Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2013

Open Access 01-12-2013 | Research article

Effect of interleukin-1β treatment on co-cultures of human meniscus cells and bone marrow mesenchymal stromal cells

Authors: Anika Chowdhury, Louis W Bezuidenhout, Aillette Mulet-Sierra, Nadr M Jomha, Adetola B Adesida

Published in: BMC Musculoskeletal Disorders | Issue 1/2013

Login to get access

Abstract

Background

Interleukin-1β (IL-1β) is a major mediator of local inflammation present in injured joints. In this study, we aimed at comparing the effect of IL-1β on engineered tissues from MCs, BMSCs and co-cultured MCs and BMSCs.

Methods

We compared the effect of IL-1β in 3 groups: (1) MCs, (2) BMSCs and, (3) co-cultures of MCs and BMSCs. We selected 1 to 3 ratio of MCs to BMSCs for the co-cultures. Passage two (P2) human BMSCs were obtained from two donors. Human MCs were isolated from menisci of 4 donors. Mono-cultures of MCs and BMSCs, and co-cultures of MCs and BMSCs were cultured in chondrogenic medium with TGFβ3, as cell pellets for 14 days. Thereafter, pellets were cultured for 3 more days in same medium as before with or without IL-1β (500 pg/ml). Pellets were assessed histologically, biochemically and by RT-PCR for gene expression of aggrecan, sox9, MMP-1, collagens I and II. Statistics was performed using one-way ANOVA with Tukey’s post-tests.

Results

Co-cultured pellets were the most intensely stained with safranin O and collagen II. Co-cultured pellets had the highest expression of sox9, collagen I and II. IL-1β treatment slightly reduced the GAG/DNA of co-cultured pellets but still exceeded the sum of the GAG/DNA from the proportion of MCs and BMSCs in the co-cultured pellets. After IL-1β treatment, the expression of sox9, collagen I and II in co-cultured pellets was higher compared to their expression in pure pellets. IL-1β induced MMP-1 expression in mono-cultures of MCs but not significantly in mono-cultures of BMSCs or in co-cultured pellets. IL-1β induced MMP-13 expression in mono-cultured pellets of BMSCs and in co-cultured pellets.

