Skip to main content
Top
Published in: BMC Infectious Diseases 1/2010

Open Access 01-12-2010 | Research article

Comparison of three methods for ascertainment of contact information relevant to respiratory pathogen transmission in encounter networks

Authors: James M McCaw, Kristian Forbes, Paula M Nathan, Philippa E Pattison, Garry L Robins, Terence M Nolan, Jodie McVernon

Published in: BMC Infectious Diseases | Issue 1/2010

Login to get access

Abstract

Background

Mathematical models of infection that consider targeted interventions are exquisitely dependent on the assumed mixing patterns of the population. We report on a pilot study designed to assess three different methods (one retrospective, two prospective) for obtaining contact data relevant to the determination of these mixing patterns.

Methods

65 adults were asked to record their social encounters in each location visited during 6 study days using a novel method whereby a change in physical location of the study participant triggered data entry. Using a cross-over design, all participants recorded encounters on 3 days in a paper diary and 3 days using an electronic recording device (PDA). Participants were randomised to first prospective recording method.

Results

Both methods captured more contacts than a pre-study questionnaire, but ascertainment using the paper diary was superior to the PDA (mean difference: 4.52 (95% CI 0.28, 8.77). Paper diaries were found more acceptable to the participants compared with the PDA. Statistical analysis confirms that our results are broadly consistent with those reported from large-scale European based surveys. An association between household size (trend 0.14, 95% CI (0.06, 0.22), P < 0.001) and composition (presence of child 0.37, 95% CI (0.17, 0.56), P < 0.001) and the total number of reported contacts was observed, highlighting the importance of sampling study populations based on household characteristics as well as age. New contacts were still being recorded on the third study day, but compliance had declined, indicating that the optimal number of sample days represents a trade-off between completeness and quality of data for an individual.

