Skip to main content
Top
Published in: Respiratory Research 1/2010

Open Access 01-12-2010 | Research

Mucosal sensitization to German cockroach involves protease-activated receptor-2

Authors: Kristen Page, John R Ledford, Ping Zhou, Krista Dienger, Marsha Wills-Karp

Published in: Respiratory Research | Issue 1/2010

Login to get access

Abstract

Background

Allergic asthma is on the rise in developed countries. A common characteristic of allergens is that they contain intrinsic protease activity, and many have been shown to activate protease-activated receptor (PAR)-2 in vitro. The role for PAR-2 in mediating allergic airway inflammation has not been assessed using a real world allergen.

Methods

Mice (wild type or PAR-2-deficient) were sensitized to German cockroach (GC) feces (frass) or protease-depleted GC frass by either mucosal exposure or intraperitoneal injection and measurements of airway inflammation (IL-5, IL-13, IL-17A, and IFNγ levels in the lung, serum IgE levels, cellular infiltration, mucin production) and airway hyperresponsiveness were performed.

Results

Following systemic sensitization, GC frass increased airway hyperresponsiveness, Th2 cytokine release, serum IgE levels, cellular infiltration and mucin production in wild type mice. Interestingly, PAR-2-deficient mice had similar responses as wild type mice. Since these data were in direct contrast to our finding that mucosal sensitization with GC frass proteases regulated airway hyperresponsiveness and mucin production in BALB/c mice (Page et. al. 2007 Resp Res 8:91), we backcrossed the PAR-2-deficient mice into the BALB/c strain. Sensitization to GC frass could now occur via the more physiologically relevant method of intratracheal inhalation. PAR-2-deficient mice had significantly reduced airway hyperresponsiveness, Th2 and Th17 cytokine release, serum IgE levels, and cellular infiltration compared to wild type mice when sensitization to GC frass occurred through the mucosa. To confirm the importance of mucosal exposure, mice were systemically sensitized to GC frass or protease-depleted GC frass via intraperitoneal injection. We found that removal of proteases from GC frass had no effect on airway inflammation when administered systemically.

