Skip to main content
Top
Published in: Arthritis Research & Therapy 3/2012

Open Access 01-06-2012 | Research article

Decreased hypertrophic differentiation accompanies enhanced matrix formation in co-cultures of outer meniscus cells with bone marrow mesenchymal stromal cells

Authors: David JJ Saliken, Aillette Mulet-Sierra, Nadr M Jomha, Adetola B Adesida

Published in: Arthritis Research & Therapy | Issue 3/2012

Login to get access

Abstract

Introduction

The main objective of this study was to determine whether meniscus cells from the outer (MCO) and inner (MCI) regions of the meniscus interact similarly to or differently with mesenchymal stromal stem cells (MSCs). Previous study had shown that co-culture of meniscus cells with bone marrow-derived MSCs result in enhanced matrix formation relative to mono-cultures of meniscus cells and MSCs. However, the study did not examine if cells from the different regions of the meniscus interacted similarly to or differently with MSCs.

Methods

Human menisci were harvested from four patients undergoing total knee replacements. Tissue from the outer and inner regions represented pieces taken from one third and two thirds of the radial distance of the meniscus, respectively. Meniscus cells were released from the menisci after collagenase treatment. Bone marrow MSCs were obtained from the iliac crest of two patients after plastic adherence and in vitro culture until passage 2. Primary meniscus cells from the outer (MCO) or inner (MCI) regions of the meniscus were co-cultured with MSCs in three-dimensional (3D) pellet cultures at 1:3 ratio, respectively, for 3 weeks in the presence of serum-free chondrogenic medium containing TGF-β1. Mono-cultures of MCO, MCI and MSCs served as experimental control groups. The tissue formed after 3 weeks was assessed biochemically, histochemically and by quantitative RT-PCR.

Results

Co-culture of inner (MCI) or outer (MCO) meniscus cells with MSCs resulted in neo-tissue with increased (up to 2.2-fold) proteoglycan (GAG) matrix content relative to tissues formed from mono-cultures of MSCs, MCI and MCO. Co-cultures of MCI or MCO with MSCs produced the same amount of matrix in the tissue formed. However, the expression level of aggrecan was highest in mono-cultures of MSCs but similar in the other four groups. The DNA content of the tissues from co-cultured cells was not statistically different from tissues formed from mono-cultures of MSCs, MCI and MCO. The expression of collagen I (COL1A2) mRNA increased in co-cultured cells relative to mono-cultures of MCO and MCI but not compared to MSC mono-cultures. Collagen II (COL2A1) mRNA expression increased significantly in co-cultures of both MCO and MCI with MSCs compared to their own controls (mono-cultures of MCO and MCI respectively) but only the co-cultures of MCO:MSCs were significantly increased compared to MSC control mono-cultures. Increased collagen II protein expression was visible by collagen II immuno-histochemistry. The mRNA expression level of Sox9 was similar in all pellet cultures. The expression of collagen × (COL10A1) mRNA was 2-fold higher in co-cultures of MCI:MSCs relative to co-cultures of MCO:MSCs. Additionally, other hypertrophic genes, MMP-13 and Indian Hedgehog (IHh), were highly expressed by 4-fold and 18-fold, respectively, in co-cultures of MCI:MSCs relative to co-cultures of MCO:MSCs.

