 2003, 549: 513-524. 10.1113/jphysiol.2003.034231.PubMedCentralCrossRefPubMed Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KH, Halestrap AP: Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol. 2003, 549: 513-524. 10.1113/jphysiol.2003.034231.PubMedCentralCrossRefPubMed
26.
go back to reference Clarke SJ, Khaliulin I, Das M, Parker JE, Heesom KJ, Halestrap AP: Inhibition of mitochondrial permeability transition pore opening by ischemic preconditioning is probably mediated by reduction of oxidative stress rather than mitochondrial protein phosphorylation. Circ Res. 2008, 102: 1082-1090. 10.1161/CIRCRESAHA.107.167072.PubMedCentralCrossRefPubMed Clarke SJ, Khaliulin I, Das M, Parker JE, Heesom KJ, Halestrap AP: Inhibition of mitochondrial permeability transition pore opening by ischemic preconditioning is probably mediated by reduction of oxidative stress rather than mitochondrial protein phosphorylation. Circ Res. 2008, 102: 1082-1090. 10.1161/CIRCRESAHA.107.167072.PubMedCentralCrossRefPubMed
27.
go back to reference Okorie MI, Bhavsar DD, Ridout D, Charakida M, Deanfield JE, Loukogeorgakis SP, MacAllister RJ: Postconditioning protects against human endothelial ischaemia-reperfusion injury via subtype-specific KATP channel activation and is mimicked by inhibition of the mitochondrial permeability transition pore. Eur Heart J. 2011, 32: 1266-1274. 10.1093/eurheartj/ehr041.CrossRefPubMed Okorie MI, Bhavsar DD, Ridout D, Charakida M, Deanfield JE, Loukogeorgakis SP, MacAllister RJ: Postconditioning protects against human endothelial ischaemia-reperfusion injury via subtype-specific KATP channel activation and is mimicked by inhibition of the mitochondrial permeability transition pore. Eur Heart J. 2011, 32: 1266-1274. 10.1093/eurheartj/ehr041.CrossRefPubMed
28.
go back to reference Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM: Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005, 54: 146-151. 10.2337/diabetes.54.1.146.CrossRefPubMed Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM: Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005, 54: 146-151. 10.2337/diabetes.54.1.146.CrossRefPubMed
29.
go back to reference Halestrap AP: Mitochondria and reperfusion injury of the heart–a holey death but not beyond salvation. J Bioenerg Biomembr. 2009, 41: 113-121. 10.1007/s10863-009-9206-x.CrossRefPubMed Halestrap AP: Mitochondria and reperfusion injury of the heart–a holey death but not beyond salvation. J Bioenerg Biomembr. 2009, 41: 113-121. 10.1007/s10863-009-9206-x.CrossRefPubMed
30.
go back to reference Heusch G, Boengler K, Schulz R: Inhibition of mitochondrial permeability transition pore opening: the holy grail of cardioprotection. Basic Res Cardiol. 2010, 105: 151-154. 10.1007/s00395-009-0080-9.CrossRefPubMed Heusch G, Boengler K, Schulz R: Inhibition of mitochondrial permeability transition pore opening: the holy grail of cardioprotection. Basic Res Cardiol. 2010, 105: 151-154. 10.1007/s00395-009-0080-9.CrossRefPubMed
31.
go back to reference Bernardi P, Broekemeier KM, Pfeiffer DR: Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J Bioenerg Biomembr. 1994, 26: 509-517. 10.1007/BF00762735.CrossRefPubMed Bernardi P, Broekemeier KM, Pfeiffer DR: Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J Bioenerg Biomembr. 1994, 26: 509-517. 10.1007/BF00762735.CrossRefPubMed
32.
go back to reference Halestrap AP: Calcium-dependent opening of a non-specific pore in the mitochondrial inner membrane is inhibited at pH values below 7. Implications for the protective effect of low pH against chemical and hypoxic cell damage. Biochem J. 1991, 278: 715-719.PubMedCentralCrossRefPubMed Halestrap AP: Calcium-dependent opening of a non-specific pore in the mitochondrial inner membrane is inhibited at pH values below 7. Implications for the protective effect of low pH against chemical and hypoxic cell damage. Biochem J. 1991, 278: 715-719.PubMedCentralCrossRefPubMed
33.
go back to reference Griffiths EJ, Halestrap AP: Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J. 1995, 307 (Pt 1): 93-98.PubMedCentralCrossRefPubMed Griffiths EJ, Halestrap AP: Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J. 1995, 307 (Pt 1): 93-98.PubMedCentralCrossRefPubMed
34.
go back to reference Halestrap AP: The mitochondrial permeability transition: its molecular mechanism and role in reperfusion injury. Biochem Soc Symp. 1999, 66: 181-203.CrossRefPubMed Halestrap AP: The mitochondrial permeability transition: its molecular mechanism and role in reperfusion injury. Biochem Soc Symp. 1999, 66: 181-203.CrossRefPubMed
35.
go back to reference Hausenloy D, Duchen MR, Yellon DM: Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia–reperfusion injury. Cardiovasc Res. 2003, 60: 617-625. 10.1016/j.cardiores.2003.09.025.CrossRefPubMed Hausenloy D, Duchen MR, Yellon DM: Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia–reperfusion injury. Cardiovasc Res. 2003, 60: 617-625. 10.1016/j.cardiores.2003.09.025.CrossRefPubMed
36.
