Skip to main content
Top
Published in: BMC Medical Imaging 1/2011

Open Access 01-12-2011 | Research article

Volume Tracking: A new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping

Authors: Johannes Töger, Marcus Carlsson, Gustaf Söderlind, Håkan Arheden, Einar Heiberg

Published in: BMC Medical Imaging | Issue 1/2011

Login to get access

Abstract

Background

Functional and morphological changes of the heart influence blood flow patterns. Therefore, flow patterns may carry diagnostic and prognostic information. Three-dimensional, time-resolved, three-directional phase contrast cardiovascular magnetic resonance (4D PC-CMR) can image flow patterns with unique detail, and using new flow visualization methods may lead to new insights. The aim of this study is to present and validate a novel visualization method with a quantitative potential for blood flow from 4D PC-CMR, called Volume Tracking, and investigate if Volume Tracking complements particle tracing, the most common visualization method used today.

Methods

Eight healthy volunteers and one patient with a large apical left ventricular aneurysm underwent 4D PC-CMR flow imaging of the whole heart. Volume Tracking and particle tracing visualizations were compared visually side-by-side in a visualization software package. To validate Volume Tracking, the number of particle traces that agreed with the Volume Tracking visualizations was counted and expressed as a percentage of total released particles in mid-diastole and end-diastole respectively. Two independent observers described blood flow patterns in the left ventricle using Volume Tracking visualizations.

Results

Volume Tracking was feasible in all eight healthy volunteers and in the patient. Visually, Volume Tracking and particle tracing are complementary methods, showing different aspects of the flow. When validated against particle tracing, on average 90.5% and 87.8% of the particles agreed with the Volume Tracking surface in mid-diastole and end-diastole respectively. Inflow patterns in the left ventricle varied between the subjects, with excellent agreement between observers. The left ventricular inflow pattern in the patient differed from the healthy subjects.

