Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2014

Open Access 01-12-2014 | Technical advance

Visualisation of time-varying respiratory system elastance in experimental ARDS animal models

Authors: Erwin J van Drunen, Yeong Shiong Chiew, Christopher Pretty, Geoffrey M Shaw, Bernard Lambermont, Nathalie Janssen, J Geoffrey Chase, Thomas Desaive

Published in: BMC Pulmonary Medicine | Issue 1/2014

Login to get access

Abstract

Background

Patients with acute respiratory distress syndrome (ARDS) risk lung collapse, severely altering the breath-to-breath respiratory mechanics. Model-based estimation of respiratory mechanics characterising patient-specific condition and response to treatment may be used to guide mechanical ventilation (MV). This study presents a model-based approach to monitor time-varying patient-ventilator interaction to guide positive end expiratory pressure (PEEP) selection.

Methods

The single compartment lung model was extended to monitor dynamic time-varying respiratory system elastance, E drs , within each breathing cycle. Two separate animal models were considered, each consisting of three fully sedated pure pietrain piglets (oleic acid ARDS and lavage ARDS). A staircase recruitment manoeuvre was performed on all six subjects after ARDS was induced. The E drs was mapped across each breathing cycle for each subject.

Results

Six time-varying, breath-specific E drs maps were generated, one for each subject. Each E drs map shows the subject-specific response to mechanical ventilation (MV), indicating the need for a model-based approach to guide MV. This method of visualisation provides high resolution insight into the time-varying respiratory mechanics to aid clinical decision making. Using the E drs maps, minimal time-varying elastance was identified, which can be used to select optimal PEEP.