go back to reference Argaud L, Gateau-Roesch O, Muntean D, Chalabreysse L, Loufouat J, Robert D, Ovize M: Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J Mol Cell Cardiol. 2005, 38: 367-374. 10.1016/j.yjmcc.2004.12.001.CrossRefPubMed Argaud L, Gateau-Roesch O, Muntean D, Chalabreysse L, Loufouat J, Robert D, Ovize M: Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J Mol Cell Cardiol. 2005, 38: 367-374. 10.1016/j.yjmcc.2004.12.001.CrossRefPubMed
37.
go back to reference Hausenloy DJ, Yellon DM, Mani-Babu S, Duchen MR: Preconditioning protects by inhibiting the mitochondrial permeability transition. Am J Physiol Heart Circ Physiol. 2004, 287: H841-H849. 10.1152/ajpheart.00678.2003.CrossRefPubMed Hausenloy DJ, Yellon DM, Mani-Babu S, Duchen MR: Preconditioning protects by inhibiting the mitochondrial permeability transition. Am J Physiol Heart Circ Physiol. 2004, 287: H841-H849. 10.1152/ajpheart.00678.2003.CrossRefPubMed
38.
go back to reference Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L’Huillier I, Aupetit JF, Bonnefoy E, Finet G, Andre-Fouet X, Ovize M: Postconditioning the human heart. Circulation. 2005, 112: 2143-2148. 10.1161/CIRCULATIONAHA.105.558122.CrossRefPubMed Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L’Huillier I, Aupetit JF, Bonnefoy E, Finet G, Andre-Fouet X, Ovize M: Postconditioning the human heart. Circulation. 2005, 112: 2143-2148. 10.1161/CIRCULATIONAHA.105.558122.CrossRefPubMed
39.
go back to reference Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M: Postconditioning inhibits mitochondrial permeability transition. Circulation. 2005, 111: 194-197. 10.1161/01.CIR.0000151290.04952.3B.CrossRefPubMed Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M: Postconditioning inhibits mitochondrial permeability transition. Circulation. 2005, 111: 194-197. 10.1161/01.CIR.0000151290.04952.3B.CrossRefPubMed
40.
go back to reference Halestrap AP: A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans. 2010, 38: 841-860. 10.1042/BST0380841.CrossRefPubMed Halestrap AP: A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans. 2010, 38: 841-860. 10.1042/BST0380841.CrossRefPubMed
41.
go back to reference Waldmeier PC, Feldtrauer JJ, Qian T, Lemasters JJ: Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811. Mol Pharmacol. 2002, 62: 22-29. 10.1124/mol.62.1.22.CrossRefPubMed Waldmeier PC, Feldtrauer JJ, Qian T, Lemasters JJ: Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811. Mol Pharmacol. 2002, 62: 22-29. 10.1124/mol.62.1.22.CrossRefPubMed
43.
go back to reference Piot C, Croisille P, Staat P, Thibault H, Riofoul G, Mewton N, Elbelghiti R, Cung TT, Bonnefoy E, Angoulvant D, et al: Effect of cyclosporine on reperfusion injury in acute myocardial infarction.pdf. NEJM. 2008, 359: 473-481. 10.1056/NEJMoa071142.CrossRefPubMed Piot C, Croisille P, Staat P, Thibault H, Riofoul G, Mewton N, Elbelghiti R, Cung TT, Bonnefoy E, Angoulvant D, et al: Effect of cyclosporine on reperfusion injury in acute myocardial infarction.pdf. NEJM. 2008, 359: 473-481. 10.1056/NEJMoa071142.CrossRefPubMed
44.
46.
go back to reference Plamboeck A, Holst JJ, Carr RD, Deacon CF: Neutral endopeptidase 24.11 and dipeptidyl peptidase IV are both mediators of the degradation of glucagon-like peptide 1 in the anaesthetised pig. Diabetologia. 2005, 48: 1882-1890. 10.1007/s00125-005-1847-7.CrossRefPubMed Plamboeck A, Holst JJ, Carr RD, Deacon CF: Neutral endopeptidase 24.11 and dipeptidyl peptidase IV are both mediators of the degradation of glucagon-like peptide 1 in the anaesthetised pig. Diabetologia. 2005, 48: 1882-1890. 10.1007/s00125-005-1847-7.CrossRefPubMed
47.
go back to reference Tomas E, Habener JF: Insulin-like actions of glucagon-like peptide-1: a dual receptor hypothesis. Trends Endocrinol Metab. 2010, 21: 59-67. 10.1016/j.tem.2009.11.007.CrossRefPubMed Tomas E, Habener JF: Insulin-like actions of glucagon-like peptide-1: a dual receptor hypothesis. Trends Endocrinol Metab. 2010, 21: 59-67. 10.1016/j.tem.2009.11.007.CrossRefPubMed
48.