Conclusion

Volume Tracking is a new visualization method for blood flow measured by 4D PC-CMR. Volume Tracking complements and provides incremental information compared to particle tracing that may lead to a better understanding of blood flow and may improve diagnosis and prognosis of cardiovascular diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Beppu S, Izumi S, Miyatake K, Nagata S, Park Y, Sakakibara H, Nimura Y: Abnormal blood pathways in left ventricular cavity in acute myocardial infarction. Experimental observations with special reference to regional wall motion abnormality and hemostasis. Circulation. 1988, 78 (1): 157-CrossRefPubMed Beppu S, Izumi S, Miyatake K, Nagata S, Park Y, Sakakibara H, Nimura Y: Abnormal blood pathways in left ventricular cavity in acute myocardial infarction. Experimental observations with special reference to regional wall motion abnormality and hemostasis. Circulation. 1988, 78 (1): 157-CrossRefPubMed
2.
go back to reference Reiter G, Reiter U, Kovacs G, Kainz B, Schmidt K, Maier R, Olschewski H, Rienmueller R: Magnetic Resonance-Derived 3-Dimensional Blood Flow Patterns in the Main Pulmonary Artery as a Marker of Pulmonary Hypertension and a Measure of Elevated Mean Pulmonary Arterial Pressure. Circulation: Cardiovascular Imaging. 2008, 1 (1): 23-10.1161/CIRCIMAGING.108.780247.PubMed Reiter G, Reiter U, Kovacs G, Kainz B, Schmidt K, Maier R, Olschewski H, Rienmueller R: Magnetic Resonance-Derived 3-Dimensional Blood Flow Patterns in the Main Pulmonary Artery as a Marker of Pulmonary Hypertension and a Measure of Elevated Mean Pulmonary Arterial Pressure. Circulation: Cardiovascular Imaging. 2008, 1 (1): 23-10.1161/CIRCIMAGING.108.780247.PubMed
3.
go back to reference Thanigaraj S, Chugh R, Schechtman K, Lee L, Wade R, Pérez J: Defining left ventricular segmental and global function by echocardiographic intraventricular contrast flow patterns. The American journal of cardiology. 2000, 85 (1): 65-68. 10.1016/S0002-9149(99)00608-6.CrossRefPubMed Thanigaraj S, Chugh R, Schechtman K, Lee L, Wade R, Pérez J: Defining left ventricular segmental and global function by echocardiographic intraventricular contrast flow patterns. The American journal of cardiology. 2000, 85 (1): 65-68. 10.1016/S0002-9149(99)00608-6.CrossRefPubMed
4.
go back to reference Garcia M, Smedira N, Greenberg N, Main M, Firstenberg M, Odabashian J, Thomas J: Color M-mode Doppler flow propagation velocity is a preload insensitive index of left ventricular relaxation: animal and human validation. Journal of the American College of Cardiology. 2000, 35 (1): 201-208. 10.1016/S0735-1097(99)00503-3.CrossRefPubMed Garcia M, Smedira N, Greenberg N, Main M, Firstenberg M, Odabashian J, Thomas J: Color M-mode Doppler flow propagation velocity is a preload insensitive index of left ventricular relaxation: animal and human validation. Journal of the American College of Cardiology. 2000, 35 (1): 201-208. 10.1016/S0735-1097(99)00503-3.CrossRefPubMed
5.
go back to reference Wigström L, Sjövist L, Wranne B: Temporally resolved 3D phase-contrast imaging. Magn Reson Med. 1996, 36 (5): 800-3. 10.1002/mrm.1910360521.CrossRefPubMed Wigström L, Sjövist L, Wranne B: Temporally resolved 3D phase-contrast imaging. Magn Reson Med. 1996, 36 (5): 800-3. 10.1002/mrm.1910360521.CrossRefPubMed
6.
go back to reference Dyverfeldt P, Kvitting J, Sigfridsson A, Engvall J, Bolger A, Ebbers T: Assessment of fluctuating velocities in disturbed cardiovascular blood flow: In vivo feasibility of generalized phase-contrast MRI. Journal of Magnetic Resonance Imaging. 2008, 28 (3): 655-663. 10.1002/jmri.21475.CrossRefPubMed Dyverfeldt P, Kvitting J, Sigfridsson A, Engvall J, Bolger A, Ebbers T: Assessment of fluctuating velocities in disturbed cardiovascular blood flow: In vivo feasibility of generalized phase-contrast MRI. Journal of Magnetic Resonance Imaging. 2008, 28 (3): 655-663. 10.1002/jmri.21475.CrossRefPubMed
7.
go back to reference Markl M, Kilner P, Ebbers T: Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance. 2011, 13: 7-10.1186/1532-429X-13-7.CrossRefPubMedPubMedCentral Markl M, Kilner P, Ebbers T: Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance. 2011, 13: 7-10.1186/1532-429X-13-7.CrossRefPubMedPubMedCentral