Conclusions

Real-time continuous monitoring of in-breath mechanics provides further insight into lung physiology. Therefore, there is potential for this new monitoring method to aid clinicians in guiding MV treatment. These are the first such maps generated and they thus show unique results in high resolution. The model is limited to a constant respiratory resistance throughout inspiration which may not be valid in some cases. However, trends match clinical expectation and the results highlight both the subject-specificity of the model, as well as significant inter-subject variability.
Appendix
Available only for authorised users
Literature
1.
go back to reference The ARDS Definition Task Force A: Acute respiratory distress syndrome: the berlin definition. JAMA. 2012, 307 (23): 2526-2533. The ARDS Definition Task Force A: Acute respiratory distress syndrome: the berlin definition. JAMA. 2012, 307 (23): 2526-2533.
2.
go back to reference Gattinoni L, Pesenti A: The concept of “baby lung”. Intensive Care Med. 2005, 31 (6): 776-784. 10.1007/s00134-005-2627-z.CrossRefPubMed Gattinoni L, Pesenti A: The concept of “baby lung”. Intensive Care Med. 2005, 31 (6): 776-784. 10.1007/s00134-005-2627-z.CrossRefPubMed
3.
go back to reference Amato MBP, Barbas CSV, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CRR: Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998, 338 (6): 347-354. 10.1056/NEJM199802053380602.CrossRefPubMed Amato MBP, Barbas CSV, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CRR: Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998, 338 (6): 347-354. 10.1056/NEJM199802053380602.CrossRefPubMed
4.
go back to reference The Acute Respiratory Distress Syndrome Network: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000, 342 (18): 1301-1308.CrossRef The Acute Respiratory Distress Syndrome Network: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000, 342 (18): 1301-1308.CrossRef
5.
go back to reference McCann UG, Schiller HJ, Carney DE, Gatto LA, Steinberg JM, Nieman GF: Visual validation of the mechanical stabilizing effects of positive end-expiratory pressure at the alveolar level. J Surg Res. 2001, 99 (2): 335-342. 10.1006/jsre.2001.6179.CrossRefPubMed McCann UG, Schiller HJ, Carney DE, Gatto LA, Steinberg JM, Nieman GF: Visual validation of the mechanical stabilizing effects of positive end-expiratory pressure at the alveolar level. J Surg Res. 2001, 99 (2): 335-342. 10.1006/jsre.2001.6179.CrossRefPubMed
6.
go back to reference Halter JM, Steinberg JM, Schiller HJ, DaSilva M, Gatto LA, Landas S, Nieman GF: Positive End-expiratory pressure after a recruitment maneuver prevents both alveolar collapse and recruitment/derecruitment. Am J Respir Crit Care Med. 2003, 167 (12): 1620-1626. 10.1164/rccm.200205-435OC.CrossRefPubMed Halter JM, Steinberg JM, Schiller HJ, DaSilva M, Gatto LA, Landas S, Nieman GF: Positive End-expiratory pressure after a recruitment maneuver prevents both alveolar collapse and recruitment/derecruitment. Am J Respir Crit Care Med. 2003, 167 (12): 1620-1626. 10.1164/rccm.200205-435OC.CrossRefPubMed
7.
go back to reference Gattinoni L, Carlesso E, Brazzi L, Caironi P: Positive end-expiratory pressure. Curr Opin Crit Care. 2010, 16 (1): 39-44. 10.1097/MCC.0b013e3283354723.CrossRefPubMed Gattinoni L, Carlesso E, Brazzi L, Caironi P: Positive end-expiratory pressure. Curr Opin Crit Care. 2010, 16 (1): 39-44. 10.1097/MCC.0b013e3283354723.CrossRefPubMed
8.
go back to reference Lauzon AM, Bates JH: Estimation of time-varying respiratory mechanical parameters by recursive least squares. J Appl Physiol. 1991, 71 (3): 1159-1165.PubMed Lauzon AM, Bates JH: Estimation of time-varying respiratory mechanical parameters by recursive least squares. J Appl Physiol. 1991, 71 (3): 1159-1165.PubMed
