Skip to main content
Top
Published in: Respiratory Research 1/2006

Open Access 01-12-2006 | Research

RhoA signaling modulates cyclin D1 expression in human lung fibroblasts; implications for idiopathic pulmonary fibrosis

Authors: KL Watts, E Cottrell, PR Hoban, MA Spiteri

Published in: Respiratory Research | Issue 1/2006

Login to get access

Abstract

Background

Idiopathic Pulmonary Fibrosis (IPF) is a debilitating disease characterized by exaggerated extracellular matrix deposition and aggressive lung structural remodeling. Disease pathogenesis is driven by fibroblastic foci formation, consequent on growth factor overexpression and myofibroblast proliferation. We have previously shown that both CTGF overexpression and myofibroblast formation in IPF cell lines are dependent on RhoA signaling. As RhoA-mediated regulation is also involved in cell cycle progression, we hypothesise that this pathway is key to lung fibroblast turnover through modulation of cyclin D1 kinetic expression.

Methods

Cyclin D1 expression was compared in primary IPF patient-derived fibroblasts and equivalent normal control cells. Quantitative real time PCR was employed to examine relative expression levels of cyclin D1 mRNA; protein expression was confirmed by western blotting. Effects of Rho signaling were investigated using transient transfection of constitutively active and dominant negative RhoA constructs as well as pharmacological inhibitors. Cellular proliferation of lung fibroblasts was determined by BrdU incorporation ELISA. To further explore RhoA regulation of cyclin D1 in lung fibroblasts and associated cell cycle progression, an established Rho inhibitor, Simvastatin, was incorporated in our studies.

Results

Cyclin D1 expression was upregulated in IPF compared to normal lung fibroblasts under exponential growth conditions (p < 0.05). Serum deprivation inhibited cyclin D1 expression, which was restored following treatment with fibrogenic growth factors (TGF-β1 and CTGF). RhoA inhibition, using a dominant negative mutant and a pharmacological inhibitor (C3 exotoxin), suppressed levels of cyclin D1 mRNA and protein in IPF fibroblasts, with significant abrogation of cell turnover (p < 0.05). Furthermore, Simvastatin dose-dependently inhibited fibroblast cyclin D1 gene and protein expression, inducing G1 cell cycle arrest. Similar trends were observed in control experiments using normal lung fibroblasts, though exhibited responses were lower in magnitude.