Conclusions

Co-cultures of MCs and BMSCs resulted in a synergistic production of cartilaginous matrix compared to mono-cultures of MCs and BMSCs. IL-1β did not abrogate the accumulated GAG matrix in co-cultures but mediated a decreased mRNA expression of aggrecan, collagen II and Sox9. These results strengthen the combinatorial use of primary MCs and BMSCs as a cell source for meniscus tissue engineering by demonstrating retention of fibrochondrogenic phenotype after exposure to IL-1β.
Appendix
Available only for authorised users
Literature
1.
go back to reference Makris EA, Hadidi P, Athanasiou KA: The knee meniscus: Structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011, 32 (30): 7411-7431. 10.1016/j.biomaterials.2011.06.037.CrossRefPubMedPubMedCentral Makris EA, Hadidi P, Athanasiou KA: The knee meniscus: Structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011, 32 (30): 7411-7431. 10.1016/j.biomaterials.2011.06.037.CrossRefPubMedPubMedCentral
2.
go back to reference Messner K, Gao J: The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat. 1998, 193 (Pt 2): 161-178.CrossRefPubMedPubMedCentral Messner K, Gao J: The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat. 1998, 193 (Pt 2): 161-178.CrossRefPubMedPubMedCentral
3.
go back to reference Levy IM, Torzilli PA, Fisch ID: The contribution of the menisci to the stabilty of the knee. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Arnoczky SP, Jackson DW. 1992, New York: Raven Press, Ltd, 107-115. Levy IM, Torzilli PA, Fisch ID: The contribution of the menisci to the stabilty of the knee. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Arnoczky SP, Jackson DW. 1992, New York: Raven Press, Ltd, 107-115.
4.
go back to reference Ahmed AM: The load-bearing role of the knee meniscus. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Arnoczky SP, Jackson DW. 1992, New York: Raven Press, Ltd, 59-73. Ahmed AM: The load-bearing role of the knee meniscus. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Arnoczky SP, Jackson DW. 1992, New York: Raven Press, Ltd, 59-73.
5.
go back to reference Aagaard H, Verdonk R: Function of the normal meniscus and consequences of meniscal resection. Scand J Med Sci Sports. 1999, 9 (3): 134-140.CrossRefPubMed Aagaard H, Verdonk R: Function of the normal meniscus and consequences of meniscal resection. Scand J Med Sci Sports. 1999, 9 (3): 134-140.CrossRefPubMed
6.
go back to reference Aagaard H, Jorgensen U, Bojsen-Moller F: Reduced degenerative articular cartilage changes after meniscal allograft transplantation in sheep. Knee Surg Sports Traumatol Arthrosc. 1999, 7 (3): 184-191. 10.1007/s001670050145.CrossRefPubMed Aagaard H, Jorgensen U, Bojsen-Moller F: Reduced degenerative articular cartilage changes after meniscal allograft transplantation in sheep. Knee Surg Sports Traumatol Arthrosc. 1999, 7 (3): 184-191. 10.1007/s001670050145.CrossRefPubMed
7.
go back to reference Adams ME, Hukins DWL: The extracellular matrix of the meniscus. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Arnoczky SP, Jackson DW. 1992, New York: Raven Press Ltd, 15-28. Adams ME, Hukins DWL: The extracellular matrix of the meniscus. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Arnoczky SP, Jackson DW. 1992, New York: Raven Press Ltd, 15-28.
8.