9.
go back to reference Sundaresan A, Yuta T, Hann CE, Geoffrey Chase J, Shaw GM: A minimal model of lung mechanics and model-based markers for optimizing ventilator treatment in ARDS patients. Comput Methods Programs Biomed. 2009, 95 (2): 166-180. 10.1016/j.cmpb.2009.02.008.CrossRefPubMed Sundaresan A, Yuta T, Hann CE, Geoffrey Chase J, Shaw GM: A minimal model of lung mechanics and model-based markers for optimizing ventilator treatment in ARDS patients. Comput Methods Programs Biomed. 2009, 95 (2): 166-180. 10.1016/j.cmpb.2009.02.008.CrossRefPubMed
10.
go back to reference Ma B, Bates J: Modeling the complex dynamics of derecruitment in the lung. Ann Biomed Eng. 2010, 38 (11): 3466-3477. 10.1007/s10439-010-0095-2.CrossRefPubMed Ma B, Bates J: Modeling the complex dynamics of derecruitment in the lung. Ann Biomed Eng. 2010, 38 (11): 3466-3477. 10.1007/s10439-010-0095-2.CrossRefPubMed
11.
go back to reference Sundaresan A, Chase JG: Positive end expiratory pressure in patients with acute respiratory distress syndrome - The past, present and future. Biomed Signal Process Control. 2011, 7 (2): 93-103.CrossRef Sundaresan A, Chase JG: Positive end expiratory pressure in patients with acute respiratory distress syndrome - The past, present and future. Biomed Signal Process Control. 2011, 7 (2): 93-103.CrossRef
12.
go back to reference Carvalho A, Jandre F, Pino A, Bozza F, Salluh J, Rodrigues R, Ascoli F, Giannella-Neto A: Positive end-expiratory pressure at minimal respiratory elastance represents the best compromise between mechanical stress and lung aeration in oleic acid induced lung injury. Crit Care. 2007, 11 (4): R86-10.1186/cc6093.CrossRefPubMedPubMedCentral Carvalho A, Jandre F, Pino A, Bozza F, Salluh J, Rodrigues R, Ascoli F, Giannella-Neto A: Positive end-expiratory pressure at minimal respiratory elastance represents the best compromise between mechanical stress and lung aeration in oleic acid induced lung injury. Crit Care. 2007, 11 (4): R86-10.1186/cc6093.CrossRefPubMedPubMedCentral
13.
go back to reference Lucangelo U, Bernabè F, Blanch L: Lung mechanics at the bedside: make it simple. Curr Opin Crit Care. 2007, 13 (1): 64-72. 10.1097/MCC.0b013e32801162df.CrossRefPubMed Lucangelo U, Bernabè F, Blanch L: Lung mechanics at the bedside: make it simple. Curr Opin Crit Care. 2007, 13 (1): 64-72. 10.1097/MCC.0b013e32801162df.CrossRefPubMed
14.
go back to reference Suarez-Sipmann F, Bohm SH, Tusman G, Pesch T, Thamm O, Reissmann H, Reske A, Magnusson A, Hedenstierna G: Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med. 2007, 35: 214-221. 10.1097/01.CCM.0000251131.40301.E2.CrossRefPubMed Suarez-Sipmann F, Bohm SH, Tusman G, Pesch T, Thamm O, Reissmann H, Reske A, Magnusson A, Hedenstierna G: Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med. 2007, 35: 214-221. 10.1097/01.CCM.0000251131.40301.E2.CrossRefPubMed
15.
go back to reference Lambermont B, Ghuysen A, Janssen N, Morimont P, Hartstein G, Gerard P, D’Orio V: Comparison of functional residual capacity and static compliance of the respiratory system during a positive end-expiratory pressure (PEEP) ramp procedure in an experimental model of acute respiratory distress syndrome. Crit Care. 2008, 12 (4): R91-10.1186/cc6961.CrossRefPubMedPubMedCentral Lambermont B, Ghuysen A, Janssen N, Morimont P, Hartstein G, Gerard P, D’Orio V: Comparison of functional residual capacity and static compliance of the respiratory system during a positive end-expiratory pressure (PEEP) ramp procedure in an experimental model of acute respiratory distress syndrome. Crit Care. 2008, 12 (4): R91-10.1186/cc6961.CrossRefPubMedPubMedCentral