go back to reference Mundil D, Beca S, Cameron-Vendrig A, El-Mounayri O, Momen A, Backx PH, Husain M: Abstract 13657: GLP-1 (28–36) exerts direct cardioprotective effects, activating Pro-survival kinases and soluble adenylyl cyclase. Circulation. 2012, 126: A13657 Mundil D, Beca S, Cameron-Vendrig A, El-Mounayri O, Momen A, Backx PH, Husain M: Abstract 13657: GLP-1 (28–36) exerts direct cardioprotective effects, activating Pro-survival kinases and soluble adenylyl cyclase. Circulation. 2012, 126: A13657
49.
go back to reference Hoole SP, White PA, Read PA, Heck PM, West NE, O’Sullivan M, Dutka DP: Coronary collaterals provide a constant scaffold effect on the left ventricle and limit ischemic left ventricular dysfunction in humans. J Appl Physiol (1985). 2012, 112: 1403-1409. 10.1152/japplphysiol.01304.2011.CrossRef Hoole SP, White PA, Read PA, Heck PM, West NE, O’Sullivan M, Dutka DP: Coronary collaterals provide a constant scaffold effect on the left ventricle and limit ischemic left ventricular dysfunction in humans. J Appl Physiol (1985). 2012, 112: 1403-1409. 10.1152/japplphysiol.01304.2011.CrossRef
50.
go back to reference Nikolaidis LA, Elahi D, Hentosz T, Doverspike A, Huerbin R, Zourelias L, Stolarski C, Shen YT, Shannon RP: Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 2004, 110: 955-961. 10.1161/01.CIR.0000139339.85840.DD.CrossRefPubMed Nikolaidis LA, Elahi D, Hentosz T, Doverspike A, Huerbin R, Zourelias L, Stolarski C, Shen YT, Shannon RP: Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 2004, 110: 955-961. 10.1161/01.CIR.0000139339.85840.DD.CrossRefPubMed
51.
go back to reference Ravassa S, Zudaire A, Carr RD, Diez J: Antiapoptotic effects of GLP-1 in murine HL-1 cardiomyocytes. Am J Physiol Heart Circ Physiol. 2011, 300: H1361-H1372. 10.1152/ajpheart.00885.2010.CrossRefPubMed Ravassa S, Zudaire A, Carr RD, Diez J: Antiapoptotic effects of GLP-1 in murine HL-1 cardiomyocytes. Am J Physiol Heart Circ Physiol. 2011, 300: H1361-H1372. 10.1152/ajpheart.00885.2010.CrossRefPubMed
52.
go back to reference Holst JJ: The physiology of glucagon-like peptide 1. Physiol Rev. 2007, 87: 1409-1439. 10.1152/physrev.00034.2006.CrossRefPubMed Holst JJ: The physiology of glucagon-like peptide 1. Physiol Rev. 2007, 87: 1409-1439. 10.1152/physrev.00034.2006.CrossRefPubMed
53.
go back to reference Roed SN, Wismann P, Underwood CR, Kulahin N, Iversen H, Cappelen KA, Schaffer L, Lehtonen J, Hecksher-Soerensen J, Secher A, et al: Real-time trafficking and signaling of the glucagon-like peptide-1 receptor. Mol Cell Endocrinol. 2013, 382 (2): 938-949.CrossRefPubMed Roed SN, Wismann P, Underwood CR, Kulahin N, Iversen H, Cappelen KA, Schaffer L, Lehtonen J, Hecksher-Soerensen J, Secher A, et al: Real-time trafficking and signaling of the glucagon-like peptide-1 receptor. Mol Cell Endocrinol. 2013, 382 (2): 938-949.CrossRefPubMed
54.
go back to reference Vila Petroff MG, Egan JM, Wang X, Sollott SJ: Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes. Circ Res. 2001, 89: 445-452. 10.1161/hh1701.095716.CrossRefPubMed Vila Petroff MG, Egan JM, Wang X, Sollott SJ: Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes. Circ Res. 2001, 89: 445-452. 10.1161/hh1701.095716.CrossRefPubMed
55.
go back to reference Ye Y, Keyes KT, Zhang C, Perez-Polo JR, Lin Y, Birnbaum Y: The myocardial infarct size-limiting effect of sitagliptin is PKA-dependent, whereas the protective effect of pioglitazone is partially dependent on PKA. Am J Physiol Heart Circ Physiol. 2010, 298: H1454-H1465. 10.1152/ajpheart.00867.2009.CrossRefPubMed Ye Y, Keyes KT, Zhang C, Perez-Polo JR, Lin Y, Birnbaum Y: The myocardial infarct size-limiting effect of sitagliptin is PKA-dependent, whereas the protective effect of pioglitazone is partially dependent on PKA. Am J Physiol Heart Circ Physiol. 2010, 298: H1454-H1465. 10.1152/ajpheart.00867.2009.CrossRefPubMed
56.
go back to reference Kim M, Platt MJ, Shibasaki T, Quaggin SE, Backx PH, Seino S, Simpson JA, Drucker DJ: GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med. 2013, 19: 567-575. 10.1038/nm.3128.CrossRefPubMed Kim M, Platt MJ, Shibasaki T, Quaggin SE, Backx PH, Seino S, Simpson JA, Drucker DJ: GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med. 2013, 19: 567-575. 10.1038/nm.3128.CrossRefPubMed
57.