go back to reference McDevitt CA, Miller RR, Spindler KP: The cells and cell matrix interactions of the meniscus. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Arnoczky SP, Jackson DW. 1992, New York: Raven, 29-36. McDevitt CA, Miller RR, Spindler KP: The cells and cell matrix interactions of the meniscus. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Arnoczky SP, Jackson DW. 1992, New York: Raven, 29-36.
9.
go back to reference McDevitt CA, Mukherjee S, Kambic H, Parker R: Emerging concepts of the cell biology of the meniscus. Curr Opin Orthop. 2002, 13 (5): 345-350. 10.1097/00001433-200210000-00004.CrossRef McDevitt CA, Mukherjee S, Kambic H, Parker R: Emerging concepts of the cell biology of the meniscus. Curr Opin Orthop. 2002, 13 (5): 345-350. 10.1097/00001433-200210000-00004.CrossRef
10.
go back to reference McDermott ID, Amis AA: The consequences of meniscectomy. J Bone Joint Surg Br. 2006, 88 (12): 1549-1556.CrossRefPubMed McDermott ID, Amis AA: The consequences of meniscectomy. J Bone Joint Surg Br. 2006, 88 (12): 1549-1556.CrossRefPubMed
11.
go back to reference Roos H, Lauren M, Adalberth T, Roos EM, Jonsson K, Lohmander LS: Knee osteoarthritis after meniscectomy: Prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum. 1998, 41 (4): 687-693. 10.1002/1529-0131(199804)41:4<687::AID-ART16>3.0.CO;2-2.CrossRefPubMed Roos H, Lauren M, Adalberth T, Roos EM, Jonsson K, Lohmander LS: Knee osteoarthritis after meniscectomy: Prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum. 1998, 41 (4): 687-693. 10.1002/1529-0131(199804)41:4<687::AID-ART16>3.0.CO;2-2.CrossRefPubMed
12.
go back to reference Fairbank T: Knee joint changes after menisectomy. J Bone Joint Surg. 1948, 30B: 664-670. Fairbank T: Knee joint changes after menisectomy. J Bone Joint Surg. 1948, 30B: 664-670.
13.
go back to reference Arnoczky SP: Building a meniscus. Biologic considerations. Clin Orthop. 1999, S244-S253. 367 Suppl Arnoczky SP: Building a meniscus. Biologic considerations. Clin Orthop. 1999, S244-S253. 367 Suppl
14.
go back to reference Ibarra C, Jannetta C, Vacanti CA, Cao Y, Kim TH, Upton J, Vacanti JP: Tissue engineered meniscus: a potential new alternative to allogeneic meniscus transplantation. Transplant Proc. 1997, 29 (1–2): 986-988.CrossRefPubMed Ibarra C, Jannetta C, Vacanti CA, Cao Y, Kim TH, Upton J, Vacanti JP: Tissue engineered meniscus: a potential new alternative to allogeneic meniscus transplantation. Transplant Proc. 1997, 29 (1–2): 986-988.CrossRefPubMed
15.
go back to reference Ibarra C, Koski JA, Warren RF: Tissue engineering meniscus: cells and matrix. Orthop Clin North Am. 2000, 31 (3): 411-418. 10.1016/S0030-5898(05)70160-7.CrossRefPubMed Ibarra C, Koski JA, Warren RF: Tissue engineering meniscus: cells and matrix. Orthop Clin North Am. 2000, 31 (3): 411-418. 10.1016/S0030-5898(05)70160-7.CrossRefPubMed
16.
go back to reference Baker BM, Nathan AS, Huffman GR, Mauck RL: Tissue engineering with meniscus cells derived from surgical debris. Osteoarthritis Cartilage. 2009, 17 (3): 336-345. 10.1016/j.joca.2008.08.001.CrossRefPubMed Baker BM, Nathan AS, Huffman GR, Mauck RL: Tissue engineering with meniscus cells derived from surgical debris. Osteoarthritis Cartilage. 2009, 17 (3): 336-345. 10.1016/j.joca.2008.08.001.CrossRefPubMed
17.
go back to reference Izuta Y, Ochi M, Adachi N, Deie M, Yamasaki T, Shinomiya R: Meniscal repair using bone marrow-derived mesenchymal stem cells: experimental study using green fluorescent protein transgenic rats. Knee. 2005, 12 (3): 217-223. 10.1016/j.knee.2001.06.001.CrossRefPubMed Izuta Y, Ochi M, Adachi N, Deie M, Yamasaki T, Shinomiya R: Meniscal repair using bone marrow-derived mesenchymal stem cells: experimental study using green fluorescent protein transgenic rats. Knee. 2005, 12 (3): 217-223. 10.1016/j.knee.2001.06.001.CrossRefPubMed