Conclusions

Co-culture of primary MCI or MCO with MSCs resulted in enhanced matrix formation. MCI and MCO increased matrix formation similarly after co-culture with MSCs. However, MCO was more potent than MCI in suppressing hypertrophic differentiation of MSCs. These findings suggest that meniscus cells from the outer-vascular regions of the meniscus can be supplemented with MSCs in order to engineer functional grafts to reconstruct inner-avascular meniscus.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fithian DC, Kelly MA, Mow VC: Material properties and structure-function relationships in the menisci. Clin Orthop. 1990, 252: 19-31.PubMed Fithian DC, Kelly MA, Mow VC: Material properties and structure-function relationships in the menisci. Clin Orthop. 1990, 252: 19-31.PubMed
2.
go back to reference Ahmed AM: The load-bearing role of the knee meniscus. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Arnoczky SP, Jackson DW. 1992, New York: Raven Press, Ltd, 59-73. Ahmed AM: The load-bearing role of the knee meniscus. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Arnoczky SP, Jackson DW. 1992, New York: Raven Press, Ltd, 59-73.
3.
go back to reference Levy IM, Torzilli PA, Fisch ID: The contribution of the menisci to the stability of the knee. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Arnoczky SP, Jackson DW. 1992, New York: Raven Press, Ltd, 107-115. Levy IM, Torzilli PA, Fisch ID: The contribution of the menisci to the stability of the knee. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Arnoczky SP, Jackson DW. 1992, New York: Raven Press, Ltd, 107-115.
4.
go back to reference McDevitt CA, Miller RR, Spindler KP: The cells and cell matrix interactions of the meniscus. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Arnoczky SP, Jackson DW. 1992, New York: Raven Press, 29-36. McDevitt CA, Miller RR, Spindler KP: The cells and cell matrix interactions of the meniscus. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Arnoczky SP, Jackson DW. 1992, New York: Raven Press, 29-36.
5.
go back to reference McDevitt CA, Mukherjee S, Kambic H, Parker R: Emerging concepts of the cell biology of the meniscus. Curr Opin Orthop. 2002, 13: 345-350. 10.1097/00001433-200210000-00004.CrossRef McDevitt CA, Mukherjee S, Kambic H, Parker R: Emerging concepts of the cell biology of the meniscus. Curr Opin Orthop. 2002, 13: 345-350. 10.1097/00001433-200210000-00004.CrossRef
6.
go back to reference Adams ME, Hukins DWL: The extracellular matrix of the meniscus. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Arnoczky SP, Jackson DW. 1992, New York: Raven Press Ltd, 15-28. Adams ME, Hukins DWL: The extracellular matrix of the meniscus. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Arnoczky SP, Jackson DW. 1992, New York: Raven Press Ltd, 15-28.
7.
go back to reference Melrose J, Smith S, Cake M, Read R, Whitelock J: Comparative spatial and temporal localization of perlecan, aggrecan and type I, II and IV collagen in the ovine meniscus: an ageing study. Histochem Cell Biol. 2005, 12: 225-235.CrossRef Melrose J, Smith S, Cake M, Read R, Whitelock J: Comparative spatial and temporal localization of perlecan, aggrecan and type I, II and IV collagen in the ovine meniscus: an ageing study. Histochem Cell Biol. 2005, 12: 225-235.CrossRef
8.
go back to reference Tanaka T, Fujii K, Kumagae Y: Comparison of biochemical characteristics of cultured fibrochondrocytes isolated from the inner and outer regions of human meniscus. Knee Surg Sports Traumatol Arthrosc. 1999, 7: 75-80. 10.1007/s001670050125.CrossRefPubMed Tanaka T, Fujii K, Kumagae Y: Comparison of biochemical characteristics of cultured fibrochondrocytes isolated from the inner and outer regions of human meniscus. Knee Surg Sports Traumatol Arthrosc. 1999, 7: 75-80. 10.1007/s001670050125.CrossRefPubMed
10.
go back to reference Arnoczky SP, Warren RF: Microvasculature of the human meniscus. Am J Sports Med. 1982, 10: 90-95. 10.1177/036354658201000205.CrossRefPubMed Arnoczky SP, Warren RF: Microvasculature of the human meniscus. Am J Sports Med. 1982, 10: 90-95. 10.1177/036354658201000205.CrossRefPubMed
11.