Conclusions

We showed for the first time that allergen-derived proteases in GC frass elicit allergic airway inflammation via PAR-2, but only when allergen was administered through the mucosa. Importantly, our data suggest the importance of resident airway cells in the initiation of allergic airway disease, and could make allergen-derived proteases attractive therapeutic targets.
Literature
1.
go back to reference Gelber LE, Seltzer LH, Bouzoukis JK, Pollart SM, Chapman MD, Platts-Mills TA: Sensitization and exposure to indoor allergens as risk factors for asthma patients presenting to hospital. Am Rev Respir Dis 1993, 147:573–587.CrossRefPubMed Gelber LE, Seltzer LH, Bouzoukis JK, Pollart SM, Chapman MD, Platts-Mills TA: Sensitization and exposure to indoor allergens as risk factors for asthma patients presenting to hospital. Am Rev Respir Dis 1993, 147:573–587.CrossRefPubMed
2.
go back to reference Bhat RK, Page K, Tan A, Hershenson MB: German cockroach extract increases bronchial epithelial cell interleukin-8 expression. Clin Exper Allergy 2003, 33:35–42.CrossRef Bhat RK, Page K, Tan A, Hershenson MB: German cockroach extract increases bronchial epithelial cell interleukin-8 expression. Clin Exper Allergy 2003, 33:35–42.CrossRef
3.
go back to reference King C, Brennan S, Thompson PJ, Stewart GA: Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium. J Immunol 1998, 161:3645–3651.PubMed King C, Brennan S, Thompson PJ, Stewart GA: Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium. J Immunol 1998, 161:3645–3651.PubMed
4.
go back to reference Wan H, Wilton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, Stewart GA, Taylor GW, Garrod DR, Cannell MB, et al.: Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 1999, 104:123–133.CrossRefPubMedPubMedCentral Wan H, Wilton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, Stewart GA, Taylor GW, Garrod DR, Cannell MB, et al.: Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 1999, 104:123–133.CrossRefPubMedPubMedCentral
5.
go back to reference Sun G, Stacey MA, Schmidt M, Mori L, Mattoli S: Interaction of mite allergens Der p3 and Der p9 with protease-activated receptor-2 expressed by lung epithelial cells. J Immunol 2001, 167:1014–1021.CrossRefPubMed Sun G, Stacey MA, Schmidt M, Mori L, Mattoli S: Interaction of mite allergens Der p3 and Der p9 with protease-activated receptor-2 expressed by lung epithelial cells. J Immunol 2001, 167:1014–1021.CrossRefPubMed
6.
go back to reference Kauffman HF, Tomee JF, Reit MA, Timmerman AJ, Borger P: Protease-dependent activation of epithelial cells by fungal allergens leads to morphologic changes and cytokine production. J Allergy Clin Immunol 2000, 105:1185–1193.CrossRefPubMed Kauffman HF, Tomee JF, Reit MA, Timmerman AJ, Borger P: Protease-dependent activation of epithelial cells by fungal allergens leads to morphologic changes and cytokine production. J Allergy Clin Immunol 2000, 105:1185–1193.CrossRefPubMed
7.
go back to reference Ring PC, Wan H, Schou C, Kristensen AK, Roepstrorff P, Robinson C: The 18-kDa form of cat allergen Felis domesticus 1 (Fel d 1) is associated with gelatin- and fibronectin-degrading activity. Clin Exper Allergy 2000, 30:1085–1096.CrossRef Ring PC, Wan H, Schou C, Kristensen AK, Roepstrorff P, Robinson C: The 18-kDa form of cat allergen Felis domesticus 1 (Fel d 1) is associated with gelatin- and fibronectin-degrading activity. Clin Exper Allergy 2000, 30:1085–1096.CrossRef
8.
go back to reference Page K, Lierl K, Herman N, Wills-Karp M: Differences in susceptibility to German cockroach frass and its associated proteases in induced allergic inflammation in mice. Respir Res 2007, 8:91.CrossRefPubMedPubMedCentral Page K, Lierl K, Herman N, Wills-Karp M: Differences in susceptibility to German cockroach frass and its associated proteases in induced allergic inflammation in mice. Respir Res 2007, 8:91.CrossRefPubMedPubMedCentral
9.