8.
go back to reference DeFanti T, Brown M, McCormick B: Visualization: Expanding Scientific and Engineering Research Opportunities. Computer. 1989, 22 (8): 12-25. 10.1109/2.35195.CrossRef DeFanti T, Brown M, McCormick B: Visualization: Expanding Scientific and Engineering Research Opportunities. Computer. 1989, 22 (8): 12-25. 10.1109/2.35195.CrossRef
9.
go back to reference Napel S, Lee D, Frayne R, Rutt B: Visualizing three-dimensional flow with simulated streamlines and three-dimensional phase-contrast MR imaging. J Magn Reson Imaging. 1992, 2 (2): 143-153. 10.1002/jmri.1880020206.CrossRefPubMed Napel S, Lee D, Frayne R, Rutt B: Visualizing three-dimensional flow with simulated streamlines and three-dimensional phase-contrast MR imaging. J Magn Reson Imaging. 1992, 2 (2): 143-153. 10.1002/jmri.1880020206.CrossRefPubMed
10.
go back to reference McLoughlin T, Laramee R, Peikert R, Post F, Chen M: Over two decades of integration-based, geometric flow visualization. Computer Graphics Forum. 2010, 29 (6): 1807-1829. 10.1111/j.1467-8659.2010.01650.x.CrossRef McLoughlin T, Laramee R, Peikert R, Post F, Chen M: Over two decades of integration-based, geometric flow visualization. Computer Graphics Forum. 2010, 29 (6): 1807-1829. 10.1111/j.1467-8659.2010.01650.x.CrossRef
11.
go back to reference Post FH, Vrolijk B, Hauser H, Laramee RS, Doleisch H: Feature Extraction and Visualisation of Flow Fields. Proceedings of the Eurographics Conference 2002. Edited by: Fellner D, Scopigno R. 2002, Saarbrücken, Germany: Eurographics Association Post FH, Vrolijk B, Hauser H, Laramee RS, Doleisch H: Feature Extraction and Visualisation of Flow Fields. Proceedings of the Eurographics Conference 2002. Edited by: Fellner D, Scopigno R. 2002, Saarbrücken, Germany: Eurographics Association
12.
go back to reference Wigström L, Ebbers T, Fyrenius A, Karlsson M, Engvall J, Wranne B, Bolger A: Particle Trace Visualization of Intracardiac Flow Using Time-Resolved 3D Phase Contrast MRI. Magnetic Resonance in Medicine. 1999, 41 (4): 793-799. 10.1002/(SICI)1522-2594(199904)41:4<793::AID-MRM19>3.0.CO;2-2.CrossRefPubMed Wigström L, Ebbers T, Fyrenius A, Karlsson M, Engvall J, Wranne B, Bolger A: Particle Trace Visualization of Intracardiac Flow Using Time-Resolved 3D Phase Contrast MRI. Magnetic Resonance in Medicine. 1999, 41 (4): 793-799. 10.1002/(SICI)1522-2594(199904)41:4<793::AID-MRM19>3.0.CO;2-2.CrossRefPubMed
13.
go back to reference Buonocore M: Visualizing blood flow patterns using streamlines, arrows, and particle paths. Magnetic resonance in medicine. 1998, 40 (2): 210-226. 10.1002/mrm.1910400207.CrossRefPubMed Buonocore M: Visualizing blood flow patterns using streamlines, arrows, and particle paths. Magnetic resonance in medicine. 1998, 40 (2): 210-226. 10.1002/mrm.1910400207.CrossRefPubMed
14.
go back to reference Heiberg E, Ebbers T, Wigstrom L, Karlsson M: Three-dimensional flow characterization using vector pattern matching. Visualization and Computer Graphics, IEEE Transactions on. 2003, 9 (3): 313-319. 10.1109/TVCG.2003.1207439.CrossRef Heiberg E, Ebbers T, Wigstrom L, Karlsson M: Three-dimensional flow characterization using vector pattern matching. Visualization and Computer Graphics, IEEE Transactions on. 2003, 9 (3): 313-319. 10.1109/TVCG.2003.1207439.CrossRef
15.
go back to reference Westenberg J, Roes S, Ajmone Marsan N, Binnendijk N, Doornbos J, Bax J, Reiber J, de Roos A, van der Geest R: Mitral Valve and Tricuspid Valve Blood Flow: Accurate Quantification with 3D Velocity-encoded MR Imaging with Retrospective Valve Tracking. Radiology. 2008, 249 (3): 792-10.1148/radiol.2492080146.CrossRefPubMed Westenberg J, Roes S, Ajmone Marsan N, Binnendijk N, Doornbos J, Bax J, Reiber J, de Roos A, van der Geest R: Mitral Valve and Tricuspid Valve Blood Flow: Accurate Quantification with 3D Velocity-encoded MR Imaging with Retrospective Valve Tracking. Radiology. 2008, 249 (3): 792-10.1148/radiol.2492080146.CrossRefPubMed