go back to reference Arnoczky SP: Gross and vascular anatomy of the meniscus and its role in meniscal healing, regeneration, and remodelling. Knee Meniscus: Basic and Clinical Foundations. Edited by: Van C Mow, Steven P Arnoczky, Douglas W Jackson. 1992, New Nork: Raven Press Ltd, 1-14. Arnoczky SP: Gross and vascular anatomy of the meniscus and its role in meniscal healing, regeneration, and remodelling. Knee Meniscus: Basic and Clinical Foundations. Edited by: Van C Mow, Steven P Arnoczky, Douglas W Jackson. 1992, New Nork: Raven Press Ltd, 1-14.
12.
go back to reference Arnoczky SP, Warren RF: The microvasculature of the meniscus and its response to injury. An experimental study in the dog. Am J Sports Med. 1983, 11: 131-141. 10.1177/036354658301100305.CrossRefPubMed Arnoczky SP, Warren RF: The microvasculature of the meniscus and its response to injury. An experimental study in the dog. Am J Sports Med. 1983, 11: 131-141. 10.1177/036354658301100305.CrossRefPubMed
13.
go back to reference Aagaard H, Verdonk R: Function of the normal meniscus and consequences of meniscal resection. Scand J Med Sci Sports. 1999, 9: 134-140.CrossRefPubMed Aagaard H, Verdonk R: Function of the normal meniscus and consequences of meniscal resection. Scand J Med Sci Sports. 1999, 9: 134-140.CrossRefPubMed
14.
go back to reference Aagaard H, Jorgensen U, Bojsen-Moller F: Reduced degenerative articular cartilage changes after meniscal allograft transplantation in sheep. Knee Surg Sports Traumatol Arthrosc. 1999, 7: 184-191. 10.1007/s001670050145.CrossRefPubMed Aagaard H, Jorgensen U, Bojsen-Moller F: Reduced degenerative articular cartilage changes after meniscal allograft transplantation in sheep. Knee Surg Sports Traumatol Arthrosc. 1999, 7: 184-191. 10.1007/s001670050145.CrossRefPubMed
15.
go back to reference Fairbank T: Knee joint changes after menisectomy. J Bone Joint Surg. 1948, 30B: 664-670. Fairbank T: Knee joint changes after menisectomy. J Bone Joint Surg. 1948, 30B: 664-670.
16.
go back to reference McDermott ID, Amis AA: The consequences of meniscectomy. J Bone Joint Surg Br. 2006, 88: 1549-1556.CrossRefPubMed McDermott ID, Amis AA: The consequences of meniscectomy. J Bone Joint Surg Br. 2006, 88: 1549-1556.CrossRefPubMed
17.
go back to reference Angele P, Johnstone B, Kujat R, Zellner J, Nerlich M, Goldberg V, Yoo J: Stem cell based tissue engineering for meniscus repair. J Biomed Mater Res A. 2008, 85: 445-455.CrossRefPubMed Angele P, Johnstone B, Kujat R, Zellner J, Nerlich M, Goldberg V, Yoo J: Stem cell based tissue engineering for meniscus repair. J Biomed Mater Res A. 2008, 85: 445-455.CrossRefPubMed
18.
go back to reference Buma P, Ramrattan NN, van Tienen TG, Veth RP: Tissue engineering of the meniscus. Biomaterials. 2004, 25: 1523-1532. 10.1016/S0142-9612(03)00499-X.CrossRefPubMed Buma P, Ramrattan NN, van Tienen TG, Veth RP: Tissue engineering of the meniscus. Biomaterials. 2004, 25: 1523-1532. 10.1016/S0142-9612(03)00499-X.CrossRefPubMed
19.
go back to reference Nakata K, Shino K, Hamada M, Mae T, Miyama T, Shinjo H, Horibe S, Tada K, Ochi T, Yoshikawa H: Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin Orthop Relat Res. 2001, 391 (Suppl): S208-218.CrossRefPubMed Nakata K, Shino K, Hamada M, Mae T, Miyama T, Shinjo H, Horibe S, Tada K, Ochi T, Yoshikawa H: Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin Orthop Relat Res. 2001, 391 (Suppl): S208-218.CrossRefPubMed
20.
go back to reference Chiari C, Koller U, Dorotka R, Eder C, Plasenzotti R, Lang S, Ambrosio L, Tognana E, Kon E, Salter D, Nehrer S: A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthritis Cartilage. 2006, 14: 1056-1065. 10.1016/j.joca.2006.04.007.CrossRefPubMed Chiari C, Koller U, Dorotka R, Eder C, Plasenzotti R, Lang S, Ambrosio L, Tognana E, Kon E, Salter D, Nehrer S: A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthritis Cartilage. 2006, 14: 1056-1065. 10.1016/j.joca.2006.04.007.CrossRefPubMed
21.
go back to reference Marsano A, Millward-Sadler SJ, Salter DM, Adesida A, Hardingham T, Tognana E, Kon E, Chiari-Grisar C, Nehrer S, Jakob M, Martin I: Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes. Osteoarthritis Cartilage. 2007, 15: 48-58. 10.1016/j.joca.2006.06.009.CrossRefPubMed Marsano A, Millward-Sadler SJ, Salter DM, Adesida A, Hardingham T, Tognana E, Kon E, Chiari-Grisar C, Nehrer S, Jakob M, Martin I: Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes. Osteoarthritis Cartilage. 2007, 15: 48-58. 10.1016/j.joca.2006.06.009.CrossRefPubMed