go back to reference Kheradmand F, Kiss A, Xu J, Lee SH, Kolattukudy PE, Corry DB: A protease-activated pathway underlying Th2 cell type activation and allergic lung disease. J Immunol 2002, 169:5904–5911.CrossRefPubMed Kheradmand F, Kiss A, Xu J, Lee SH, Kolattukudy PE, Corry DB: A protease-activated pathway underlying Th2 cell type activation and allergic lung disease. J Immunol 2002, 169:5904–5911.CrossRefPubMed
10.
go back to reference Sudha VT, Arora N, Singh BP: Serine protease activity of Per a 10 augments allergen-induced airway inflammation in a mouse model. Eur J Clin Invest 2009, 39:507–516.CrossRefPubMed Sudha VT, Arora N, Singh BP: Serine protease activity of Per a 10 augments allergen-induced airway inflammation in a mouse model. Eur J Clin Invest 2009, 39:507–516.CrossRefPubMed
11.
go back to reference Kukreja N, Sridhara S, Singh BP, Arora N: Effect of proteolytic activity of Epicoccum purpurascens major allergen, Epi p1 in allergic inflammation. Clin Exper Immunol 2008, 154:162–171.CrossRef Kukreja N, Sridhara S, Singh BP, Arora N: Effect of proteolytic activity of Epicoccum purpurascens major allergen, Epi p1 in allergic inflammation. Clin Exper Immunol 2008, 154:162–171.CrossRef
12.
go back to reference Tripathi P, Kukreja N, Singh BP, Arora N: Serine protease activity of Cur 11 from Curvularia lunata augments Th2 response in mice. J Clin Immunol 2009, 29:292–302.CrossRefPubMed Tripathi P, Kukreja N, Singh BP, Arora N: Serine protease activity of Cur 11 from Curvularia lunata augments Th2 response in mice. J Clin Immunol 2009, 29:292–302.CrossRefPubMed
13.
go back to reference Wan H, Winton HL, Soeller C, Taylor GW, Gruenert DC, Thompson PJ, Cannell MB, Stewart GA, Garrod DR, Robinson C: The transmembrane protein occludin of epithelial tight junctions is a functional target for serine peptidases from faecal pellets of Dermatophagoides pteronyssinus. Clin Exper Allergy 2001, 31:279–294.CrossRef Wan H, Winton HL, Soeller C, Taylor GW, Gruenert DC, Thompson PJ, Cannell MB, Stewart GA, Garrod DR, Robinson C: The transmembrane protein occludin of epithelial tight junctions is a functional target for serine peptidases from faecal pellets of Dermatophagoides pteronyssinus. Clin Exper Allergy 2001, 31:279–294.CrossRef
14.
go back to reference Runswick S, Mitchell T, Davies P, Robinson C, Garrod DR: Pollen proteolytic enzymes degrade tight junctions. Respirol 2007, 12:834–842.CrossRef Runswick S, Mitchell T, Davies P, Robinson C, Garrod DR: Pollen proteolytic enzymes degrade tight junctions. Respirol 2007, 12:834–842.CrossRef
15.
go back to reference Asokananthan N, Graham PT, Fink J, Knight DA, Bakker AJ, McWilliam AS, Johnson PJ, Stewart GA: Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. J Immunol 2002, 168:3577–3585.CrossRefPubMed Asokananthan N, Graham PT, Fink J, Knight DA, Bakker AJ, McWilliam AS, Johnson PJ, Stewart GA: Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. J Immunol 2002, 168:3577–3585.CrossRefPubMed
16.
go back to reference Colognato R, Slupsky JR, Jendrach M, Burysek L, Syrovets T, Simmet T: Differential expression and regulation of protease-activated receptors in human peripheral monocytes and monocyte-derived antigen-presenting cells. Blood 2003, 102:2645–2652.CrossRefPubMed Colognato R, Slupsky JR, Jendrach M, Burysek L, Syrovets T, Simmet T: Differential expression and regulation of protease-activated receptors in human peripheral monocytes and monocyte-derived antigen-presenting cells. Blood 2003, 102:2645–2652.CrossRefPubMed
17.
go back to reference Akers IA, Parsons M, Hill MR, Hollenberg MD, Sanjar S, Laurent GJ, McAnulty RJ: Mast cell tryptase stimulates human lung fibroblast proliferation via protease-activated receptor-2. Am J Physiol 2000, 278:L193-L201. Akers IA, Parsons M, Hill MR, Hollenberg MD, Sanjar S, Laurent GJ, McAnulty RJ: Mast cell tryptase stimulates human lung fibroblast proliferation via protease-activated receptor-2. Am J Physiol 2000, 278:L193-L201.
18.