18.
go back to reference Kobayashi M: A study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus in vivo. Biomed Mater Eng. 2004, 14 (4): 505-515.PubMed Kobayashi M: A study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus in vivo. Biomed Mater Eng. 2004, 14 (4): 505-515.PubMed
19.
go back to reference Kon E, Filardo G, Tschon M, Fini M, Giavaresi G, Reggiani LM, Chiari C, Nehrer S, Martin I, Salter DM: Tissue engineering for total meniscal substitution: animal study in sheep model-results at 12 months. Tissue Eng Part A. 2012, 18 (15–16): 1573-1582.CrossRefPubMed Kon E, Filardo G, Tschon M, Fini M, Giavaresi G, Reggiani LM, Chiari C, Nehrer S, Martin I, Salter DM: Tissue engineering for total meniscal substitution: animal study in sheep model-results at 12 months. Tissue Eng Part A. 2012, 18 (15–16): 1573-1582.CrossRefPubMed
20.
go back to reference Marsano A, Millward-Sadler SJ, Salter DM, Adesida A, Hardingham T, Tognana E, Kon E, Chiari-Grisar C, Nehrer S, Jakob M: Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes. Osteoarthritis Cartilage. 2007, 15 (1): 48-58. 10.1016/j.joca.2006.06.009.CrossRefPubMed Marsano A, Millward-Sadler SJ, Salter DM, Adesida A, Hardingham T, Tognana E, Kon E, Chiari-Grisar C, Nehrer S, Jakob M: Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes. Osteoarthritis Cartilage. 2007, 15 (1): 48-58. 10.1016/j.joca.2006.06.009.CrossRefPubMed
21.
go back to reference Matthies NF, Mulet-Sierra A, Jomha NM, Adesida AB: Matrix formation is enhanced in co-cultures of human meniscus cells with bone marrow stromal cells. J Tissue Eng Regen Med. 2012, In press Matthies NF, Mulet-Sierra A, Jomha NM, Adesida AB: Matrix formation is enhanced in co-cultures of human meniscus cells with bone marrow stromal cells. J Tissue Eng Regen Med. 2012, In press
22.
go back to reference Mauck RL, Martinez-Diaz GJ, Yuan X, Tuan RS: Regional multilineage differentiation potential of meniscal fibrochondrocytes: implications for meniscus repair. Anat Rec (Hoboken). 2007, 290 (1): 48-58. 10.1002/ar.20419.CrossRef Mauck RL, Martinez-Diaz GJ, Yuan X, Tuan RS: Regional multilineage differentiation potential of meniscal fibrochondrocytes: implications for meniscus repair. Anat Rec (Hoboken). 2007, 290 (1): 48-58. 10.1002/ar.20419.CrossRef
23.
go back to reference Mueller SM, Shortkroff S, Schneider TO, Breinan HA, Yannas IV, Spector M: Meniscus cells seeded in type I and type II collagen-GAG matrices in vitro. Biomaterials. 1999, 20 (8): 701-709. 10.1016/S0142-9612(98)00189-6.CrossRefPubMed Mueller SM, Shortkroff S, Schneider TO, Breinan HA, Yannas IV, Spector M: Meniscus cells seeded in type I and type II collagen-GAG matrices in vitro. Biomaterials. 1999, 20 (8): 701-709. 10.1016/S0142-9612(98)00189-6.CrossRefPubMed
24.
go back to reference Nakata K, Shino K, Hamada M, Mae T, Miyama T, Shinjo H, Horibe S, Tada K, Ochi T, Yoshikawa H: Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin Orthop Relat Res. 2001, S208-218. 391 Suppl Nakata K, Shino K, Hamada M, Mae T, Miyama T, Shinjo H, Horibe S, Tada K, Ochi T, Yoshikawa H: Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin Orthop Relat Res. 2001, S208-218. 391 Suppl
25.