22.
go back to reference Marsano A, Wendt D, Raiteri R, Gottardi R, Stolz M, Wirz D, Daniels AU, Salter D, Jakob M, Quinn TM, Martin I: Use of hydrodynamic forces to engineer cartilaginous tissues resembling the non-uniform structure and function of meniscus. Biomaterials. 2006, 27: 5927-5934. 10.1016/j.biomaterials.2006.08.020.CrossRefPubMed Marsano A, Wendt D, Raiteri R, Gottardi R, Stolz M, Wirz D, Daniels AU, Salter D, Jakob M, Quinn TM, Martin I: Use of hydrodynamic forces to engineer cartilaginous tissues resembling the non-uniform structure and function of meniscus. Biomaterials. 2006, 27: 5927-5934. 10.1016/j.biomaterials.2006.08.020.CrossRefPubMed
23.
go back to reference Baker BM, Nathan AS, Huffman GR, Mauck RL: Tissue engineering with meniscus cells derived from surgical debris. Osteoarthritis Cartilage. 2009, 17: 336-345. 10.1016/j.joca.2008.08.001.PubMedCentralCrossRefPubMed Baker BM, Nathan AS, Huffman GR, Mauck RL: Tissue engineering with meniscus cells derived from surgical debris. Osteoarthritis Cartilage. 2009, 17: 336-345. 10.1016/j.joca.2008.08.001.PubMedCentralCrossRefPubMed
24.
go back to reference Gunja NJ, Athanasiou KA: Effects of co-cultures of meniscus cells and articular chondrocytes on PLLA scaffolds. Biotechnol Bioeng. 2009, 103: 808-816. 10.1002/bit.22301.CrossRefPubMed Gunja NJ, Athanasiou KA: Effects of co-cultures of meniscus cells and articular chondrocytes on PLLA scaffolds. Biotechnol Bioeng. 2009, 103: 808-816. 10.1002/bit.22301.CrossRefPubMed
25.
go back to reference Pabbruwe MB, Kafienah W, Tarlton JF, Mistry S, Fox DJ, Hollander AP: Repair of meniscal cartilage white zone tears using a stem cell/collagen-scaffold implant. Biomaterials. 2010, 31: 2583-2591. 10.1016/j.biomaterials.2009.12.023.CrossRefPubMed Pabbruwe MB, Kafienah W, Tarlton JF, Mistry S, Fox DJ, Hollander AP: Repair of meniscal cartilage white zone tears using a stem cell/collagen-scaffold implant. Biomaterials. 2010, 31: 2583-2591. 10.1016/j.biomaterials.2009.12.023.CrossRefPubMed
26.
go back to reference Martinek V, Ueblacker P, Braun K, Nitschke S, Mannhardt R, Specht K, Gansbacher B, Imhoff AB: Second generation of meniscus transplantation: in vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg. 2006, 126: 228-234. 10.1007/s00402-005-0025-1.CrossRefPubMed Martinek V, Ueblacker P, Braun K, Nitschke S, Mannhardt R, Specht K, Gansbacher B, Imhoff AB: Second generation of meniscus transplantation: in vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg. 2006, 126: 228-234. 10.1007/s00402-005-0025-1.CrossRefPubMed
27.
go back to reference Hoben GM, Athanasiou KA: Meniscal repair with fibrocartilage engineering. Sports Med Arthrosc. 2006, 14: 129-137. 10.1097/00132585-200609000-00004.CrossRefPubMed Hoben GM, Athanasiou KA: Meniscal repair with fibrocartilage engineering. Sports Med Arthrosc. 2006, 14: 129-137. 10.1097/00132585-200609000-00004.CrossRefPubMed
28.
go back to reference Hoben GM, Athanasiou KA: Creating a spectrum of fibrocartilages through different cell sources and biochemical stimuli. Biotechnol Bioeng. 2008, 100: 587-598. 10.1002/bit.21768.CrossRefPubMed Hoben GM, Athanasiou KA: Creating a spectrum of fibrocartilages through different cell sources and biochemical stimuli. Biotechnol Bioeng. 2008, 100: 587-598. 10.1002/bit.21768.CrossRefPubMed
29.
go back to reference Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science. 1999, 284: 143-147. 10.1126/science.284.5411.143.CrossRefPubMed Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science. 1999, 284: 143-147. 10.1126/science.284.5411.143.CrossRefPubMed
30.
go back to reference Makris EA, Hadidi P, Athanasiou KA: The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011, 32: 7411-7431. 10.1016/j.biomaterials.2011.06.037.PubMedCentralCrossRefPubMed Makris EA, Hadidi P, Athanasiou KA: The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011, 32: 7411-7431. 10.1016/j.biomaterials.2011.06.037.PubMedCentralCrossRefPubMed
31.
go back to reference Caplan AI, Dennis JE: Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006, 98: 1076-1084. 10.1002/jcb.20886.CrossRefPubMed Caplan AI, Dennis JE: Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006, 98: 1076-1084. 10.1002/jcb.20886.CrossRefPubMed