go back to reference Birnbaum Y, Castillo AC, Qian J, Ling S, Ye H, Perez-Polo JR, Bajaj M, Ye Y: Phosphodiesterase III inhibition increases cAMP levels and augments the infarct size limiting effect of a DPP-4 inhibitor in mice with type-2 diabetes mellitus. Cardiovasc Drugs Ther. 2012, 26: 445-456. 10.1007/s10557-012-6409-x.CrossRefPubMed Birnbaum Y, Castillo AC, Qian J, Ling S, Ye H, Perez-Polo JR, Bajaj M, Ye Y: Phosphodiesterase III inhibition increases cAMP levels and augments the infarct size limiting effect of a DPP-4 inhibitor in mice with type-2 diabetes mellitus. Cardiovasc Drugs Ther. 2012, 26: 445-456. 10.1007/s10557-012-6409-x.CrossRefPubMed
58.
go back to reference Sonne DP, Engstrom T, Treiman M: Protective effects of GLP-1 analogues exendin-4 and GLP-1(9–36) amide against ischemia-reperfusion injury in rat heart. Regul Pept. 2008, 146: 243-249. 10.1016/j.regpep.2007.10.001.CrossRefPubMed Sonne DP, Engstrom T, Treiman M: Protective effects of GLP-1 analogues exendin-4 and GLP-1(9–36) amide against ischemia-reperfusion injury in rat heart. Regul Pept. 2008, 146: 243-249. 10.1016/j.regpep.2007.10.001.CrossRefPubMed
59.
go back to reference Wohlfart P, Linz W, Hubschle T, Linz D, Huber J, Hess S, Crowther D, Werner U, Ruetten H: Cardioprotective effects of lixisenatide in rat myocardial ischemia-reperfusion injury studies. J Transl Med. 2013, 11: 84-10.1186/1479-5876-11-84.PubMedCentralCrossRefPubMed Wohlfart P, Linz W, Hubschle T, Linz D, Huber J, Hess S, Crowther D, Werner U, Ruetten H: Cardioprotective effects of lixisenatide in rat myocardial ischemia-reperfusion injury studies. J Transl Med. 2013, 11: 84-10.1186/1479-5876-11-84.PubMedCentralCrossRefPubMed
60.
go back to reference Hausenloy DJ, Whittington HJ, Wynne AM, Begum SS, Theodorou L, Riksen N, Mocanu MM, Yellon DM: Dipeptidyl peptidase-4 inhibitors and GLP-1 reduce myocardial infarct size in a glucose-dependent manner. Cardiovasc Diabetol. 2013, 12: 154-10.1186/1475-2840-12-154.PubMedCentralCrossRefPubMed Hausenloy DJ, Whittington HJ, Wynne AM, Begum SS, Theodorou L, Riksen N, Mocanu MM, Yellon DM: Dipeptidyl peptidase-4 inhibitors and GLP-1 reduce myocardial infarct size in a glucose-dependent manner. Cardiovasc Diabetol. 2013, 12: 154-10.1186/1475-2840-12-154.PubMedCentralCrossRefPubMed
61.
go back to reference Cai Y, Hu X, Yi B, Zhang T, Wen Z: Glucagon-like peptide-1 receptor agonist protects against hyperglycemia-induced cardiocytes injury by inhibiting high mobility group box 1 expression. Mol Biol Rep. 2012, 39: 10705-10711. 10.1007/s11033-012-1961-9.CrossRefPubMed Cai Y, Hu X, Yi B, Zhang T, Wen Z: Glucagon-like peptide-1 receptor agonist protects against hyperglycemia-induced cardiocytes injury by inhibiting high mobility group box 1 expression. Mol Biol Rep. 2012, 39: 10705-10711. 10.1007/s11033-012-1961-9.CrossRefPubMed
62.
go back to reference Hu G, Zhang Y, Jiang H, Hu X: Exendin-4 attenuates myocardial ischemia and reperfusion injury by inhibiting high mobility group box 1 protein expression. Cardiol J. 2013, 20: 600-604. 10.5603/CJ.2013.0159.CrossRefPubMed Hu G, Zhang Y, Jiang H, Hu X: Exendin-4 attenuates myocardial ischemia and reperfusion injury by inhibiting high mobility group box 1 protein expression. Cardiol J. 2013, 20: 600-604. 10.5603/CJ.2013.0159.CrossRefPubMed
63.
go back to reference Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M: Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008, 117: 2340-2350. 10.1161/CIRCULATIONAHA.107.739938.CrossRefPubMed Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M: Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008, 117: 2340-2350. 10.1161/CIRCULATIONAHA.107.739938.CrossRefPubMed
64.
go back to reference Ban K, Kim KH, Cho CK, Sauve M, Diamandis EP, Backx PH, Drucker DJ, Husain M: Glucagon-like peptide (GLP)-1(9–36)amide-mediated cytoprotection is blocked by exendin(9–39) yet does not require the known GLP-1 receptor. Endocrinology. 2010, 151: 1520-1531. 10.1210/en.2009-1197.CrossRefPubMed Ban K, Kim KH, Cho CK, Sauve M, Diamandis EP, Backx PH, Drucker DJ, Husain M: Glucagon-like peptide (GLP)-1(9–36)amide-mediated cytoprotection is blocked by exendin(9–39) yet does not require the known GLP-1 receptor. Endocrinology. 2010, 151: 1520-1531. 10.1210/en.2009-1197.CrossRefPubMed
65.