go back to reference Pabbruwe MB, Kafienah W, Tarlton JF, Mistry S, Fox DJ, Hollander AP: Repair of meniscal cartilage white zone tears using a stem cell/collagen-scaffold implant. Biomaterials. 2010, 31 (9): 2583-2591. 10.1016/j.biomaterials.2009.12.023.CrossRefPubMed Pabbruwe MB, Kafienah W, Tarlton JF, Mistry S, Fox DJ, Hollander AP: Repair of meniscal cartilage white zone tears using a stem cell/collagen-scaffold implant. Biomaterials. 2010, 31 (9): 2583-2591. 10.1016/j.biomaterials.2009.12.023.CrossRefPubMed
26.
go back to reference Pereira H, Frias AM, Oliveira JM, Espregueira-Mendes J, Reis RL: Tissue engineering and regenerative medicine strategies in meniscus lesions. Arthroscopy. 2011, 27 (12): 1706-1719. 10.1016/j.arthro.2011.08.283.CrossRefPubMed Pereira H, Frias AM, Oliveira JM, Espregueira-Mendes J, Reis RL: Tissue engineering and regenerative medicine strategies in meniscus lesions. Arthroscopy. 2011, 27 (12): 1706-1719. 10.1016/j.arthro.2011.08.283.CrossRefPubMed
27.
go back to reference Peretti GM, Gill TJ, Xu JW, Randolph MA, Morse KR, Zaleske DJ: Cell-based therapy for meniscal repair: a large animal study. Am J Sports Med. 2004, 32 (1): 146-158. 10.1177/0095399703258790.CrossRefPubMed Peretti GM, Gill TJ, Xu JW, Randolph MA, Morse KR, Zaleske DJ: Cell-based therapy for meniscal repair: a large animal study. Am J Sports Med. 2004, 32 (1): 146-158. 10.1177/0095399703258790.CrossRefPubMed
28.
go back to reference Buma P, Ramrattan NN, van Tienen TG, Veth RPH: Tissue engineering of the meniscus. Biomaterials. 2004, 25 (9): 1523-1532. 10.1016/S0142-9612(03)00499-X.CrossRefPubMed Buma P, Ramrattan NN, van Tienen TG, Veth RPH: Tissue engineering of the meniscus. Biomaterials. 2004, 25 (9): 1523-1532. 10.1016/S0142-9612(03)00499-X.CrossRefPubMed
29.
go back to reference Chiari C, Koller U, Dorotka R, Eder C, Plasenzotti R, Lang S, Ambrosio L, Tognana E, Kon E, Salter D: A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthritis Cartilage. 2006, 14 (10): 1056-1065. 10.1016/j.joca.2006.04.007.CrossRefPubMed Chiari C, Koller U, Dorotka R, Eder C, Plasenzotti R, Lang S, Ambrosio L, Tognana E, Kon E, Salter D: A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthritis Cartilage. 2006, 14 (10): 1056-1065. 10.1016/j.joca.2006.04.007.CrossRefPubMed
30.
go back to reference Angele P, Johnstone B, Kujat R, Zellner J, Nerlich M, Goldberg V, Yoo J: Stem cell based tissue engineering for meniscus repair. J Biomed Mater Res A. 2008, 85 (2): 445-455.CrossRefPubMed Angele P, Johnstone B, Kujat R, Zellner J, Nerlich M, Goldberg V, Yoo J: Stem cell based tissue engineering for meniscus repair. J Biomed Mater Res A. 2008, 85 (2): 445-455.CrossRefPubMed
31.
go back to reference Murphy JM, Fink DJ, Hunziker EB, Barry FP: Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003, 48 (12): 3464-3474. 10.1002/art.11365.CrossRefPubMed Murphy JM, Fink DJ, Hunziker EB, Barry FP: Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003, 48 (12): 3464-3474. 10.1002/art.11365.CrossRefPubMed
32.
go back to reference Mueller MB, Tuan RS: Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum. 2008, 58 (5): 1377-1388. 10.1002/art.23370.CrossRefPubMedPubMedCentral Mueller MB, Tuan RS: Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum. 2008, 58 (5): 1377-1388. 10.1002/art.23370.CrossRefPubMedPubMedCentral
33.