go back to reference D'Andrea MR, Rogahn CJ, Andrade-Gordon P: Localization of protease-activated receptors-1 and -2 in human mast cells: indications for an amplified mast cell degranuation cascade. Biotech Histochem 2000, 75:85–90.CrossRefPubMed D'Andrea MR, Rogahn CJ, Andrade-Gordon P: Localization of protease-activated receptors-1 and -2 in human mast cells: indications for an amplified mast cell degranuation cascade. Biotech Histochem 2000, 75:85–90.CrossRefPubMed
19.
go back to reference Hong JH, Lee SI, Kim KE, Yong TS, Seo JT, Sohn MH, Shin DM: German cockroach extract activates protease-activated receptor 2 in human airway epithelial cells. J Allergy Clin Immunol 2004, 113:315–319.CrossRefPubMed Hong JH, Lee SI, Kim KE, Yong TS, Seo JT, Sohn MH, Shin DM: German cockroach extract activates protease-activated receptor 2 in human airway epithelial cells. J Allergy Clin Immunol 2004, 113:315–319.CrossRefPubMed
20.
go back to reference Chiu LL, Perng DW, Yu CH, Su SN, Chow LP: Mold allergen, Pen c13, induced IL-8 expression in human airway epithelial cells by activated protease-activated receptor 1 and 2. J Immunol 2007, 178:5237–5244.CrossRefPubMed Chiu LL, Perng DW, Yu CH, Su SN, Chow LP: Mold allergen, Pen c13, induced IL-8 expression in human airway epithelial cells by activated protease-activated receptor 1 and 2. J Immunol 2007, 178:5237–5244.CrossRefPubMed
21.
go back to reference Kouzaki H, O'Grady SM, Lawrence CB, Kita H: Proteases induce production of thymic stromal lymphopoietin by airway epithelial cells through protease-activated receptor-2. J Immunol 2009, 183:1427–1434.CrossRefPubMedPubMedCentral Kouzaki H, O'Grady SM, Lawrence CB, Kita H: Proteases induce production of thymic stromal lymphopoietin by airway epithelial cells through protease-activated receptor-2. J Immunol 2009, 183:1427–1434.CrossRefPubMedPubMedCentral
22.
go back to reference Ebeling C, Lam T, Gordon JR, Hollenberg MD, Vliagoftis H: Proteinase-activated receptor-2 promotes allergic sensitization to an inhaled antigen through a TNF-mediated pathway. J Immunol 2007, 179:2910–2917.CrossRefPubMed Ebeling C, Lam T, Gordon JR, Hollenberg MD, Vliagoftis H: Proteinase-activated receptor-2 promotes allergic sensitization to an inhaled antigen through a TNF-mediated pathway. J Immunol 2007, 179:2910–2917.CrossRefPubMed
23.
go back to reference Schmidlin F, Amadesi S, Dabbagh K, Lewis DE, Knott P, Bunnett NW, Gater PR, Geppetti P, Bertrand C, Stevens ME: Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway. J Immunol 2002, 169:5315–5321.CrossRefPubMed Schmidlin F, Amadesi S, Dabbagh K, Lewis DE, Knott P, Bunnett NW, Gater PR, Geppetti P, Bertrand C, Stevens ME: Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway. J Immunol 2002, 169:5315–5321.CrossRefPubMed
24.
go back to reference Page K, Hughes VS, Bennett GW, Wong HR: German cockroach proteases regulate matrix metalloproteinase-9 in human bronchial epithelial cells. Allergy 2006, 61:988–995.CrossRefPubMed Page K, Hughes VS, Bennett GW, Wong HR: German cockroach proteases regulate matrix metalloproteinase-9 in human bronchial epithelial cells. Allergy 2006, 61:988–995.CrossRefPubMed
25.
go back to reference Hughes VS, Page K: German cockroach frass proteases cleave pro-matrix metalloproteinase-9. Exper Lung Res 2007, 33:135–150.CrossRef Hughes VS, Page K: German cockroach frass proteases cleave pro-matrix metalloproteinase-9. Exper Lung Res 2007, 33:135–150.CrossRef
26.
go back to reference Chavira RCJ, Burnett TJ, Hageman JH: Assaying proteinases with azocoll. Anal Biochem 1984, 136:446–450.CrossRefPubMed Chavira RCJ, Burnett TJ, Hageman JH: Assaying proteinases with azocoll. Anal Biochem 1984, 136:446–450.CrossRefPubMed
27.
go back to reference Wills-Karp M, Keane-Myers A, Gavett SH, Kuperman D: Allergen-induced airway inflammation and airway hyperreactivity in mice. In In vivo models of inflammation. Edited by: Morgan DW, Marshall LA. Basel/Switzerland: Birhauser; 1999:137–158. Wills-Karp M, Keane-Myers A, Gavett SH, Kuperman D: Allergen-induced airway inflammation and airway hyperreactivity in mice. In In vivo models of inflammation. Edited by: Morgan DW, Marshall LA. Basel/Switzerland: Birhauser; 1999:137–158.
28.