go back to reference Pyke C, Knudsen LB: The glucagon-like peptide-1 receptor–or not?. Endocrinology. 2013, 154: 4-8. 10.1210/en.2012-2124.CrossRefPubMed Pyke C, Knudsen LB: The glucagon-like peptide-1 receptor–or not?. Endocrinology. 2013, 154: 4-8. 10.1210/en.2012-2124.CrossRefPubMed
66.
go back to reference Chai W, Dong Z, Wang N, Wang W, Tao L, Cao W, Liu Z: Glucagon-like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxide-dependent mechanism. Diabetes. 2012, 61: 888-896. 10.2337/db11-1073.PubMedCentralCrossRefPubMed Chai W, Dong Z, Wang N, Wang W, Tao L, Cao W, Liu Z: Glucagon-like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxide-dependent mechanism. Diabetes. 2012, 61: 888-896. 10.2337/db11-1073.PubMedCentralCrossRefPubMed
67.
go back to reference Golpon HA, Puechner A, Welte T, Wichert PV, Feddersen CO: Vasorelaxant effect of glucagon-like peptide-(7–36)amide and amylin on the pulmonary circulation of the rat. Regul Pept. 2001, 102: 81-86. 10.1016/S0167-0115(01)00300-7.CrossRefPubMed Golpon HA, Puechner A, Welte T, Wichert PV, Feddersen CO: Vasorelaxant effect of glucagon-like peptide-(7–36)amide and amylin on the pulmonary circulation of the rat. Regul Pept. 2001, 102: 81-86. 10.1016/S0167-0115(01)00300-7.CrossRefPubMed
68.
go back to reference Green BD, Hand KV, Dougan JE, McDonnell BM, Cassidy RS, Grieve DJ: GLP-1 and related peptides cause concentration-dependent relaxation of rat aorta through a pathway involving KATP and cAMP. Arch Biochem Biophys. 2008, 478: 136-142. 10.1016/j.abb.2008.08.001.CrossRefPubMed Green BD, Hand KV, Dougan JE, McDonnell BM, Cassidy RS, Grieve DJ: GLP-1 and related peptides cause concentration-dependent relaxation of rat aorta through a pathway involving KATP and cAMP. Arch Biochem Biophys. 2008, 478: 136-142. 10.1016/j.abb.2008.08.001.CrossRefPubMed
69.
go back to reference Richter G, Feddersen O, Wagner U, Barth P, Goke R, Goke B: GLP-1 stimulates secretion of macromolecules from airways and relaxes pulmonary artery. Am J Physiol. 1993, 265: L374-L381.PubMed Richter G, Feddersen O, Wagner U, Barth P, Goke R, Goke B: GLP-1 stimulates secretion of macromolecules from airways and relaxes pulmonary artery. Am J Physiol. 1993, 265: L374-L381.PubMed
70.
go back to reference Nystrom T, Gonon AT, Sjoholm A, Pernow J: Glucagon-like peptide-1 relaxes rat conduit arteries via an endothelium-independent mechanism. Regul Pept. 2005, 125: 173-177. 10.1016/j.regpep.2004.08.024.CrossRefPubMed Nystrom T, Gonon AT, Sjoholm A, Pernow J: Glucagon-like peptide-1 relaxes rat conduit arteries via an endothelium-independent mechanism. Regul Pept. 2005, 125: 173-177. 10.1016/j.regpep.2004.08.024.CrossRefPubMed
71.
go back to reference Ozyazgan S, Kutluata N, Afsar S, Ozdas SB, Akkan AG: Effect of glucagon-like peptide-1(7–36) and exendin-4 on the vascular reactivity in streptozotocin/nicotinamide-induced diabetic rats. Pharmacology. 2005, 74: 119-126.PubMed Ozyazgan S, Kutluata N, Afsar S, Ozdas SB, Akkan AG: Effect of glucagon-like peptide-1(7–36) and exendin-4 on the vascular reactivity in streptozotocin/nicotinamide-induced diabetic rats. Pharmacology. 2005, 74: 119-126.PubMed
72.
go back to reference Gardiner SM, March JE, Kemp PA, Bennett T: Mesenteric vasoconstriction and hindquarters vasodilatation accompany the pressor actions of exendin-4 in conscious rats. J Pharmacol Exp Ther. 2006, 316: 852-859.CrossRefPubMed Gardiner SM, March JE, Kemp PA, Bennett T: Mesenteric vasoconstriction and hindquarters vasodilatation accompany the pressor actions of exendin-4 in conscious rats. J Pharmacol Exp Ther. 2006, 316: 852-859.CrossRefPubMed
73.
go back to reference Barragan JM, Eng J, Rodriguez R, Blazquez E: Neural contribution to the effect of glucagon-like peptide-1-(7–36) amide on arterial blood pressure in rats. Am J Physiol. 1999, 277: E784-E791.PubMed Barragan JM, Eng J, Rodriguez R, Blazquez E: Neural contribution to the effect of glucagon-like peptide-1-(7–36) amide on arterial blood pressure in rats. Am J Physiol. 1999, 277: E784-E791.PubMed
74.