go back to reference Saliken DJ, Mulet-Sierra A, Jomha NM, Adesida AB: Decreased hypertrophic differentiation accompanies enhanced matrix formation in co-cultures of outer meniscus cells with bone marrow mesenchymal stromal cells. Arthritis Res Ther. 2012, 14 (3): R153-10.1186/ar3889.CrossRefPubMedPubMedCentral Saliken DJ, Mulet-Sierra A, Jomha NM, Adesida AB: Decreased hypertrophic differentiation accompanies enhanced matrix formation in co-cultures of outer meniscus cells with bone marrow mesenchymal stromal cells. Arthritis Res Ther. 2012, 14 (3): R153-10.1186/ar3889.CrossRefPubMedPubMedCentral
34.
go back to reference Cui X, Hasegawa A, Lotz M, D’Lima D: Structured three-dimensional co-culture of mesenchymal stem cells with meniscus cells promotes meniscal phenotype without hypertrophy. Biotechnol Bioeng. 2012, 109 (9): 2369-2380. 10.1002/bit.24495.CrossRefPubMedPubMedCentral Cui X, Hasegawa A, Lotz M, D’Lima D: Structured three-dimensional co-culture of mesenchymal stem cells with meniscus cells promotes meniscal phenotype without hypertrophy. Biotechnol Bioeng. 2012, 109 (9): 2369-2380. 10.1002/bit.24495.CrossRefPubMedPubMedCentral
35.
go back to reference Adesida AB, Mulet-Sierra A, Jomha NM: Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Res Ther. 2012, 3 (2): 9-10.1186/scrt100.CrossRefPubMedPubMedCentral Adesida AB, Mulet-Sierra A, Jomha NM: Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Res Ther. 2012, 3 (2): 9-10.1186/scrt100.CrossRefPubMedPubMedCentral
36.
go back to reference Acharya C, Adesida A, Zajac P, Mumme M, Riesle J, Martin I, Barbero A: Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation. J Cell Physiol. 2012, 227: 88-97. 10.1002/jcp.22706.CrossRefPubMed Acharya C, Adesida A, Zajac P, Mumme M, Riesle J, Martin I, Barbero A: Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation. J Cell Physiol. 2012, 227: 88-97. 10.1002/jcp.22706.CrossRefPubMed
37.
go back to reference Farndale RW, Buttle DJ, Barrett AJ: Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986, 883 (2): 173-177. 10.1016/0304-4165(86)90306-5.CrossRefPubMed Farndale RW, Buttle DJ, Barrett AJ: Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986, 883 (2): 173-177. 10.1016/0304-4165(86)90306-5.CrossRefPubMed
38.
go back to reference Murdoch AD, Grady LM, Ablett MP, Katopodi T, Meadows RS, Hardingham TE: Chondrogenic differentiation of human bone marrow stem cells in transwell cultures: generation of scaffold-free cartilage. Stem Cells. 2007, 25 (11): 2786-2796. 10.1634/stemcells.2007-0374.CrossRefPubMed Murdoch AD, Grady LM, Ablett MP, Katopodi T, Meadows RS, Hardingham TE: Chondrogenic differentiation of human bone marrow stem cells in transwell cultures: generation of scaffold-free cartilage. Stem Cells. 2007, 25 (11): 2786-2796. 10.1634/stemcells.2007-0374.CrossRefPubMed
39.
go back to reference Adesida AB, Grady LM, Khan WS, Hardingham TE: The matrix-forming phenotype of cultured human meniscus cells is enhanced after culture with fibroblast growth factor 2 and is further stimulated by hypoxia. Arthritis Res Ther. 2006, 8 (3): R61-10.1186/ar1929.CrossRefPubMedPubMedCentral Adesida AB, Grady LM, Khan WS, Hardingham TE: The matrix-forming phenotype of cultured human meniscus cells is enhanced after culture with fibroblast growth factor 2 and is further stimulated by hypoxia. Arthritis Res Ther. 2006, 8 (3): R61-10.1186/ar1929.CrossRefPubMedPubMedCentral
40.
go back to reference Adesida AB, Grady LM, Khan WS, Millward-Sadler SJ, Salter DM, Hardingham TE: Human meniscus cells express hypoxia inducible factor-1alpha and increased SOX9 in response to low oxygen tension in cell aggregate culture. Arthritis Res Ther. 2007, 9 (4): R69-10.1186/ar2267.CrossRefPubMedPubMedCentral Adesida AB, Grady LM, Khan WS, Millward-Sadler SJ, Salter DM, Hardingham TE: Human meniscus cells express hypoxia inducible factor-1alpha and increased SOX9 in response to low oxygen tension in cell aggregate culture. Arthritis Res Ther. 2007, 9 (4): R69-10.1186/ar2267.CrossRefPubMedPubMedCentral