32.
go back to reference Yamamoto Y, Mochida J, Sakai D, Nakai T, Nishimura K, Kawada H, Hotta T: Upregulation of the viability of nucleus pulposus cells by bone marrow-derived stromal cells: significance of direct cell-to-cell contact in coculture system. Spine. 2004, 29: 1508-1514. 10.1097/01.BRS.0000131416.90906.20.CrossRefPubMed Yamamoto Y, Mochida J, Sakai D, Nakai T, Nishimura K, Kawada H, Hotta T: Upregulation of the viability of nucleus pulposus cells by bone marrow-derived stromal cells: significance of direct cell-to-cell contact in coculture system. Spine. 2004, 29: 1508-1514. 10.1097/01.BRS.0000131416.90906.20.CrossRefPubMed
33.
go back to reference Vadala G, Studer RK, Sowa G, Spiezia F, Iucu C, Denaro V, Gilbertson LG, Kang JD: Coculture of bone marrow mesenchymal stem cells and nucleus pulposus cells modulate gene expression profile without cell fusion. Spine. 2008, 33: 870-876. 10.1097/BRS.0b013e31816b4619.CrossRefPubMed Vadala G, Studer RK, Sowa G, Spiezia F, Iucu C, Denaro V, Gilbertson LG, Kang JD: Coculture of bone marrow mesenchymal stem cells and nucleus pulposus cells modulate gene expression profile without cell fusion. Spine. 2008, 33: 870-876. 10.1097/BRS.0b013e31816b4619.CrossRefPubMed
34.
go back to reference Richardson SM, Walker RV, Parker S, Rhodes NP, Hunt JA, Freemont AJ, Hoyland JA: Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells. 2006, 24: 707-716. 10.1634/stemcells.2005-0205.CrossRefPubMed Richardson SM, Walker RV, Parker S, Rhodes NP, Hunt JA, Freemont AJ, Hoyland JA: Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells. 2006, 24: 707-716. 10.1634/stemcells.2005-0205.CrossRefPubMed
35.
go back to reference Acharya C, Adesida A, Zajac P, Mumme M, Riesle J, Martin I, Barbero A: Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation. J Cell Physiol. 2012, 227: 88-97. 10.1002/jcp.22706.CrossRefPubMed Acharya C, Adesida A, Zajac P, Mumme M, Riesle J, Martin I, Barbero A: Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation. J Cell Physiol. 2012, 227: 88-97. 10.1002/jcp.22706.CrossRefPubMed
36.
go back to reference Tsuchiya K, Chen GP, Ushida T, Matsuno T, Tateishi T: The effect of coculture of chondrocytes with mesenchymal stem cells on their cartilaginous phenotype. Materials Science and Engineering C. 2004, 24: 391-396. 10.1016/j.msec.2003.12.014.CrossRef Tsuchiya K, Chen GP, Ushida T, Matsuno T, Tateishi T: The effect of coculture of chondrocytes with mesenchymal stem cells on their cartilaginous phenotype. Materials Science and Engineering C. 2004, 24: 391-396. 10.1016/j.msec.2003.12.014.CrossRef
37.
go back to reference Hendriks J, Riesle J, van Blitterswijk CA: Co-culture in cartilage tissue engineering. J Tissue Eng Regen Med. 2007, 1: 170-178. 10.1002/term.19.CrossRefPubMed Hendriks J, Riesle J, van Blitterswijk CA: Co-culture in cartilage tissue engineering. J Tissue Eng Regen Med. 2007, 1: 170-178. 10.1002/term.19.CrossRefPubMed
38.
go back to reference Hendriks JA, Miclea RL, Schotel R, de Bruijn E, Moroni L, Karperien M, Riesle J, van Blitterswijk CA: Primary chondrocytes enhance cartilage tissue formation upon co-culture with a range of cell types. Soft Matter. 2010, 6: 5080-5088. 10.1039/c0sm00266f.CrossRef Hendriks JA, Miclea RL, Schotel R, de Bruijn E, Moroni L, Karperien M, Riesle J, van Blitterswijk CA: Primary chondrocytes enhance cartilage tissue formation upon co-culture with a range of cell types. Soft Matter. 2010, 6: 5080-5088. 10.1039/c0sm00266f.CrossRef
39.
go back to reference Matthies N, Mulet-Sierra A, Jomha NM, Adesida A: Matrix formation is enhanced in co-cultures of human meniscus cells with bone marrow stromal cells. J Tissue Eng Regen Med. 2012. Matthies N, Mulet-Sierra A, Jomha NM, Adesida A: Matrix formation is enhanced in co-cultures of human meniscus cells with bone marrow stromal cells. J Tissue Eng Regen Med. 2012.
40.
go back to reference Cui X, Hasegawa A, Lotz M, D'Lima D: Structured three-dimensional co-culture of mesenchymal stem cells with meniscus cells promotes meniscal phenotype without hypertrophy. Biotechnol Bioeng. 2012. Cui X, Hasegawa A, Lotz M, D'Lima D: Structured three-dimensional co-culture of mesenchymal stem cells with meniscus cells promotes meniscal phenotype without hypertrophy. Biotechnol Bioeng. 2012.