go back to reference Gejl M, Sondergaard HM, Stecher C, Bibby BM, Moller N, Botker HE, Hansen SB, Gjedde A, Rungby J, Brock B: Exenatide alters myocardial glucose transport and uptake depending on insulin resistance and increases myocardial blood flow in patients with type 2 diabetes. J Clin Endocrinol Metab. 2012, 97: E1165-E1169. 10.1210/jc.2011-3456.CrossRefPubMed Gejl M, Sondergaard HM, Stecher C, Bibby BM, Moller N, Botker HE, Hansen SB, Gjedde A, Rungby J, Brock B: Exenatide alters myocardial glucose transport and uptake depending on insulin resistance and increases myocardial blood flow in patients with type 2 diabetes. J Clin Endocrinol Metab. 2012, 97: E1165-E1169. 10.1210/jc.2011-3456.CrossRefPubMed
75.
go back to reference Nystrom T, Gutniak MK, Zhang Q, Zhang F, Holst JJ, Ahren B, Sjoholm A: Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab. 2004, 287: E1209-E1215. 10.1152/ajpendo.00237.2004.CrossRefPubMed Nystrom T, Gutniak MK, Zhang Q, Zhang F, Holst JJ, Ahren B, Sjoholm A: Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab. 2004, 287: E1209-E1215. 10.1152/ajpendo.00237.2004.CrossRefPubMed
76.
go back to reference Ceriello A, Esposito K, Testa R, Bonfigli AR, Marra M, Giugliano D: The possible protective role of glucagon-like peptide 1 on endothelium during the meal and evidence for an “endothelial resistance” to glucagon-like peptide 1 in diabetes. Diabetes Care. 2011, 34: 697-702. 10.2337/dc10-1949.PubMedCentralCrossRefPubMed Ceriello A, Esposito K, Testa R, Bonfigli AR, Marra M, Giugliano D: The possible protective role of glucagon-like peptide 1 on endothelium during the meal and evidence for an “endothelial resistance” to glucagon-like peptide 1 in diabetes. Diabetes Care. 2011, 34: 697-702. 10.2337/dc10-1949.PubMedCentralCrossRefPubMed
77.
go back to reference Basu A, Charkoudian N, Schrage W, Rizza RA, Basu R, Joyner MJ: Beneficial effects of GLP-1 on endothelial function in humans: dampening by glyburide but not by glimepiride. Am J Physiol Endocrinol Metab. 2007, 293: E1289-E1295. 10.1152/ajpendo.00373.2007.CrossRefPubMed Basu A, Charkoudian N, Schrage W, Rizza RA, Basu R, Joyner MJ: Beneficial effects of GLP-1 on endothelial function in humans: dampening by glyburide but not by glimepiride. Am J Physiol Endocrinol Metab. 2007, 293: E1289-E1295. 10.1152/ajpendo.00373.2007.CrossRefPubMed
78.
go back to reference Valensi P, Chiheb S, Fysekidis M: Insulin- and glucagon-like peptide-1-induced changes in heart rate and vagosympathetic activity: why they matter. Diabetologia. 2013, 56: 1196-1200. 10.1007/s00125-013-2909-x.CrossRefPubMed Valensi P, Chiheb S, Fysekidis M: Insulin- and glucagon-like peptide-1-induced changes in heart rate and vagosympathetic activity: why they matter. Diabetologia. 2013, 56: 1196-1200. 10.1007/s00125-013-2909-x.CrossRefPubMed
79.
go back to reference Robinson LE, Holt TA, Rees K, Randeva HS, O’Hare JP: Effects of exenatide and liraglutide on heart rate, blood pressure and body weight: systematic review and meta-analysis. BMJ Open. 2013, 3: e001986-doi:10.1136/bmjopen-2012-001986PubMedCentralPubMed Robinson LE, Holt TA, Rees K, Randeva HS, O’Hare JP: Effects of exenatide and liraglutide on heart rate, blood pressure and body weight: systematic review and meta-analysis. BMJ Open. 2013, 3: e001986-doi:10.1136/bmjopen-2012-001986PubMedCentralPubMed
80.
go back to reference Pratley RE, Nauck M, Bailey T, Montanya E, Cuddihy R, Filetti S, Thomsen AB, Sondergaard RE, Davies M, Group L-D-S: Liraglutide versus sitagliptin for patients with type 2 diabetes who did not have adequate glycaemic control with metformin: a 26-week, randomised, parallel-group, open-label trial. Lancet. 2010, 375: 1447-1456. 10.1016/S0140-6736(10)60307-8.CrossRefPubMed Pratley RE, Nauck M, Bailey T, Montanya E, Cuddihy R, Filetti S, Thomsen AB, Sondergaard RE, Davies M, Group L-D-S: Liraglutide versus sitagliptin for patients with type 2 diabetes who did not have adequate glycaemic control with metformin: a 26-week, randomised, parallel-group, open-label trial. Lancet. 2010, 375: 1447-1456. 10.1016/S0140-6736(10)60307-8.CrossRefPubMed
81.