Conclusions

The study's location-based reporting design allows greater scope compared to other methods for examining differences in the characteristics of encounters over a range of environments. Improved parameterisation of dynamic transmission models gained from work of this type will aid in the development of more robust decision support tools to assist health policy makers and planners.
Appendix
Available only for authorised users
Literature
1.
go back to reference Becker NG, Glass K, Barnes B, Caley P, Philp D, McCaw JM, McVernon J, Wood J: Using Mathematical Models to Assess Responses to an Outbreak of an Emerged Viral Respiratory Disease. Final Report to the Australian Government Department of Health and Ageing. 2006, National Centre for Epidemiology and Population Health, Australian National University Becker NG, Glass K, Barnes B, Caley P, Philp D, McCaw JM, McVernon J, Wood J: Using Mathematical Models to Assess Responses to an Outbreak of an Emerged Viral Respiratory Disease. Final Report to the Australian Government Department of Health and Ageing. 2006, National Centre for Epidemiology and Population Health, Australian National University
2.
go back to reference Ferguson NM, Cummings DAT, Fraser C, Cajka JC, Cooley PC, Burke DS: Strategies for mitigating an influenza pandemic. Nature. 2006, 442 (7101): 448-452. 10.1038/nature04795.CrossRefPubMed Ferguson NM, Cummings DAT, Fraser C, Cajka JC, Cooley PC, Burke DS: Strategies for mitigating an influenza pandemic. Nature. 2006, 442 (7101): 448-452. 10.1038/nature04795.CrossRefPubMed
3.
go back to reference Halloran ME, Ferguson NM, Eubank S, Longini IM, Cummings DAT, Lewis B, Xu S, Fraser C, Vullikanti A, Germann TC, et al: Modeling targeted layered containment of an influenza pandemic in the United States. Proc Natl Acad Sci USA. 2008, 105 (12): 4639-4644. 10.1073/pnas.0706849105.CrossRefPubMedPubMedCentral Halloran ME, Ferguson NM, Eubank S, Longini IM, Cummings DAT, Lewis B, Xu S, Fraser C, Vullikanti A, Germann TC, et al: Modeling targeted layered containment of an influenza pandemic in the United States. Proc Natl Acad Sci USA. 2008, 105 (12): 4639-4644. 10.1073/pnas.0706849105.CrossRefPubMedPubMedCentral
4.
go back to reference Germann TC, Kadau K, Longini IM, Macken CA: Mitigation strategies for pandemic influenza in the United States. Proc Natl Acad Sci USA. 2006, 103 (15): 5935-5940. 10.1073/pnas.0601266103.CrossRefPubMedPubMedCentral Germann TC, Kadau K, Longini IM, Macken CA: Mitigation strategies for pandemic influenza in the United States. Proc Natl Acad Sci USA. 2006, 103 (15): 5935-5940. 10.1073/pnas.0601266103.CrossRefPubMedPubMedCentral
5.
go back to reference Patel R, Longini I, Halloran M: Finding optimal vaccination strategies for pandemic influenza using genetic algorithms. J Theor Biol. 2005, 234: 201-212. 10.1016/j.jtbi.2004.11.032.CrossRefPubMed Patel R, Longini I, Halloran M: Finding optimal vaccination strategies for pandemic influenza using genetic algorithms. J Theor Biol. 2005, 234: 201-212. 10.1016/j.jtbi.2004.11.032.CrossRefPubMed
6.
go back to reference Hartvigsen G, Dresch JM, Zielinski AL, Macula AJ, Leary CC: Network structure, and vaccination strategy and effort interact to affect the dynamics of influenza epidemics. J Theor Biol. 2007, 246 (2): 205-213. 10.1016/j.jtbi.2006.12.027.CrossRefPubMed Hartvigsen G, Dresch JM, Zielinski AL, Macula AJ, Leary CC: Network structure, and vaccination strategy and effort interact to affect the dynamics of influenza epidemics. J Theor Biol. 2007, 246 (2): 205-213. 10.1016/j.jtbi.2006.12.027.CrossRefPubMed
7.
go back to reference Medlock J, Galvani AP: Optimizing influenza vaccine distribution. Science. 2009, 325 (5948): 1705-1708. 10.1126/science.1175570.CrossRefPubMed Medlock J, Galvani AP: Optimizing influenza vaccine distribution. Science. 2009, 325 (5948): 1705-1708. 10.1126/science.1175570.CrossRefPubMed
8.
go back to reference Edmunds WJ, O'Callaghan CJ, Nokes DJ: Who mixes with whom? A method to determine the contact patterns of adults that may lead to the spread of airborne infections. Proc Biol Sci. 1997, 264 (1384): 949-957. 10.1098/rspb.1997.0131.CrossRefPubMedPubMedCentral Edmunds WJ, O'Callaghan CJ, Nokes DJ: Who mixes with whom? A method to determine the contact patterns of adults that may lead to the spread of airborne infections. Proc Biol Sci. 1997, 264 (1384): 949-957. 10.1098/rspb.1997.0131.CrossRefPubMedPubMedCentral
9.