41.
go back to reference Mauck RL, Martinez-Diaz GJ, Yuan X, Tuan RS: Regional multilineage differentiation potential of meniscal fibrochondrocytes: implications for meniscus repair. Anat Rec (Hoboken). 2007, 290: 48-58. 10.1002/ar.20419.CrossRef Mauck RL, Martinez-Diaz GJ, Yuan X, Tuan RS: Regional multilineage differentiation potential of meniscal fibrochondrocytes: implications for meniscus repair. Anat Rec (Hoboken). 2007, 290: 48-58. 10.1002/ar.20419.CrossRef
42.
go back to reference Upton ML, Chen J, Setton LA: Region-specific constitutive gene expression in the adult porcine meniscus. J Orthop Res. 2006, 24: 1562-1570. 10.1002/jor.20146.CrossRefPubMed Upton ML, Chen J, Setton LA: Region-specific constitutive gene expression in the adult porcine meniscus. J Orthop Res. 2006, 24: 1562-1570. 10.1002/jor.20146.CrossRefPubMed
43.
go back to reference Furumatsu T, Kanazawa T, Yokoyama Y, Abe N, Ozaki T: Inner meniscus cells maintain higher chondrogenic phenotype compared with outer meniscus cells. Connect Tissue Res. 2011, 52: 459-465. 10.3109/03008207.2011.562061.CrossRefPubMed Furumatsu T, Kanazawa T, Yokoyama Y, Abe N, Ozaki T: Inner meniscus cells maintain higher chondrogenic phenotype compared with outer meniscus cells. Connect Tissue Res. 2011, 52: 459-465. 10.3109/03008207.2011.562061.CrossRefPubMed
44.
go back to reference Adesida AB, Grady LM, Khan WS, Millward-Sadler SJ, Salter DM, Hardingham TE: Human meniscus cells express hypoxia inducible factor-1alpha and increased SOX9 in response to low oxygen tension in cell aggregate culture. Arthritis Res Ther. 2007, 9: R69-10.1186/ar2267.PubMedCentralCrossRefPubMed Adesida AB, Grady LM, Khan WS, Millward-Sadler SJ, Salter DM, Hardingham TE: Human meniscus cells express hypoxia inducible factor-1alpha and increased SOX9 in response to low oxygen tension in cell aggregate culture. Arthritis Res Ther. 2007, 9: R69-10.1186/ar2267.PubMedCentralCrossRefPubMed
45.
go back to reference Mastrogiacomo M, Cancedda R, Quarto R: Effect of different growth factors on the chondrogenic potential of human bone marrow stromal cells. Osteoarthritis Cartilage. 2001, 9: S36-40.CrossRefPubMed Mastrogiacomo M, Cancedda R, Quarto R: Effect of different growth factors on the chondrogenic potential of human bone marrow stromal cells. Osteoarthritis Cartilage. 2001, 9: S36-40.CrossRefPubMed
46.
go back to reference Adesida A, Matthies N, Sierra A, Studzinski J, Churchill T, Masson E, Jomha N: Human meniscus cells' matrix is enhanced after coculture with bone marrow stromal cells and further by low oxygen tension. Paper presented at: 57th Annual Meeting of the Orthopaedic Research Society; 13-16 Jan. 2011; Long Beach, CA, USA Adesida A, Matthies N, Sierra A, Studzinski J, Churchill T, Masson E, Jomha N: Human meniscus cells' matrix is enhanced after coculture with bone marrow stromal cells and further by low oxygen tension. Paper presented at: 57th Annual Meeting of the Orthopaedic Research Society; 13-16 Jan. 2011; Long Beach, CA, USA
47.
go back to reference Farndale RW, Buttle DJ, Barrett AJ: Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986, 883: 173-177. 10.1016/0304-4165(86)90306-5.CrossRefPubMed Farndale RW, Buttle DJ, Barrett AJ: Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986, 883: 173-177. 10.1016/0304-4165(86)90306-5.CrossRefPubMed
48.
go back to reference Murdoch AD, Grady LM, Ablett MP, Katopodi T, Meadows RS, Hardingham TE: Chondrogenic differentiation of human bone marrow stem cells in transwell cultures: generation of scaffold-free cartilage. Stem Cells. 2007, 25: 2786-2796. 10.1634/stemcells.2007-0374.CrossRefPubMed Murdoch AD, Grady LM, Ablett MP, Katopodi T, Meadows RS, Hardingham TE: Chondrogenic differentiation of human bone marrow stem cells in transwell cultures: generation of scaffold-free cartilage. Stem Cells. 2007, 25: 2786-2796. 10.1634/stemcells.2007-0374.CrossRefPubMed
49.