16.
go back to reference Ebbers T, Wigström L, Bolger A, Wranne B, Karlsson M: Noninvasive Measurement of Time-Varying Three-Dimensional Relative Pressure Fields Within the Human Heart. Journal of Biomechanical Engineering. 2002, 124 (3): 288-10.1115/1.1468866.CrossRefPubMed Ebbers T, Wigström L, Bolger A, Wranne B, Karlsson M: Noninvasive Measurement of Time-Varying Three-Dimensional Relative Pressure Fields Within the Human Heart. Journal of Biomechanical Engineering. 2002, 124 (3): 288-10.1115/1.1468866.CrossRefPubMed
17.
go back to reference Stalder A, Russe M, Frydrychowicz A, Bock J, Hennig J, Markl M: Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magnetic Resonance in Medicine. 2008, 60 (5): 1218-1231. 10.1002/mrm.21778.CrossRefPubMed Stalder A, Russe M, Frydrychowicz A, Bock J, Hennig J, Markl M: Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magnetic Resonance in Medicine. 2008, 60 (5): 1218-1231. 10.1002/mrm.21778.CrossRefPubMed
18.
go back to reference Eriksson J, Carlhäll C, Dyverfeldt P, Engvall J, Bolger A, Ebbers T: Semi-automatic quantification of 4 D left ventricular blood flow. Journal of Cardiovascular Magnetic Resonance. 2010, 12: 9-10.1186/1532-429X-12-9.CrossRefPubMedPubMedCentral Eriksson J, Carlhäll C, Dyverfeldt P, Engvall J, Bolger A, Ebbers T: Semi-automatic quantification of 4 D left ventricular blood flow. Journal of Cardiovascular Magnetic Resonance. 2010, 12: 9-10.1186/1532-429X-12-9.CrossRefPubMedPubMedCentral
19.
go back to reference Morbiducci U, Ponzini R, Rizzo G, Cadioli M, Esposito A, De Cobelli F, Del Maschio A, Montevecchi F, Redaelli A: In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Annals of biomedical engineering. 2009, 37 (3): 516-531. 10.1007/s10439-008-9609-6.CrossRefPubMed Morbiducci U, Ponzini R, Rizzo G, Cadioli M, Esposito A, De Cobelli F, Del Maschio A, Montevecchi F, Redaelli A: In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Annals of biomedical engineering. 2009, 37 (3): 516-531. 10.1007/s10439-008-9609-6.CrossRefPubMed
20.
go back to reference Laidlaw D, Kirby R, Jackson C, Davidson J, Miller T, Da Silva M, Warren W, Tarr M: Comparing 2D vector field visualization methods: A user study. IEEE Transactions on Visualization and Computer Graphics. 2005, 11 (1): 59-70. 10.1109/TVCG.2005.4.CrossRefPubMed Laidlaw D, Kirby R, Jackson C, Davidson J, Miller T, Da Silva M, Warren W, Tarr M: Comparing 2D vector field visualization methods: A user study. IEEE Transactions on Visualization and Computer Graphics. 2005, 11 (1): 59-70. 10.1109/TVCG.2005.4.CrossRefPubMed
21.
go back to reference Forsberg A, Chen J, Laidlaw D: Comparing 3D Vector Field Visualization Methods: A User Study. IEEE Transactions on Visualization and Computer Graphics. 2009, 15 (6): 1219-1226.CrossRefPubMed Forsberg A, Chen J, Laidlaw D: Comparing 3D Vector Field Visualization Methods: A User Study. IEEE Transactions on Visualization and Computer Graphics. 2009, 15 (6): 1219-1226.CrossRefPubMed
23.
go back to reference LeVeque R: High-Resolution Conservative Algorithms for Advection in Incompressible Flow. SIAM Journal on Numerical Analysis. 1996, 33 (2): 627-665. 10.1137/0733033.CrossRef LeVeque R: High-Resolution Conservative Algorithms for Advection in Incompressible Flow. SIAM Journal on Numerical Analysis. 1996, 33 (2): 627-665. 10.1137/0733033.CrossRef
24.
go back to reference Langseth J, LeVeque R: A Wave Propagation Method for Three-Dimensional Hyperbolic Conservation Laws. Journal of Computational Physics. 2000, 165 (1): 126-166. 10.1006/jcph.2000.6606.CrossRef Langseth J, LeVeque R: A Wave Propagation Method for Three-Dimensional Hyperbolic Conservation Laws. Journal of Computational Physics. 2000, 165 (1): 126-166. 10.1006/jcph.2000.6606.CrossRef
25.
go back to reference Ebbers T, Haraldsson H, Dyverfeldt P, Sigfridsson A, Warntjes M, Wigström L: Higher order weighted least-squares phase offset correction for improved accuracy in phase-contrast MRI. Proceedings of the International Society for Magnetic Resonance in Medicine. 2008, 16: 1367- Ebbers T, Haraldsson H, Dyverfeldt P, Sigfridsson A, Warntjes M, Wigström L: Higher order weighted least-squares phase offset correction for improved accuracy in phase-contrast MRI. Proceedings of the International Society for Magnetic Resonance in Medicine. 2008, 16: 1367-