16.
go back to reference Brochard L, Martin G, Blanch L, Pelosi P, Belda FJ, Jubran A, Gattinoni L, Mancebo J, Ranieri VM, Richard J-C, Gommers D, Vieillard-Baron A, Pesenti A, Jaber S, Stenqvist O, Vincent J-L: Clinical review: Respiratory monitoring in the ICU - a consensus of 16. Crit Care. 2012, 16 (2): 219-10.1186/cc11146.CrossRefPubMedPubMedCentral Brochard L, Martin G, Blanch L, Pelosi P, Belda FJ, Jubran A, Gattinoni L, Mancebo J, Ranieri VM, Richard J-C, Gommers D, Vieillard-Baron A, Pesenti A, Jaber S, Stenqvist O, Vincent J-L: Clinical review: Respiratory monitoring in the ICU - a consensus of 16. Crit Care. 2012, 16 (2): 219-10.1186/cc11146.CrossRefPubMedPubMedCentral
17.
go back to reference Chiew YS, Chase JG, Shaw G, Sundaresan A, Desaive T: Model-based PEEP optimisation in mechanical ventilation. Biomed Eng Online. 2011, 10 (1): 111-10.1186/1475-925X-10-111.CrossRefPubMedPubMedCentral Chiew YS, Chase JG, Shaw G, Sundaresan A, Desaive T: Model-based PEEP optimisation in mechanical ventilation. Biomed Eng Online. 2011, 10 (1): 111-10.1186/1475-925X-10-111.CrossRefPubMedPubMedCentral
18.
go back to reference Zhao Z, Guttmann J, Moller K: Adaptive Slice Method: a new method to determine volume dependent dynamic respiratory system mechanics. Physiol Meas. 2012, 33 (1): 51-64. 10.1088/0967-3334/33/1/51.CrossRefPubMed Zhao Z, Guttmann J, Moller K: Adaptive Slice Method: a new method to determine volume dependent dynamic respiratory system mechanics. Physiol Meas. 2012, 33 (1): 51-64. 10.1088/0967-3334/33/1/51.CrossRefPubMed
19.
go back to reference Schranz C, Becher T, Schadler D, Weiler N, Moeller K: Model-based ventialtor settings in pressure controlled ventilation. Congress for the German Swiss and Austrian Society for Biomedical Engineering (BMT2013). 2013, Graz, Austria: Springer Schranz C, Becher T, Schadler D, Weiler N, Moeller K: Model-based ventialtor settings in pressure controlled ventilation. Congress for the German Swiss and Austrian Society for Biomedical Engineering (BMT2013). 2013, Graz, Austria: Springer
20.
go back to reference Esquinas Rodriguez A, Papadakos P, Carron M, Cosentini R, Chiumello D: Clinical review: helmet and non-invasive mechanical ventilation in critically ill patients. Crit Care. 2013, 17 (2): 223-10.1186/cc11875.CrossRefPubMedPubMedCentral Esquinas Rodriguez A, Papadakos P, Carron M, Cosentini R, Chiumello D: Clinical review: helmet and non-invasive mechanical ventilation in critically ill patients. Crit Care. 2013, 17 (2): 223-10.1186/cc11875.CrossRefPubMedPubMedCentral
21.
go back to reference Bates JHT: Lung Mechanics: an inverse modeling approach. 2009, United States of America, New York: Cambridge University PressCrossRef Bates JHT: Lung Mechanics: an inverse modeling approach. 2009, United States of America, New York: Cambridge University PressCrossRef
22.
go back to reference Hann CE, Chase JG, Lin J, Lotz T, Doran CV, Shaw GM: Integral-based parameter identification for long-term dynamic verification of a glucose-insulin system model. Comput Methods Programs Biomed. 2005, 77 (3): 259-270. 10.1016/j.cmpb.2004.10.006.CrossRefPubMed Hann CE, Chase JG, Lin J, Lotz T, Doran CV, Shaw GM: Integral-based parameter identification for long-term dynamic verification of a glucose-insulin system model. Comput Methods Programs Biomed. 2005, 77 (3): 259-270. 10.1016/j.cmpb.2004.10.006.CrossRefPubMed
23.