go back to reference Adesida AB, Grady LM, Khan WS, Hardingham TE: The matrix-forming phenotype of cultured human meniscus cells is enhanced after culture with fibroblast growth factor 2 and is further stimulated by hypoxia. Arthritis Res Ther. 2006, 8: R61-10.1186/ar1929.PubMedCentralCrossRefPubMed Adesida AB, Grady LM, Khan WS, Hardingham TE: The matrix-forming phenotype of cultured human meniscus cells is enhanced after culture with fibroblast growth factor 2 and is further stimulated by hypoxia. Arthritis Res Ther. 2006, 8: R61-10.1186/ar1929.PubMedCentralCrossRefPubMed
50.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-[delta][delta]CT method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.CrossRefPubMed Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-[delta][delta]CT method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.CrossRefPubMed
51.
go back to reference Jakob M, Demarteau O, Schafer D, Stumm M, Heberer M, Martin I: Enzymatic digestion of adult human articular cartilage yields a small fraction of the total available cells. Connect Tissue Res. 2003, 44: 173-180.CrossRefPubMed Jakob M, Demarteau O, Schafer D, Stumm M, Heberer M, Martin I: Enzymatic digestion of adult human articular cartilage yields a small fraction of the total available cells. Connect Tissue Res. 2003, 44: 173-180.CrossRefPubMed
52.
go back to reference Ahmed N, Dreier R, Gopferich A, Grifka J, Grassel S: Soluble signalling factors derived from differentiated cartilage tissue affect chondrogenic differentiation of rat adult marrow stromal cells. Cell Physiol Biochem. 2007, 20: 665-678.CrossRefPubMed Ahmed N, Dreier R, Gopferich A, Grifka J, Grassel S: Soluble signalling factors derived from differentiated cartilage tissue affect chondrogenic differentiation of rat adult marrow stromal cells. Cell Physiol Biochem. 2007, 20: 665-678.CrossRefPubMed
53.
go back to reference Sun Y, Mauerhan DR, Honeycutt PR, Kneisl JS, Norton JH, Hanley EN, Gruber HE: Analysis of meniscal degeneration and meniscal gene expression. BMC Musculoskelet Disord. 2010, 11: 19-10.1186/1471-2474-11-19.PubMedCentralCrossRefPubMed Sun Y, Mauerhan DR, Honeycutt PR, Kneisl JS, Norton JH, Hanley EN, Gruber HE: Analysis of meniscal degeneration and meniscal gene expression. BMC Musculoskelet Disord. 2010, 11: 19-10.1186/1471-2474-11-19.PubMedCentralCrossRefPubMed
54.
go back to reference Wu L, Leijten JC, Georgi N, Post JN, van Blitterswijk C, Karperien M: Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng Part A. 2011, 17: 1425-1436. 10.1089/ten.tea.2010.0517.CrossRefPubMed Wu L, Leijten JC, Georgi N, Post JN, van Blitterswijk C, Karperien M: Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng Part A. 2011, 17: 1425-1436. 10.1089/ten.tea.2010.0517.CrossRefPubMed
55.
go back to reference Djurasovic M, Aldridge JW, Grumbles R, Rosenwasser MP, Howell D, Ratcliffe A: Knee joint immobilization decreases aggrecan gene expression in the meniscus. Am J Sports Med. 1998, 26: 460-466.PubMed Djurasovic M, Aldridge JW, Grumbles R, Rosenwasser MP, Howell D, Ratcliffe A: Knee joint immobilization decreases aggrecan gene expression in the meniscus. Am J Sports Med. 1998, 26: 460-466.PubMed
56.
go back to reference Hellio LGM, Reno C, Hart DA: Gene expression in menisci from the knees of skeletally immature and mature female rabbits. J Orthop Res. 1999, 17: 738-744. 10.1002/jor.1100170518.CrossRef Hellio LGM, Reno C, Hart DA: Gene expression in menisci from the knees of skeletally immature and mature female rabbits. J Orthop Res. 1999, 17: 738-744. 10.1002/jor.1100170518.CrossRef
57.
go back to reference Brew CJ, Clegg PD, Boot-Handford RP, Andrew JG, Hardingham T: Gene expression in human chondrocytes in late osteoarthritis is changed in both fibrillated and intact cartilage without evidence of generalised chondrocyte hypertrophy. Ann Rheum Dis. 2010, 69: 234-240. 10.1136/ard.2008.097139.CrossRefPubMed Brew CJ, Clegg PD, Boot-Handford RP, Andrew JG, Hardingham T: Gene expression in human chondrocytes in late osteoarthritis is changed in both fibrillated and intact cartilage without evidence of generalised chondrocyte hypertrophy. Ann Rheum Dis. 2010, 69: 234-240. 10.1136/ard.2008.097139.CrossRefPubMed
58.
go back to reference Aigner T, Gebhard PM, Schmid E, Bau B, Harley V, Poschl E: SOX9 expression does not correlate with type II collagen expression in adult articular chondrocytes. Matrix Biol. 2003, 22: 363-372. 10.1016/S0945-053X(03)00049-0.CrossRefPubMed Aigner T, Gebhard PM, Schmid E, Bau B, Harley V, Poschl E: SOX9 expression does not correlate with type II collagen expression in adult articular chondrocytes. Matrix Biol. 2003, 22: 363-372. 10.1016/S0945-053X(03)00049-0.CrossRefPubMed