26.
go back to reference Xiang Q: Temporal phase unwrapping for CINE velocity imaging. J Magn Reson Imaging. 1995, 5 (5): 529-34. 10.1002/jmri.1880050509.CrossRefPubMed Xiang Q: Temporal phase unwrapping for CINE velocity imaging. J Magn Reson Imaging. 1995, 5 (5): 529-34. 10.1002/jmri.1880050509.CrossRefPubMed
27.
go back to reference Heiberg E, Sjögren J, Ugander M, Carlsson M, Engblom H, Arheden H: Design and validation of Segment-available software for cardiovascular image analysis. BMC Medical Imaging. 2010, 10: 1-10.1186/1471-2342-10-1.CrossRefPubMedPubMedCentral Heiberg E, Sjögren J, Ugander M, Carlsson M, Engblom H, Arheden H: Design and validation of Segment-available software for cardiovascular image analysis. BMC Medical Imaging. 2010, 10: 1-10.1186/1471-2342-10-1.CrossRefPubMedPubMedCentral
28.
go back to reference Darmofal D, Haimes R: An Analysis of 3D Particle Path Integration Algorithms. Journal of Computational Physics. 1996, 123 (1): 182-195. 10.1006/jcph.1996.0015.CrossRef Darmofal D, Haimes R: An Analysis of 3D Particle Path Integration Algorithms. Journal of Computational Physics. 1996, 123 (1): 182-195. 10.1006/jcph.1996.0015.CrossRef
29.
go back to reference Cerqueira M, Weissman N, Dilsizian V, Jacobs A, Kaul S, Laskey W, Pennell D, Rumberger J, Ryan T, Verani M: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002, 105 (4): 539-542. 10.1161/hc0402.102975.CrossRefPubMed Cerqueira M, Weissman N, Dilsizian V, Jacobs A, Kaul S, Laskey W, Pennell D, Rumberger J, Ryan T, Verani M: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002, 105 (4): 539-542. 10.1161/hc0402.102975.CrossRefPubMed
30.
go back to reference Cohen J: A coefficient of agreement for nominal scales. Educational and psychological measurement. 1960, 20 (1): 37-10.1177/001316446002000104.CrossRef Cohen J: A coefficient of agreement for nominal scales. Educational and psychological measurement. 1960, 20 (1): 37-10.1177/001316446002000104.CrossRef
31.
go back to reference Morbiducci U, Ponzini R, Rizzo G, Cadioli M, Esposito A, Montevecchi F, Redaelli A: Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomechanics and Modeling in Mechanobiology. Morbiducci U, Ponzini R, Rizzo G, Cadioli M, Esposito A, Montevecchi F, Redaelli A: Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomechanics and Modeling in Mechanobiology.
32.
go back to reference Bolger A, Heiberg E, Karlsson M, Wigstrom L, Engvall J, Sigfridsson A, Ebbers T, Kvitting J, Carlhall C, Wranne B: Transit of Blood Flow Through the Human Left Ventricle Mapped by Cardiovascular Magnetic Resonance. Journal of Cardiovascular Magnetic Resonance. 2007, 9 (5): 741-747. 10.1080/10976640701544530.CrossRefPubMed Bolger A, Heiberg E, Karlsson M, Wigstrom L, Engvall J, Sigfridsson A, Ebbers T, Kvitting J, Carlhall C, Wranne B: Transit of Blood Flow Through the Human Left Ventricle Mapped by Cardiovascular Magnetic Resonance. Journal of Cardiovascular Magnetic Resonance. 2007, 9 (5): 741-747. 10.1080/10976640701544530.CrossRefPubMed
33.
go back to reference Hong G, Pedrizzetti G, Tonti G, Li P, Wei Z, Kim J, Baweja A, Liu S, Chung N, Houle H, et al: Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC: Cardiovascular Imaging. 2008, 1 (6): 705-717. 10.1016/j.jcmg.2008.06.008.PubMedPubMedCentral Hong G, Pedrizzetti G, Tonti G, Li P, Wei Z, Kim J, Baweja A, Liu S, Chung N, Houle H, et al: Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC: Cardiovascular Imaging. 2008, 1 (6): 705-717. 10.1016/j.jcmg.2008.06.008.PubMedPubMedCentral
Metadata
Title
Volume Tracking: A new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping
Authors
Johannes Töger
Marcus Carlsson
Gustaf Söderlind
Håkan Arheden
Einar Heiberg
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2011
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/1471-2342-11-10

Other articles of this Issue 1/2011

BMC Medical Imaging 1/2011 Go to the issue