go back to reference Mendis B, Simpson E, MacDonald I, Mansell P: Investigation of the haemodynamic effects of exenatide in healthy male subjects. Br J Clin Pharmacol. 2012, 74: 437-444. 10.1111/j.1365-2125.2012.04214.x.PubMedCentralCrossRefPubMed Mendis B, Simpson E, MacDonald I, Mansell P: Investigation of the haemodynamic effects of exenatide in healthy male subjects. Br J Clin Pharmacol. 2012, 74: 437-444. 10.1111/j.1365-2125.2012.04214.x.PubMedCentralCrossRefPubMed
82.
go back to reference Read PA, Khan FZ, Dutka DP: Cardioprotection against ischaemia induced by dobutamine stress using glucagon-like peptide-1 in patients with coronary artery disease. Heart. 2012, 98: 408-413. 10.1136/hrt.2010.219345.CrossRefPubMed Read PA, Khan FZ, Dutka DP: Cardioprotection against ischaemia induced by dobutamine stress using glucagon-like peptide-1 in patients with coronary artery disease. Heart. 2012, 98: 408-413. 10.1136/hrt.2010.219345.CrossRefPubMed
83.
go back to reference Read PA, Khan FZ, Heck PM, Hoole SP, Dutka DP: DPP-4 inhibition by sitagliptin improves the myocardial response to dobutamine stress and mitigates stunning in a pilot study of patients with coronary artery disease. Circ Cardiovasc Imaging. 2010, 3: 195-201. 10.1161/CIRCIMAGING.109.899377.CrossRefPubMed Read PA, Khan FZ, Heck PM, Hoole SP, Dutka DP: DPP-4 inhibition by sitagliptin improves the myocardial response to dobutamine stress and mitigates stunning in a pilot study of patients with coronary artery disease. Circ Cardiovasc Imaging. 2010, 3: 195-201. 10.1161/CIRCIMAGING.109.899377.CrossRefPubMed
84.
go back to reference McCormick LM, Kydd AC, Ring LS, Clarke SJ, Dutka DP: Glucagon-like peptide-1 improves the myocardial response to demand ischemia during hyperglycemia in patients with type 2 diabetes mellitus and coronary artery disease. Circulation. 2013, 128: A17348. McCormick LM, Kydd AC, Ring LS, Clarke SJ, Dutka DP: Glucagon-like peptide-1 improves the myocardial response to demand ischemia during hyperglycemia in patients with type 2 diabetes mellitus and coronary artery disease. Circulation. 2013, 128: A17348.
85.
go back to reference Read PA, Hoole SP, White PA, Khan FZ, O’Sullivan M, West NE, Dutka DP: A pilot study to assess whether glucagon-like peptide-1 protects the heart from ischemic dysfunction and attenuates stunning after coronary balloon occlusion in humans. Circ Cardiovasc Interv. 2011, 4: 266-272. 10.1161/CIRCINTERVENTIONS.110.960476.CrossRefPubMed Read PA, Hoole SP, White PA, Khan FZ, O’Sullivan M, West NE, Dutka DP: A pilot study to assess whether glucagon-like peptide-1 protects the heart from ischemic dysfunction and attenuates stunning after coronary balloon occlusion in humans. Circ Cardiovasc Interv. 2011, 4: 266-272. 10.1161/CIRCINTERVENTIONS.110.960476.CrossRefPubMed
86.
go back to reference McCormick LM, Hoole SP, White PA, Read PA, Axell R, Clarke SJ, O’Sullivan M, West NEJ, Dutka DP: Pre-treatment with glucagon-like peptide-1 protects against supply ischemic left ventricular dysfunction - insights from conductance catheter assessment during elective PCI. Circulation. 2013, 128: A17497. McCormick LM, Hoole SP, White PA, Read PA, Axell R, Clarke SJ, O’Sullivan M, West NEJ, Dutka DP: Pre-treatment with glucagon-like peptide-1 protects against supply ischemic left ventricular dysfunction - insights from conductance catheter assessment during elective PCI. Circulation. 2013, 128: A17497.
87.
go back to reference Lonborg J, Vejlstrup N, Kelbaek H, Botker HE, Kim WY, Mathiasen AB, Jorgensen E, Helqvist S, Saunamaki K, Clemmensen P, et al: Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J. 2012, 33: 1491-1499. 10.1093/eurheartj/ehr309.CrossRefPubMed Lonborg J, Vejlstrup N, Kelbaek H, Botker HE, Kim WY, Mathiasen AB, Jorgensen E, Helqvist S, Saunamaki K, Clemmensen P, et al: Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J. 2012, 33: 1491-1499. 10.1093/eurheartj/ehr309.CrossRefPubMed
88.
go back to reference Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, Shannon RP: Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004, 109: 962-965. 10.1161/01.CIR.0000120505.91348.58.CrossRefPubMed Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, Shannon RP: Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004, 109: 962-965. 10.1161/01.CIR.0000120505.91348.58.CrossRefPubMed
89.