59.
go back to reference Gebhard PM, Gehrsitz A, Bau B, Soder S, Eger W, Aigner T: Quantification of expression levels of cellular differentiation markers does not support a general shift in the cellular phenotype of osteoarthritic chondrocytes. J Orthop Res. 2003, 21: 96-101. 10.1016/S0736-0266(02)00094-3.CrossRefPubMed Gebhard PM, Gehrsitz A, Bau B, Soder S, Eger W, Aigner T: Quantification of expression levels of cellular differentiation markers does not support a general shift in the cellular phenotype of osteoarthritic chondrocytes. J Orthop Res. 2003, 21: 96-101. 10.1016/S0736-0266(02)00094-3.CrossRefPubMed
60.
go back to reference Marriott A, Ayad S, Grant ME: The synthesis of type × collagen by bovine and human growth-plate chondrocytes. J Cell Sci. 1991, 99: 641-649.PubMed Marriott A, Ayad S, Grant ME: The synthesis of type × collagen by bovine and human growth-plate chondrocytes. J Cell Sci. 1991, 99: 641-649.PubMed
61.
go back to reference Hellio Le Graverand MP, Sciore P, Eggerer J, Rattner JP, Vignon E, Barclay L, Hart DA, Rattner JB: Formation and phenotype of cell clusters in osteoarthritic meniscus. Arthritis Rheum. 2001, 44: 1808-1818. 10.1002/1529-0131(200108)44:8<1808::AID-ART318>3.0.CO;2-B.CrossRefPubMed Hellio Le Graverand MP, Sciore P, Eggerer J, Rattner JP, Vignon E, Barclay L, Hart DA, Rattner JB: Formation and phenotype of cell clusters in osteoarthritic meniscus. Arthritis Rheum. 2001, 44: 1808-1818. 10.1002/1529-0131(200108)44:8<1808::AID-ART318>3.0.CO;2-B.CrossRefPubMed
62.
go back to reference Alvarez J, Balbin M, Santos F, Fernandez M, Ferrando S, Lopez JM: Different bone growth rates are associated with changes in the expression pattern of types II and × collagens and collagenase 3 in proximal growth plates of the rat tibia. J Bone Miner Res. 2000, 15: 82-94. 10.1359/jbmr.2000.15.1.82.CrossRefPubMed Alvarez J, Balbin M, Santos F, Fernandez M, Ferrando S, Lopez JM: Different bone growth rates are associated with changes in the expression pattern of types II and × collagens and collagenase 3 in proximal growth plates of the rat tibia. J Bone Miner Res. 2000, 15: 82-94. 10.1359/jbmr.2000.15.1.82.CrossRefPubMed
63.
go back to reference Kronenberg HM, Lee K, Lanske B, Segre GV: Parathyroid hormone-related protein and Indian hedgehog control the pace of cartilage differentiation. J Endocrinol. 1997, 154 (Suppl): S39-45.PubMed Kronenberg HM, Lee K, Lanske B, Segre GV: Parathyroid hormone-related protein and Indian hedgehog control the pace of cartilage differentiation. J Endocrinol. 1997, 154 (Suppl): S39-45.PubMed
64.
go back to reference Kafienah W, Mistry S, Dickinson SC, Sims TJ, Learmonth I, Hollander AP: Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis Rheum. 2007, 56: 177-187. 10.1002/art.22285.CrossRefPubMed Kafienah W, Mistry S, Dickinson SC, Sims TJ, Learmonth I, Hollander AP: Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis Rheum. 2007, 56: 177-187. 10.1002/art.22285.CrossRefPubMed
65.
go back to reference Kobayashi K, Fujimoto E, Deie M, Sumen Y, Ikuta Y, Ochi M: Regional differences in the healing potential of the meniscus--an organ culture model to eliminate the influence of microvasculature and the synovium. Knee. 2004, 11: 271-278. 10.1016/j.knee.2002.03.001.CrossRefPubMed Kobayashi K, Fujimoto E, Deie M, Sumen Y, Ikuta Y, Ochi M: Regional differences in the healing potential of the meniscus--an organ culture model to eliminate the influence of microvasculature and the synovium. Knee. 2004, 11: 271-278. 10.1016/j.knee.2002.03.001.CrossRefPubMed
Metadata
Title
Decreased hypertrophic differentiation accompanies enhanced matrix formation in co-cultures of outer meniscus cells with bone marrow mesenchymal stromal cells
Authors
David JJ Saliken
Aillette Mulet-Sierra
Nadr M Jomha
Adetola B Adesida
Publication date
01-06-2012
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 3/2012
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/ar3889

Other articles of this Issue 3/2012

Arthritis Research & Therapy 3/2012 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.