Conclusion

These findings report for the first time that cyclin D1 expression is deregulated in IPF through a RhoA dependent mechanism that influences lung fibroblast proliferation. This potentially unravels new molecular targets for future anti-IPF strategies; accordingly, Simvastatin inhibition of Rho-mediated cyclin D1 expression in IPF fibroblasts merits further exploitation.
Literature
1.
go back to reference Selman M, King TE, Pardo A: Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 2001,134(2):136–151.CrossRefPubMed Selman M, King TE, Pardo A: Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 2001,134(2):136–151.CrossRefPubMed
2.
go back to reference Nicholson AG, Colby TV, du Bois RM, Hansell DM, Wells AU: The prognostic significance of the histologic pattern of interstitial pneumonia in patients presenting with the clinical entity of cryptogenic fibrosing alveolitis. Am J Respir Crit Care Med 2000, 162:2213–2217.CrossRefPubMed Nicholson AG, Colby TV, du Bois RM, Hansell DM, Wells AU: The prognostic significance of the histologic pattern of interstitial pneumonia in patients presenting with the clinical entity of cryptogenic fibrosing alveolitis. Am J Respir Crit Care Med 2000, 162:2213–2217.CrossRefPubMed
4.
go back to reference Allen JT, Knight RA, Bloor CA, Spiteri MA: Enhanced insulin-like growth factor binding protein-related protein 2 (Connective tissue growth factor) expression in patients with idiopathic pulmonary fibrosis and pulmonary sarcoidosis. Am J Respir Cell Mol Biol 1999,21(6):693–700.CrossRefPubMed Allen JT, Knight RA, Bloor CA, Spiteri MA: Enhanced insulin-like growth factor binding protein-related protein 2 (Connective tissue growth factor) expression in patients with idiopathic pulmonary fibrosis and pulmonary sarcoidosis. Am J Respir Cell Mol Biol 1999,21(6):693–700.CrossRefPubMed
5.
go back to reference Grotendorst GR, Okochi H, Hayashi N: A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ 1996,7(4):469–80.PubMed Grotendorst GR, Okochi H, Hayashi N: A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ 1996,7(4):469–80.PubMed
6.
go back to reference Watts KL, Spiteri MA: Connective tissue growth factor expression and induction by transforming growth factor-beta is abrogated by simvastatin via a Rho signaling mechanism. Am J Physiol Lung Cell Mol Physiol 2004,287(6):L1323–32.CrossRefPubMed Watts KL, Spiteri MA: Connective tissue growth factor expression and induction by transforming growth factor-beta is abrogated by simvastatin via a Rho signaling mechanism. Am J Physiol Lung Cell Mol Physiol 2004,287(6):L1323–32.CrossRefPubMed
7.
go back to reference Watts KL, Sampson EM, Schultz GS, Spiteri MA: Simvastatin inhibits growth factor expression and modulates profibrogenic markers in lung fibroblasts. Am J Respir Cell Mol Biol 2005,32(4):290–300.CrossRefPubMed Watts KL, Sampson EM, Schultz GS, Spiteri MA: Simvastatin inhibits growth factor expression and modulates profibrogenic markers in lung fibroblasts. Am J Respir Cell Mol Biol 2005,32(4):290–300.CrossRefPubMed
8.
go back to reference Welsh CF, Roovers K, Villanueva J, Liu Y, Schwartz MA, Assoian RK: Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nat Cell Biol 2001,3(11):950–7.CrossRefPubMed Welsh CF, Roovers K, Villanueva J, Liu Y, Schwartz MA, Assoian RK: Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nat Cell Biol 2001,3(11):950–7.CrossRefPubMed
9.
go back to reference Fu M, Wang C, Li Z, Sakamaki T, Pestell RG: Minireview: Cyclin D1: normal and abnormal functions. Endocrinology 2004,145(12):5439–47.CrossRefPubMed Fu M, Wang C, Li Z, Sakamaki T, Pestell RG: Minireview: Cyclin D1: normal and abnormal functions. Endocrinology 2004,145(12):5439–47.CrossRefPubMed
10.
go back to reference Caldon CE, Daly RJ, Sutherland RL, Musgrove EA: Cell cycle control in breast cancer cells. J Cell Biochem 2005, in press. Caldon CE, Daly RJ, Sutherland RL, Musgrove EA: Cell cycle control in breast cancer cells. J Cell Biochem 2005, in press.