go back to reference Mossong Jl, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M, Salmaso S, Tomba GS, Wallinga J, et al: Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008, 5 (3): e74-10.1371/journal.pmed.0050074.CrossRefPubMedPubMedCentral Mossong Jl, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M, Salmaso S, Tomba GS, Wallinga J, et al: Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008, 5 (3): e74-10.1371/journal.pmed.0050074.CrossRefPubMedPubMedCentral
10.
go back to reference Beutels P, Shkedy Z, Aerts M, van Damme P: Social mixing patterns for transmission models of close contact infections: exploring self-evaluation and diary-based data collection through a web-based interface. Epidemiol Infect. 2006, 134: 1158-1166. 10.1017/S0950268806006418.CrossRefPubMedPubMedCentral Beutels P, Shkedy Z, Aerts M, van Damme P: Social mixing patterns for transmission models of close contact infections: exploring self-evaluation and diary-based data collection through a web-based interface. Epidemiol Infect. 2006, 134: 1158-1166. 10.1017/S0950268806006418.CrossRefPubMedPubMedCentral
11.
go back to reference Glass LM, Glass RJ: Social contact networks for the spread of pandemic influenza in children and teenagers. BMC Public Health. 2008, 8: 61-10.1186/1471-2458-8-61.CrossRefPubMedPubMedCentral Glass LM, Glass RJ: Social contact networks for the spread of pandemic influenza in children and teenagers. BMC Public Health. 2008, 8: 61-10.1186/1471-2458-8-61.CrossRefPubMedPubMedCentral
12.
go back to reference Stone AA, Shiffman S, Schwartz JE, Broderick JE, Hufford MR: Patient compliance with paper and electronic diaries. Control Clin Trials. 2003, 24 (2): 182-199. 10.1016/S0197-2456(02)00320-3.CrossRefPubMed Stone AA, Shiffman S, Schwartz JE, Broderick JE, Hufford MR: Patient compliance with paper and electronic diaries. Control Clin Trials. 2003, 24 (2): 182-199. 10.1016/S0197-2456(02)00320-3.CrossRefPubMed
13.
go back to reference Burton C, Weller D, Sharpe M: Are electronic diaries useful for symptoms research? A systematic review. J Psychosom Res. 2007, 62 (5): 553-561. 10.1016/j.jpsychores.2006.12.022.CrossRefPubMed Burton C, Weller D, Sharpe M: Are electronic diaries useful for symptoms research? A systematic review. J Psychosom Res. 2007, 62 (5): 553-561. 10.1016/j.jpsychores.2006.12.022.CrossRefPubMed
14.
go back to reference Lauritsen K, Innocenti AD, Hendel L, Praest , Lytje MF, Clemmensen-Rotne K, Wiklund I: Symptom recording in a randomised clinical trial: paper diaries vs. electronic or telephone data capture. Control Clin Trials. 2004, 25 (6): 585-597. 10.1016/j.cct.2004.09.001.CrossRefPubMed Lauritsen K, Innocenti AD, Hendel L, Praest , Lytje MF, Clemmensen-Rotne K, Wiklund I: Symptom recording in a randomised clinical trial: paper diaries vs. electronic or telephone data capture. Control Clin Trials. 2004, 25 (6): 585-597. 10.1016/j.cct.2004.09.001.CrossRefPubMed
15.
go back to reference Palermo TM, Valenzuela D, Stork PP: A randomized trial of electronic versus paper pain diaries in children: impact on compliance, accuracy, and acceptability. Pain. 2004, 107 (3): 213-219. 10.1016/j.pain.2003.10.005.CrossRefPubMed Palermo TM, Valenzuela D, Stork PP: A randomized trial of electronic versus paper pain diaries in children: impact on compliance, accuracy, and acceptability. Pain. 2004, 107 (3): 213-219. 10.1016/j.pain.2003.10.005.CrossRefPubMed
16.
go back to reference Schmidt ME, Steindorf K: Statistical methods for the validation of questionnaires--discrepancy between theory and practice. Methods Inf Med. 2006, 45 (4): 409-413.PubMed Schmidt ME, Steindorf K: Statistical methods for the validation of questionnaires--discrepancy between theory and practice. Methods Inf Med. 2006, 45 (4): 409-413.PubMed
17.
go back to reference Edmunds WJ, Kafatos G, Wallinga J, Mossong JR: Mixing patterns and the spread of close-contact infectious diseases. Emerg Themes Epidemiol. 2006, 3: 10-10.1186/1742-7622-3-10.CrossRefPubMedPubMedCentral Edmunds WJ, Kafatos G, Wallinga J, Mossong JR: Mixing patterns and the spread of close-contact infectious diseases. Emerg Themes Epidemiol. 2006, 3: 10-10.1186/1742-7622-3-10.CrossRefPubMedPubMedCentral
18.
go back to reference Mikolajczyk RT, Akmatov MK, Rastin S, Kretzschmar M: Social contacts of school children and the transmission of respiratory-spread pathogens. Epidemiol Infect. 2008, 136 (6): 813-822. 10.1017/S0950268807009181.CrossRefPubMed Mikolajczyk RT, Akmatov MK, Rastin S, Kretzschmar M: Social contacts of school children and the transmission of respiratory-spread pathogens. Epidemiol Infect. 2008, 136 (6): 813-822. 10.1017/S0950268807009181.CrossRefPubMed