go back to reference Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD: Interleukin-13: Central mediator of allergic asthma. Science 1988, 282:2258–2261.CrossRef Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD: Interleukin-13: Central mediator of allergic asthma. Science 1988, 282:2258–2261.CrossRef
29.
go back to reference Walters DM, Breysse PN, Wills-Karp M: Ambient urban Baltimore particulate-induced airway hyperresponsiveness and inflammation in mice. Am J Respir Crit Care Med 2001, 164:1438–1443.CrossRefPubMed Walters DM, Breysse PN, Wills-Karp M: Ambient urban Baltimore particulate-induced airway hyperresponsiveness and inflammation in mice. Am J Respir Crit Care Med 2001, 164:1438–1443.CrossRefPubMed
30.
go back to reference Page K, Strunk VS, Hershenson MB: Cockroach proteases increase IL-8 expression in human bronchial epithelial cells via activation of protease-activated receptor (PAR)-2 and ERK. J Allergy Clin Immunol 2003, 112:1112–1118.CrossRefPubMed Page K, Strunk VS, Hershenson MB: Cockroach proteases increase IL-8 expression in human bronchial epithelial cells via activation of protease-activated receptor (PAR)-2 and ERK. J Allergy Clin Immunol 2003, 112:1112–1118.CrossRefPubMed
31.
go back to reference Kondo S, Helin H, Shichijo M, Bacon KB: Cockroach allergen extract stimulates protease-activated receptor -2 (PAR-2) expressed in mouse lung fibroblasts. Inflam Res 2004, 53:489–496.CrossRef Kondo S, Helin H, Shichijo M, Bacon KB: Cockroach allergen extract stimulates protease-activated receptor -2 (PAR-2) expressed in mouse lung fibroblasts. Inflam Res 2004, 53:489–496.CrossRef
32.
go back to reference Page K, Hughes VS, Odoms KK, Dunsmore KE, Hershenson MB: German cockroach proteases regulate IL-8 expression via NF-IL6 in human bronchial epithelial cells. Am J Respir Cell Mol Biol 2005, 32:225–231.CrossRefPubMed Page K, Hughes VS, Odoms KK, Dunsmore KE, Hershenson MB: German cockroach proteases regulate IL-8 expression via NF-IL6 in human bronchial epithelial cells. Am J Respir Cell Mol Biol 2005, 32:225–231.CrossRefPubMed
33.
go back to reference Pantano C, Ather JL, Alcorn JF, Poynter ME, Brown AL, Guala AS, Beuschel SL, Allen GB, Whittaker LA, Bevelander M, et al.: Nuclear factor-kappaB activation in airway epithelium induces inflammation and hyperresponsiveness. Am J Respir Crit Care Med 2008, 177:959–969.CrossRefPubMedPubMedCentral Pantano C, Ather JL, Alcorn JF, Poynter ME, Brown AL, Guala AS, Beuschel SL, Allen GB, Whittaker LA, Bevelander M, et al.: Nuclear factor-kappaB activation in airway epithelium induces inflammation and hyperresponsiveness. Am J Respir Crit Care Med 2008, 177:959–969.CrossRefPubMedPubMedCentral
34.
go back to reference Mangano DT, Tudor IC, Dietzel C: The risk associated with aprotinin in cardiac surgery. New Eng J Med 2006, 354:353–365.CrossRefPubMed Mangano DT, Tudor IC, Dietzel C: The risk associated with aprotinin in cardiac surgery. New Eng J Med 2006, 354:353–365.CrossRefPubMed
35.
go back to reference Cohen DM, Norberto J, Cartabuke R, Ryu G: Severe anaphylactiv reaction after primary exposure to aprotinin. Annal Thorac Surg 1999, 67:837–838.CrossRef Cohen DM, Norberto J, Cartabuke R, Ryu G: Severe anaphylactiv reaction after primary exposure to aprotinin. Annal Thorac Surg 1999, 67:837–838.CrossRef
36.
go back to reference Ewart SL, Kuperman D, Schadt E, Tankersley C, Grupe A, Shubitowske DM, Peltz G, Wills-Karp M: Quantitiative trait loci controlling allergen-induced ariway hyperresponsiveness in inbred mice. Am J Respir Cell Mol Biol 2000, 23:537–545.CrossRefPubMed Ewart SL, Kuperman D, Schadt E, Tankersley C, Grupe A, Shubitowske DM, Peltz G, Wills-Karp M: Quantitiative trait loci controlling allergen-induced ariway hyperresponsiveness in inbred mice. Am J Respir Cell Mol Biol 2000, 23:537–545.CrossRefPubMed
37.
go back to reference Whitehead GS, Walker JKL, Berman KG, Foster WM, Schwartz DA: Allergen-induced airway disease is mouse strain dependent. Am J Physiol 2003, 285:L32-L42. Whitehead GS, Walker JKL, Berman KG, Foster WM, Schwartz DA: Allergen-induced airway disease is mouse strain dependent. Am J Physiol 2003, 285:L32-L42.