11.
go back to reference Holley SL, Parkes G, Matthias C, Bockmuhl U, Jahnke V, Leder K, Strange RC, Fryer AA, Hoban PR: Cyclin D1 polymorphism and expression in patients with squamous cell carcinoma of the head and neck. Am J Pathol 2001,159(5):1917–24.CrossRefPubMedPubMedCentral Holley SL, Parkes G, Matthias C, Bockmuhl U, Jahnke V, Leder K, Strange RC, Fryer AA, Hoban PR: Cyclin D1 polymorphism and expression in patients with squamous cell carcinoma of the head and neck. Am J Pathol 2001,159(5):1917–24.CrossRefPubMedPubMedCentral
12.
go back to reference Ratschiller D, Heighway J, Gugger M, Kappeler A, Pirnia F, Schmid RA, Borner MM, Betticher DC: Cyclin D1 overexpression in bronchial epithelia of patients with lung cancer is associated with smoking and predicts survival. J Clin Oncol 2003,21(11):2085–93.CrossRefPubMed Ratschiller D, Heighway J, Gugger M, Kappeler A, Pirnia F, Schmid RA, Borner MM, Betticher DC: Cyclin D1 overexpression in bronchial epithelia of patients with lung cancer is associated with smoking and predicts survival. J Clin Oncol 2003,21(11):2085–93.CrossRefPubMed
13.
go back to reference Sherr CJ, Roberts JM: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999,13(12):1501–12.CrossRefPubMed Sherr CJ, Roberts JM: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999,13(12):1501–12.CrossRefPubMed
14.
go back to reference Qin XQ, Livingston DM, Kaelin WG Jr, Adams PD: Deregulated trasnscription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci 1994, 91:10918–19022.CrossRefPubMedPubMedCentral Qin XQ, Livingston DM, Kaelin WG Jr, Adams PD: Deregulated trasnscription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci 1994, 91:10918–19022.CrossRefPubMedPubMedCentral
15.
go back to reference He S, Cook BL, Deverman BE, Weihe U, Zhang F, Prachand V, Zheng J, Weintraub SJ: E2F is required to prevent inappropriate S-phase entry of mammalian cells. Mol Cell Biol 2000,20(1):363–71.CrossRefPubMedPubMedCentral He S, Cook BL, Deverman BE, Weihe U, Zhang F, Prachand V, Zheng J, Weintraub SJ: E2F is required to prevent inappropriate S-phase entry of mammalian cells. Mol Cell Biol 2000,20(1):363–71.CrossRefPubMedPubMedCentral
16.
go back to reference Bartkova J, Lukas J, Bartek J: Aberrations of the G1- and G1/S-regulating genes in human cancer. Prog Cell Cycle Res 1997, 3:211–20.CrossRefPubMed Bartkova J, Lukas J, Bartek J: Aberrations of the G1- and G1/S-regulating genes in human cancer. Prog Cell Cycle Res 1997, 3:211–20.CrossRefPubMed
17.
go back to reference Quelle DE, Ashmun RA, Shurtleff SA, Kato JY, Bar-Sagi D, Roussel MF, Sherr CJ: Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 1993,7(8):1559–71.CrossRefPubMed Quelle DE, Ashmun RA, Shurtleff SA, Kato JY, Bar-Sagi D, Roussel MF, Sherr CJ: Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 1993,7(8):1559–71.CrossRefPubMed
18.
go back to reference Schwartz MA, Assoian RK: Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J Cell Sci 2001,114(Pt 14):2553–60.PubMed Schwartz MA, Assoian RK: Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J Cell Sci 2001,114(Pt 14):2553–60.PubMed
19.
go back to reference Welsh CF: Rho GTPases as key transducers of proliferative signals in g1 cell cycle regulation. Breast Cancer Res Treat 2004,84(1):33–42.CrossRefPubMed Welsh CF: Rho GTPases as key transducers of proliferative signals in g1 cell cycle regulation. Breast Cancer Res Treat 2004,84(1):33–42.CrossRefPubMed
20.
go back to reference Lamprecht J, Wojcik C, Jakobisiak M, Stoehr M, Schrorter D, Paweletz N: Lovastatin induces mitotic abnormalities in various cell lines. Cell Biol Int 1999,23(1):51–60.CrossRefPubMed Lamprecht J, Wojcik C, Jakobisiak M, Stoehr M, Schrorter D, Paweletz N: Lovastatin induces mitotic abnormalities in various cell lines. Cell Biol Int 1999,23(1):51–60.CrossRefPubMed
21.