41.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-[delta][delta]CT method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262.CrossRefPubMed Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-[delta][delta]CT method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262.CrossRefPubMed
42.
go back to reference Scotti C, Osmokrovic A, Wolf F, Miot S, Peretti GM, Barbero A, Martin I: Response of human engineered cartilage based on articular or nasal chondrocytes to interleukin-1beta and low oxygen. Tissue Eng Part A. 2012, 18 (3–4): 362-372.CrossRefPubMed Scotti C, Osmokrovic A, Wolf F, Miot S, Peretti GM, Barbero A, Martin I: Response of human engineered cartilage based on articular or nasal chondrocytes to interleukin-1beta and low oxygen. Tissue Eng Part A. 2012, 18 (3–4): 362-372.CrossRefPubMed
43.
go back to reference Le Maitre C, Hoyland J, Freemont A: Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: an in situ zymographic and gene therapy study. Arthritis Res Ther. 2007, 9 (4): R83-10.1186/ar2282.CrossRefPubMedPubMedCentral Le Maitre C, Hoyland J, Freemont A: Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: an in situ zymographic and gene therapy study. Arthritis Res Ther. 2007, 9 (4): R83-10.1186/ar2282.CrossRefPubMedPubMedCentral
44.
go back to reference Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K, Phinney DG: Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA. 2007, 104 (26): 11002-11007. 10.1073/pnas.0704421104.CrossRefPubMedPubMedCentral Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K, Phinney DG: Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA. 2007, 104 (26): 11002-11007. 10.1073/pnas.0704421104.CrossRefPubMedPubMedCentral
45.
go back to reference Candrian C, Bonacina E, Frueh JA, Vonwil D, Dickinson S, Wirz D, Heberer M, Jakob M, Martin I, Barbero A: Intra-individual comparison of human ankle and knee chondrocytes in vitro: relevance for talar cartilage repair. Osteoarthritis Cartilage. 2009, 17 (4): 489-496. 10.1016/j.joca.2008.05.023.CrossRefPubMed Candrian C, Bonacina E, Frueh JA, Vonwil D, Dickinson S, Wirz D, Heberer M, Jakob M, Martin I, Barbero A: Intra-individual comparison of human ankle and knee chondrocytes in vitro: relevance for talar cartilage repair. Osteoarthritis Cartilage. 2009, 17 (4): 489-496. 10.1016/j.joca.2008.05.023.CrossRefPubMed
46.
go back to reference Lemke AK, Sandy JD, Voigt H, Dreier R, Lee JH, Grodzinsky AJ, Mentlein R, Fay J, Schunke M, Kurz B: Interleukin-1alpha treatment of meniscal explants stimulates the production and release of aggrecanase-generated, GAG-substituted aggrecan products and also the release of pre-formed, aggrecanase-generated G1 and m-calpain-generated G1-G2. Cell Tissue Res. 2010, 340 (1): 179-188. 10.1007/s00441-010-0941-4.CrossRefPubMed Lemke AK, Sandy JD, Voigt H, Dreier R, Lee JH, Grodzinsky AJ, Mentlein R, Fay J, Schunke M, Kurz B: Interleukin-1alpha treatment of meniscal explants stimulates the production and release of aggrecanase-generated, GAG-substituted aggrecan products and also the release of pre-formed, aggrecanase-generated G1 and m-calpain-generated G1-G2. Cell Tissue Res. 2010, 340 (1): 179-188. 10.1007/s00441-010-0941-4.CrossRefPubMed