19.
go back to reference Kretzschmar M, Mikolajczyk RT: Contact profiles in eight European countries and implications for modelling the spread of airborne infectious diseases. PLoS One. 2009, 4 (6): e5931-10.1371/journal.pone.0005931.CrossRefPubMedPubMedCentral Kretzschmar M, Mikolajczyk RT: Contact profiles in eight European countries and implications for modelling the spread of airborne infectious diseases. PLoS One. 2009, 4 (6): e5931-10.1371/journal.pone.0005931.CrossRefPubMedPubMedCentral
20.
go back to reference Read JM, Eames KTD, Edmunds WJ: Dynamic social networks and the implications for the spread of infectious disease. J R Soc Interface. 2008, 5 (26): 1001-1007. 10.1098/rsif.2008.0013.CrossRefPubMedPubMedCentral Read JM, Eames KTD, Edmunds WJ: Dynamic social networks and the implications for the spread of infectious disease. J R Soc Interface. 2008, 5 (26): 1001-1007. 10.1098/rsif.2008.0013.CrossRefPubMedPubMedCentral
21.
go back to reference Zagheni E, Billari FC, Manfredi P, Melegaro A, Mossong J, Edmunds WJ: Using time-use data to parameterize models for the spread of close-contact infectious diseases. Am J Epidemiol. 2008, 168 (9): 1082-1090. 10.1093/aje/kwn220.CrossRefPubMed Zagheni E, Billari FC, Manfredi P, Melegaro A, Mossong J, Edmunds WJ: Using time-use data to parameterize models for the spread of close-contact infectious diseases. Am J Epidemiol. 2008, 168 (9): 1082-1090. 10.1093/aje/kwn220.CrossRefPubMed
22.
go back to reference Hens N, Goeyvaerts N, Aerts M, Shkedy Z, Damme PV, Beutels P: Mining social mixing patterns for infectious disease models based on a two-day population survey in Belgium. BMC Infect Dis. 2009, 9: 5-10.1186/1471-2334-9-5.CrossRefPubMedPubMedCentral Hens N, Goeyvaerts N, Aerts M, Shkedy Z, Damme PV, Beutels P: Mining social mixing patterns for infectious disease models based on a two-day population survey in Belgium. BMC Infect Dis. 2009, 9: 5-10.1186/1471-2334-9-5.CrossRefPubMedPubMedCentral
23.
go back to reference Hens N, Ayele GM, Goeyvaerts N, Aerts M, Mossong J, Edmunds JW, Beutels P: Estimating the impact of school closure on social mixing behaviour and the transmission of close contact infections in eight European countries. BMC Infect Dis. 2009, 9: 187-10.1186/1471-2334-9-187.CrossRefPubMedPubMedCentral Hens N, Ayele GM, Goeyvaerts N, Aerts M, Mossong J, Edmunds JW, Beutels P: Estimating the impact of school closure on social mixing behaviour and the transmission of close contact infections in eight European countries. BMC Infect Dis. 2009, 9: 187-10.1186/1471-2334-9-187.CrossRefPubMedPubMedCentral
24.
go back to reference Milne GJ, Kelso JK, Kelly HA, Huband ST, McVernon J: A small community model for the transmission of infectious diseases: comparison of school closure as an intervention in individual-based models of an influenza pandemic. PLoS ONE. 2008, 3 (12): e4005-10.1371/journal.pone.0004005.CrossRefPubMedPubMedCentral Milne GJ, Kelso JK, Kelly HA, Huband ST, McVernon J: A small community model for the transmission of infectious diseases: comparison of school closure as an intervention in individual-based models of an influenza pandemic. PLoS ONE. 2008, 3 (12): e4005-10.1371/journal.pone.0004005.CrossRefPubMedPubMedCentral
25.
go back to reference Wallinga J, Teunis P, Kretzschmar M: Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. Am J Epidemiol. 2006, 164 (10): 936-944. 10.1093/aje/kwj317.CrossRefPubMed Wallinga J, Teunis P, Kretzschmar M: Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. Am J Epidemiol. 2006, 164 (10): 936-944. 10.1093/aje/kwj317.CrossRefPubMed
26.
go back to reference Lloyd-Smith J, Schreiber S, Kopp P, Getz W: Superspreading and the effect of individual variation on disease emergence. Nature. 2005, 438 (7066): 355-359. 10.1038/nature04153.CrossRefPubMed Lloyd-Smith J, Schreiber S, Kopp P, Getz W: Superspreading and the effect of individual variation on disease emergence. Nature. 2005, 438 (7066): 355-359. 10.1038/nature04153.CrossRefPubMed
Metadata
Title
Comparison of three methods for ascertainment of contact information relevant to respiratory pathogen transmission in encounter networks
Authors
James M McCaw
Kristian Forbes
Paula M Nathan
Philippa E Pattison
Garry L Robins
Terence M Nolan
Jodie McVernon
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2010
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/1471-2334-10-166

Other articles of this Issue 1/2010

BMC Infectious Diseases 1/2010 Go to the issue