go back to reference Hausenloy DJ, Yellon DM: Preconditioning and postconditioning: united at reperfusion. Pharmacol Ther. 2007, 116: 173-191. 10.1016/j.pharmthera.2007.06.005.CrossRefPubMed Hausenloy DJ, Yellon DM: Preconditioning and postconditioning: united at reperfusion. Pharmacol Ther. 2007, 116: 173-191. 10.1016/j.pharmthera.2007.06.005.CrossRefPubMed
90.
go back to reference Yellon DM, Hausenloy DJ: Realizing the clinical potential of ischemic preconditioning and postconditioning. Nat Clin Pract Cardiovasc Med. 2005, 2: 568-575. 10.1038/ncpcardio0346.CrossRefPubMed Yellon DM, Hausenloy DJ: Realizing the clinical potential of ischemic preconditioning and postconditioning. Nat Clin Pract Cardiovasc Med. 2005, 2: 568-575. 10.1038/ncpcardio0346.CrossRefPubMed
91.
go back to reference Monami M, Ahren B, Dicembrini I, Mannucci E: Dipeptidyl peptidase-4 inhibitors and cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2013, 15: 112-120. 10.1111/dom.12000.CrossRefPubMed Monami M, Ahren B, Dicembrini I, Mannucci E: Dipeptidyl peptidase-4 inhibitors and cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2013, 15: 112-120. 10.1111/dom.12000.CrossRefPubMed
92.
go back to reference Monami M, Dicembrini I, Martelli D, Mannucci E: Safety of dipeptidyl peptidase-4 inhibitors: a meta-analysis of randomized clinical trials. Curr Med Res Opin. 2011, 27 (Suppl 3): 57-64.CrossRefPubMed Monami M, Dicembrini I, Martelli D, Mannucci E: Safety of dipeptidyl peptidase-4 inhibitors: a meta-analysis of randomized clinical trials. Curr Med Res Opin. 2011, 27 (Suppl 3): 57-64.CrossRefPubMed
93.
go back to reference Engel SS, Golm GT, Shapiro D, Davies MJ, Kaufman KD, Goldstein BJ: Cardiovascular safety of sitagliptin in patients with type 2 diabetes mellitus: a pooled analysis. Cardiovasc Diabetol. 2013, 12: 3-10.1186/1475-2840-12-3.PubMedCentralCrossRefPubMed Engel SS, Golm GT, Shapiro D, Davies MJ, Kaufman KD, Goldstein BJ: Cardiovascular safety of sitagliptin in patients with type 2 diabetes mellitus: a pooled analysis. Cardiovasc Diabetol. 2013, 12: 3-10.1186/1475-2840-12-3.PubMedCentralCrossRefPubMed
94.
go back to reference Johansen OE, Neubacher D, von Eynatten M, Patel S, Woerle HJ: Cardiovascular safety with linagliptin in patients with type 2 diabetes mellitus: a pre-specified, prospective, and adjudicated meta-analysis of a phase 3 programme. Cardiovasc Diabetol. 2012, 11: 3-10.1186/1475-2840-11-3.PubMedCentralCrossRefPubMed Johansen OE, Neubacher D, von Eynatten M, Patel S, Woerle HJ: Cardiovascular safety with linagliptin in patients with type 2 diabetes mellitus: a pre-specified, prospective, and adjudicated meta-analysis of a phase 3 programme. Cardiovasc Diabetol. 2012, 11: 3-10.1186/1475-2840-11-3.PubMedCentralCrossRefPubMed
95.
go back to reference Best JH, Hoogwerf BJ, Herman WH, Pelletier EM, Smith DB, Wenten M, Hussein MA: Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies: a retrospective analysis of the LifeLink database. Diabetes Care. 2011, 34: 90-95. 10.2337/dc10-1393.PubMedCentralCrossRefPubMed Best JH, Hoogwerf BJ, Herman WH, Pelletier EM, Smith DB, Wenten M, Hussein MA: Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies: a retrospective analysis of the LifeLink database. Diabetes Care. 2011, 34: 90-95. 10.2337/dc10-1393.PubMedCentralCrossRefPubMed
96.
go back to reference Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, Ohman P, Frederich R, Wiviott SD, Hoffman EB, et al: Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013, 369: 1317-1326. 10.1056/NEJMoa1307684.CrossRefPubMed Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, Ohman P, Frederich R, Wiviott SD, Hoffman EB, et al: Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013, 369: 1317-1326. 10.1056/NEJMoa1307684.CrossRefPubMed
97.
go back to reference White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, Perez AT, Fleck PR, Mehta CR, Kupfer S, et al: Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013, 369: 1327-1335. 10.1056/NEJMoa1305889.CrossRefPubMed White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, Perez AT, Fleck PR, Mehta CR, Kupfer S, et al: Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013, 369: 1327-1335. 10.1056/NEJMoa1305889.CrossRefPubMed
98.
go back to reference Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009, 339: b2700-10.1136/bmj.b2700.PubMedCentralCrossRefPubMed Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009, 339: b2700-10.1136/bmj.b2700.PubMedCentralCrossRefPubMed
Metadata
Title
Optimising cardioprotection during myocardial ischaemia: targeting potential intracellular pathways with glucagon-like peptide-1
Authors
Sophie J Clarke
Liam M McCormick
David P Dutka
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2014
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/1475-2840-13-12

Other articles of this Issue 1/2014

Cardiovascular Diabetology 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.