go back to reference Mols G, Kessler V, Benzing A, Lichtwarck‒Aschoff M, Geiger K, Guttmann J: Is pulmonary resistance constant, within the range of tidal volume ventilation, in patients with ARDS?. Br J Anaesth. 2001, 86 (2): 176-182. 10.1093/bja/86.2.176.CrossRefPubMed Mols G, Kessler V, Benzing A, Lichtwarck‒Aschoff M, Geiger K, Guttmann J: Is pulmonary resistance constant, within the range of tidal volume ventilation, in patients with ARDS?. Br J Anaesth. 2001, 86 (2): 176-182. 10.1093/bja/86.2.176.CrossRefPubMed
24.
go back to reference Chiew YS, Chase JG, Lambermont B, Janssen N, Schranz C, Moeller K, Shaw G, Desaive T: Physiological relevance and performance of a minimal lung model - an experimental study in healthy and acute respiratory distress syndrome model piglets. BMC Pulmonary Medicine. 2012, 12 (1): 59-10.1186/1471-2466-12-59.CrossRefPubMedPubMedCentral Chiew YS, Chase JG, Lambermont B, Janssen N, Schranz C, Moeller K, Shaw G, Desaive T: Physiological relevance and performance of a minimal lung model - an experimental study in healthy and acute respiratory distress syndrome model piglets. BMC Pulmonary Medicine. 2012, 12 (1): 59-10.1186/1471-2466-12-59.CrossRefPubMedPubMedCentral
25.
go back to reference Ballard-Croft C, Wang D, Sumpter LR, Zhou X, Zwischenberger JB: Large-animal models of acute respiratory distress syndrome. Ann Thorac Surg. 2012, 93 (4): 1331-1339. 10.1016/j.athoracsur.2011.06.107.CrossRefPubMed Ballard-Croft C, Wang D, Sumpter LR, Zhou X, Zwischenberger JB: Large-animal models of acute respiratory distress syndrome. Ann Thorac Surg. 2012, 93 (4): 1331-1339. 10.1016/j.athoracsur.2011.06.107.CrossRefPubMed
26.
go back to reference Hodgson CL, Tuxen DV, Bailey MJ, Holland AE, Keating JL, Pilcher D, Thomson KR, Varma D: A positive response to a recruitment maneuver with PEEP titration in patients with ARDS, regardless of transient oxygen desaturation during the maneuver. J Intensive Care Med. 2011, 26 (1): 41-49. 10.1177/0885066610383953.CrossRefPubMed Hodgson CL, Tuxen DV, Bailey MJ, Holland AE, Keating JL, Pilcher D, Thomson KR, Varma D: A positive response to a recruitment maneuver with PEEP titration in patients with ARDS, regardless of transient oxygen desaturation during the maneuver. J Intensive Care Med. 2011, 26 (1): 41-49. 10.1177/0885066610383953.CrossRefPubMed
27.
go back to reference Bates JHT, Irvin CG: Time dependence of recruitment and derecruitment in the lung: a theoretical model. J Appl Physiol. 2002, 93 (2): 705-713.CrossRefPubMed Bates JHT, Irvin CG: Time dependence of recruitment and derecruitment in the lung: a theoretical model. J Appl Physiol. 2002, 93 (2): 705-713.CrossRefPubMed
28.
go back to reference Albert SP, DiRocco J, Allen GB, Bates JHT, Lafollette R, Kubiak BD, Fischer J, Maroney S, Nieman GF: The role of time and pressure on alveolar recruitment. J Appl Physiol. 2009, 106 (3): 757-765. 10.1152/japplphysiol.90735.2008.CrossRefPubMed Albert SP, DiRocco J, Allen GB, Bates JHT, Lafollette R, Kubiak BD, Fischer J, Maroney S, Nieman GF: The role of time and pressure on alveolar recruitment. J Appl Physiol. 2009, 106 (3): 757-765. 10.1152/japplphysiol.90735.2008.CrossRefPubMed
29.
go back to reference Pelosi P, Goldner M, McKibben A, Adams A, Eccher G, Caironi P, Losappio S, Gattinoni L, Marini JJ: Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med. 2001, 164: 122-130. 10.1164/ajrccm.164.1.2007010.CrossRefPubMed Pelosi P, Goldner M, McKibben A, Adams A, Eccher G, Caironi P, Losappio S, Gattinoni L, Marini JJ: Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med. 2001, 164: 122-130. 10.1164/ajrccm.164.1.2007010.CrossRefPubMed
30.