go back to reference Kurzrock R, Ku S, Talpaz M: Abnormalities in the PARD1 ( CYCLIN D1/BCL-1 ) oncogene are frequent in the cervical and vulval squamous cell carcinoma cell lines. Cancer 1995, 75:584–590.CrossRefPubMed Kurzrock R, Ku S, Talpaz M: Abnormalities in the PARD1 ( CYCLIN D1/BCL-1 ) oncogene are frequent in the cervical and vulval squamous cell carcinoma cell lines. Cancer 1995, 75:584–590.CrossRefPubMed
23.
24.
go back to reference Hishikawa K, Nakaki T, Fujii T: Connective tissue growth factor induces apoptosis via caspase 3 in cultured human aortic smooth muscle cells. Eur J Pharmacol 2000,392(1–2):19–22.CrossRefPubMed Hishikawa K, Nakaki T, Fujii T: Connective tissue growth factor induces apoptosis via caspase 3 in cultured human aortic smooth muscle cells. Eur J Pharmacol 2000,392(1–2):19–22.CrossRefPubMed
25.
go back to reference Holinstat M, Knezevic N, Broman M, Samarel AM, Malik AB, Mehta D: Suppression of RhoA activity by focal adhesion kinase-induced activation of p190RhoGAP: role of regulation of endothelial permeability. JBC 2005, in press. Holinstat M, Knezevic N, Broman M, Samarel AM, Malik AB, Mehta D: Suppression of RhoA activity by focal adhesion kinase-induced activation of p190RhoGAP: role of regulation of endothelial permeability. JBC 2005, in press.
26.
go back to reference Goppelt-Struebe M, Hahn A, Iwanciw D, Rehm M, Banas B: Regulation of connective tissue growth factor (ccn2; ctgf) gene expression in human mesangial cells: modulation by HMG CoA reductase inhibitors (statins). Mol Pathol 2001,54(3):176–9.CrossRefPubMedPubMedCentral Goppelt-Struebe M, Hahn A, Iwanciw D, Rehm M, Banas B: Regulation of connective tissue growth factor (ccn2; ctgf) gene expression in human mesangial cells: modulation by HMG CoA reductase inhibitors (statins). Mol Pathol 2001,54(3):176–9.CrossRefPubMedPubMedCentral
27.
go back to reference Porter KE, Turner NA, O'Regan DJ, Balmforth AJ, Ball SG: Simvastatin reduces human atrial myofibroblast proliferation independently of cholesterol lowering via inhibition of RhoA. Cardiovasc Res 2004,61(4):745–55.CrossRefPubMed Porter KE, Turner NA, O'Regan DJ, Balmforth AJ, Ball SG: Simvastatin reduces human atrial myofibroblast proliferation independently of cholesterol lowering via inhibition of RhoA. Cardiovasc Res 2004,61(4):745–55.CrossRefPubMed
28.
go back to reference Matallanas D, Sanz-Moreno V, Arozarena I, Calvo F, Agudo-Ibanez L, Santos E, Berciano MT, Crespo P: Distinct utilization of effectors and biological outcomes resulting from site specific Ras activation: Ras functions in lipid rafts and golgi complex are dispensable for proliferation and transformation. Molecular and Cellular Biology 2006,26(1):100–116.CrossRefPubMedPubMedCentral Matallanas D, Sanz-Moreno V, Arozarena I, Calvo F, Agudo-Ibanez L, Santos E, Berciano MT, Crespo P: Distinct utilization of effectors and biological outcomes resulting from site specific Ras activation: Ras functions in lipid rafts and golgi complex are dispensable for proliferation and transformation. Molecular and Cellular Biology 2006,26(1):100–116.CrossRefPubMedPubMedCentral
29.
go back to reference Ogata H, Chinen T, Yoshida T, Kinjyo I, Takaesu G, Shiraishi H, Iida M, Kobayashi T, Yoshimura A: Loss of SOCS3 in the liver promotes fibrosis by enhancing STAT3-mediated TGF-beta1 production. Oncogene 25(17):2520–2530. Ogata H, Chinen T, Yoshida T, Kinjyo I, Takaesu G, Shiraishi H, Iida M, Kobayashi T, Yoshimura A: Loss of SOCS3 in the liver promotes fibrosis by enhancing STAT3-mediated TGF-beta1 production. Oncogene 25(17):2520–2530.
Metadata
Title
RhoA signaling modulates cyclin D1 expression in human lung fibroblasts; implications for idiopathic pulmonary fibrosis
Authors
KL Watts
E Cottrell
PR Hoban
MA Spiteri
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2006
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-7-88

Other articles of this Issue 1/2006

Respiratory Research 1/2006 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.