47.
go back to reference Chen CZ, Raghunath M: Focus on collagen: in vitro systems to study fibrogenesis and antifibrosis state of the art. Fibrogenesis Tissue Repair. 2009, 2: 7-10.1186/1755-1536-2-7.CrossRefPubMedPubMedCentral Chen CZ, Raghunath M: Focus on collagen: in vitro systems to study fibrogenesis and antifibrosis state of the art. Fibrogenesis Tissue Repair. 2009, 2: 7-10.1186/1755-1536-2-7.CrossRefPubMedPubMedCentral
48.
go back to reference Maier T, Güell M, Serrano L: Correlation of mRNA and protein in complex biological samples. FEBS Lett Syst Biol Nobel Symposium 146. 2009, 583 (24): 3966-3973. Maier T, Güell M, Serrano L: Correlation of mRNA and protein in complex biological samples. FEBS Lett Syst Biol Nobel Symposium 146. 2009, 583 (24): 3966-3973.
49.
go back to reference Majumdar MK, Wang E, Morris EA: BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J Cell Physiol. 2001, 189 (3): 275-284. 10.1002/jcp.10025.CrossRefPubMed Majumdar MK, Wang E, Morris EA: BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J Cell Physiol. 2001, 189 (3): 275-284. 10.1002/jcp.10025.CrossRefPubMed
50.
go back to reference Kato Y, Nakashima K, Iwamoto M, Murakami H, Hiranuma H, Koike T, Suzuki F, Fuchihata H, Ikehara Y, Noshiro M: Effects of interleukin-1 on syntheses of alkaline phosphatase, type X collagen, and 1,25-dihydroxyvitamin D3 receptor, and matrix calcification in rabbit chondrocyte cultures. J Clin Invest. 1993, 92 (5): 2323-2330. 10.1172/JCI116836.CrossRefPubMedPubMedCentral Kato Y, Nakashima K, Iwamoto M, Murakami H, Hiranuma H, Koike T, Suzuki F, Fuchihata H, Ikehara Y, Noshiro M: Effects of interleukin-1 on syntheses of alkaline phosphatase, type X collagen, and 1,25-dihydroxyvitamin D3 receptor, and matrix calcification in rabbit chondrocyte cultures. J Clin Invest. 1993, 92 (5): 2323-2330. 10.1172/JCI116836.CrossRefPubMedPubMedCentral
51.
go back to reference Sitcheran R, Cogswell PC, Baldwin AS: NF-kappaB mediates inhibition of mesenchymal cell differentiation through a posttranscriptional gene silencing mechanism. Genes Dev. 2003, 17 (19): 2368-2373. 10.1101/gad.1114503.CrossRefPubMedPubMedCentral Sitcheran R, Cogswell PC, Baldwin AS: NF-kappaB mediates inhibition of mesenchymal cell differentiation through a posttranscriptional gene silencing mechanism. Genes Dev. 2003, 17 (19): 2368-2373. 10.1101/gad.1114503.CrossRefPubMedPubMedCentral
52.
go back to reference Wehling N, Palmer GD, Pilapil C, Liu F, Wells JW, Muller PE, Evans CH, Porter RM: Interleukin-1beta and tumor necrosis factor alpha inhibit chondrogenesis by human mesenchymal stem cells through NF-kappaB-dependent pathways. Arthritis Rheum. 2009, 60 (3): 801-812. 10.1002/art.24352.CrossRefPubMedPubMedCentral Wehling N, Palmer GD, Pilapil C, Liu F, Wells JW, Muller PE, Evans CH, Porter RM: Interleukin-1beta and tumor necrosis factor alpha inhibit chondrogenesis by human mesenchymal stem cells through NF-kappaB-dependent pathways. Arthritis Rheum. 2009, 60 (3): 801-812. 10.1002/art.24352.CrossRefPubMedPubMedCentral
Metadata
Title
Effect of interleukin-1β treatment on co-cultures of human meniscus cells and bone marrow mesenchymal stromal cells
Authors
Anika Chowdhury
Louis W Bezuidenhout
Aillette Mulet-Sierra
Nadr M Jomha
Adetola B Adesida
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2013
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-14-216

Other articles of this Issue 1/2013

BMC Musculoskeletal Disorders 1/2013 Go to the issue