go back to reference Barbas CSV, de Matos GFJ, Pincelli MP, da Rosa Borges E, Antunes T, de Barros JM, Okamoto V, Borges JB, Amato MBP, Ribeiro de Carvalho CR: Mechanical ventilation in acute respiratory failure: recruitment and high positive end-expiratory pressure are necessary. Curr Opin Crit Care. 2005, 11 (1): 18-28. 10.1097/00075198-200502000-00004.CrossRefPubMed Barbas CSV, de Matos GFJ, Pincelli MP, da Rosa Borges E, Antunes T, de Barros JM, Okamoto V, Borges JB, Amato MBP, Ribeiro de Carvalho CR: Mechanical ventilation in acute respiratory failure: recruitment and high positive end-expiratory pressure are necessary. Curr Opin Crit Care. 2005, 11 (1): 18-28. 10.1097/00075198-200502000-00004.CrossRefPubMed
31.
go back to reference Ganzert S, Moller K, Steinmann D, Schumann S, Guttmann J: Pressure-dependent stress relaxation in acute respiratory distress syndrome and healthy lungs: an investigation based on a viscoelastic model. Crit Care. 2009, 13 (6): R199-10.1186/cc8203.CrossRefPubMedPubMedCentral Ganzert S, Moller K, Steinmann D, Schumann S, Guttmann J: Pressure-dependent stress relaxation in acute respiratory distress syndrome and healthy lungs: an investigation based on a viscoelastic model. Crit Care. 2009, 13 (6): R199-10.1186/cc8203.CrossRefPubMedPubMedCentral
32.
go back to reference Andreassen S, Steimle KL, Mogensen ML, Serna JB, Rees S, Karbing DS: The effect of tissue elastic properties and surfactant on alveolar stability. J Appl Physiol. 2010, 109 (5): 1369-1377. 10.1152/japplphysiol.00844.2009.CrossRefPubMedPubMedCentral Andreassen S, Steimle KL, Mogensen ML, Serna JB, Rees S, Karbing DS: The effect of tissue elastic properties and surfactant on alveolar stability. J Appl Physiol. 2010, 109 (5): 1369-1377. 10.1152/japplphysiol.00844.2009.CrossRefPubMedPubMedCentral
33.
go back to reference Crotti S, Mascheroni D, Caironi P, Pelosi P, Ronzoni G, Mondino M, Marini JJ, Gattinoni L: Recruitment and derecruitment during acute respiratory failure. A clinical study. Am J Respir Crit Care Med. 2001, 164 (1): 131-140. 10.1164/ajrccm.164.1.2007011.CrossRefPubMed Crotti S, Mascheroni D, Caironi P, Pelosi P, Ronzoni G, Mondino M, Marini JJ, Gattinoni L: Recruitment and derecruitment during acute respiratory failure. A clinical study. Am J Respir Crit Care Med. 2001, 164 (1): 131-140. 10.1164/ajrccm.164.1.2007011.CrossRefPubMed
34.
go back to reference Zhao Z, Steinmann D, Frerichs I, Guttmann J, Moller K: PEEP titration guided by ventilation homogeneity: a feasibility study using electrical impedance tomography. Crit Care. 2010, 14: R8-10.1186/cc8860.CrossRefPubMedPubMedCentral Zhao Z, Steinmann D, Frerichs I, Guttmann J, Moller K: PEEP titration guided by ventilation homogeneity: a feasibility study using electrical impedance tomography. Crit Care. 2010, 14: R8-10.1186/cc8860.CrossRefPubMedPubMedCentral
35.
go back to reference Hedenstierna G, Rothen HU: Atelectasis formation during anesthesia: causes and measures to prevent it. J Clin Monit Comput. 2000, 16: 329-335. 10.1023/A:1011491231934.CrossRefPubMed Hedenstierna G, Rothen HU: Atelectasis formation during anesthesia: causes and measures to prevent it. J Clin Monit Comput. 2000, 16: 329-335. 10.1023/A:1011491231934.CrossRefPubMed
36.
go back to reference Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, Slutsky AS, Pullenayegum E, Zhou Q, Cook D, Brochard L, Richard J-CM, Lamontagne F, Bhatnagar N, Stewart TE, Guyatt G: Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: Systematic review and meta-analysis. JAMA. 2010, 303 (9): 865-873. 10.1001/jama.2010.218.CrossRefPubMed Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, Slutsky AS, Pullenayegum E, Zhou Q, Cook D, Brochard L, Richard J-CM, Lamontagne F, Bhatnagar N, Stewart TE, Guyatt G: Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: Systematic review and meta-analysis. JAMA. 2010, 303 (9): 865-873. 10.1001/jama.2010.218.CrossRefPubMed
37.
go back to reference Mercat A, Richard J-CM, Vielle B, Jaber S, Osman D, Diehl J-L, Lefrant J-Y, Prat G, Richecoeur J, Nieszkowska A, Gervais C, Baudot J, Bouadma L, Brochard L, Expiratory Pressure Study Group (Express): Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008, 299 (6): 646-655. 10.1001/jama.299.6.646.CrossRefPubMed Mercat A, Richard J-CM, Vielle B, Jaber S, Osman D, Diehl J-L, Lefrant J-Y, Prat G, Richecoeur J, Nieszkowska A, Gervais C, Baudot J, Bouadma L, Brochard L, Expiratory Pressure Study Group (Express): Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008, 299 (6): 646-655. 10.1001/jama.299.6.646.CrossRefPubMed
38.
go back to reference Huh J, Jung H, Choi H, Hong S-B, Lim C-M, Koh Y: Efficacy of positive end-expiratory pressure titration after the alveolar recruitment manoeuvre in patients with acute respiratory distress syndrome. Crit Care. 2009, 13 (1): R22-10.1186/cc7725.CrossRefPubMedPubMedCentral Huh J, Jung H, Choi H, Hong S-B, Lim C-M, Koh Y: Efficacy of positive end-expiratory pressure titration after the alveolar recruitment manoeuvre in patients with acute respiratory distress syndrome. Crit Care. 2009, 13 (1): R22-10.1186/cc7725.CrossRefPubMedPubMedCentral
39.
go back to reference Suarez-Sipmann F, Bohm S: Recruit the lung before titrating the right positive end-expiratory pressure to protect it. Crit Care. 2009, 13 (3): 134-10.1186/cc7763.CrossRefPubMedPubMedCentral Suarez-Sipmann F, Bohm S: Recruit the lung before titrating the right positive end-expiratory pressure to protect it. Crit Care. 2009, 13 (3): 134-10.1186/cc7763.CrossRefPubMedPubMedCentral
40.
go back to reference Malbouisson LM, Muller J-C, Constantin J-M, Lu QIN, Puybasset L, Rouby J-J, the CTSASG: Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001, 163 (6): 1444-1450. 10.1164/ajrccm.163.6.2005001.CrossRefPubMed Malbouisson LM, Muller J-C, Constantin J-M, Lu QIN, Puybasset L, Rouby J-J, the CTSASG: Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001, 163 (6): 1444-1450. 10.1164/ajrccm.163.6.2005001.CrossRefPubMed
41.
go back to reference Zhao Z, Steinmann D, Muller-Zivkovic D, Martin J, Frerichs I, Guttmann J, Moller K: A lung area estimation method for analysis of ventilation inhomogeneity based on electrical impedance tomography. J Xray Sci Technol. 2010, 18: 171-182.PubMed Zhao Z, Steinmann D, Muller-Zivkovic D, Martin J, Frerichs I, Guttmann J, Moller K: A lung area estimation method for analysis of ventilation inhomogeneity based on electrical impedance tomography. J Xray Sci Technol. 2010, 18: 171-182.PubMed
42.
go back to reference Zhao Z, Moller K, Steinmann D, Frerichs I, Guttmann J: Evaluation of an electrical impedance tomography-based global inhomogeneity index for pulmonary ventilation distribution. Intensive Care Med. 2009, 35: 1900-1906. 10.1007/s00134-009-1589-y.CrossRefPubMed Zhao Z, Moller K, Steinmann D, Frerichs I, Guttmann J: Evaluation of an electrical impedance tomography-based global inhomogeneity index for pulmonary ventilation distribution. Intensive Care Med. 2009, 35: 1900-1906. 10.1007/s00134-009-1589-y.CrossRefPubMed
Metadata
Title
Visualisation of time-varying respiratory system elastance in experimental ARDS animal models
Authors
Erwin J van Drunen
Yeong Shiong Chiew
Christopher Pretty
Geoffrey M Shaw
Bernard Lambermont
Nathalie Janssen
J Geoffrey Chase
Thomas Desaive
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2014
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/1471-2466-14-33

Other articles of this Issue 1/2014

BMC Pulmonary Medicine 1/2014 Go to the issue