38.
go back to reference Page K, Lierl KM, Hughes VS, Zhou P, Ledford JR, Wills-Karp M: TLR2-mediated activation of neutrophils in response to German cockroach frass. J Immunol 2008, 180:6317–6324.CrossRefPubMedPubMedCentral Page K, Lierl KM, Hughes VS, Zhou P, Ledford JR, Wills-Karp M: TLR2-mediated activation of neutrophils in response to German cockroach frass. J Immunol 2008, 180:6317–6324.CrossRefPubMedPubMedCentral
39.
go back to reference Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN: House dust mite allergen induces asthma via TLR4 triggering of airway structural cells. Nature Med 2009, 15:410–416.CrossRefPubMedPubMedCentral Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN: House dust mite allergen induces asthma via TLR4 triggering of airway structural cells. Nature Med 2009, 15:410–416.CrossRefPubMedPubMedCentral
40.
go back to reference Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, et al.: Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009, 139:485–498.CrossRefPubMedPubMedCentral Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, et al.: Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009, 139:485–498.CrossRefPubMedPubMedCentral
41.
go back to reference Wills-Karp M, Ewart SL: The genetics of allergen-induced airway hyperresponsiveness in mice. Am J Respir Cell Mol Biol 1997, 156:S89-S96. Wills-Karp M, Ewart SL: The genetics of allergen-induced airway hyperresponsiveness in mice. Am J Respir Cell Mol Biol 1997, 156:S89-S96.
42.
go back to reference Coffman RL, Chatelain R, Leal LM, Varkila K: Leishmania major infection in mice: a model system for the study of CD4+ T- cell subset differentiation. Res Immunol 1991, 14:35–40. Coffman RL, Chatelain R, Leal LM, Varkila K: Leishmania major infection in mice: a model system for the study of CD4+ T- cell subset differentiation. Res Immunol 1991, 14:35–40.
43.
go back to reference Kahn ML, Hammes SR, Botka C, Coughlin SR: Gene and locus structure and chromosomal localization of the Protease-activated receptor gene family. J Biol Chem 1998, 273:23290–23296.CrossRefPubMed Kahn ML, Hammes SR, Botka C, Coughlin SR: Gene and locus structure and chromosomal localization of the Protease-activated receptor gene family. J Biol Chem 1998, 273:23290–23296.CrossRefPubMed
44.
go back to reference Leme AS, Berndt A, Williams LK, Tsaih SW, Szatkiewicz JP, Verdugo R, Paigen B, Shapiro SD: A survey of airway responsiveness in 36 inbred mouse strains facilitates gene mapping studies and identification of quantitative trait loci. Mol Genetic Genomic 2010, in press. Leme AS, Berndt A, Williams LK, Tsaih SW, Szatkiewicz JP, Verdugo R, Paigen B, Shapiro SD: A survey of airway responsiveness in 36 inbred mouse strains facilitates gene mapping studies and identification of quantitative trait loci. Mol Genetic Genomic 2010, in press.
45.
go back to reference Marsh DG, Neely JD, Breaseale DR, Ghosh B, Friedhoff LR, Ehrlich-Kautzky E, Schou C, Krishnaswamy G, Beaty TH: Linkage analysis of IL-4 and other chromosome 5q31.1 markers and total serum IgE concentrations. Science 1994, 264:1152–1156.CrossRefPubMed Marsh DG, Neely JD, Breaseale DR, Ghosh B, Friedhoff LR, Ehrlich-Kautzky E, Schou C, Krishnaswamy G, Beaty TH: Linkage analysis of IL-4 and other chromosome 5q31.1 markers and total serum IgE concentrations. Science 1994, 264:1152–1156.CrossRefPubMed
46.
go back to reference Ebeling C, Forsythe P, Ng J, Gordon JR, Hollenberg M, Vliagoftis H: Proteinase-activated receptor 2 activation in the airways enhances antigen-mediated airway inflammation and airway hyperresponsiveness. J Allergy Clin Immunol 2005, 115:623–630.CrossRefPubMed Ebeling C, Forsythe P, Ng J, Gordon JR, Hollenberg M, Vliagoftis H: Proteinase-activated receptor 2 activation in the airways enhances antigen-mediated airway inflammation and airway hyperresponsiveness. J Allergy Clin Immunol 2005, 115:623–630.CrossRefPubMed
47.
go back to reference D'Agostino B, Roviezzo F, De Palma R, Terracciano S, De Nardo M, Gallelli L, Abbate GF, D'Aiuto E, Russo M, Cirino G, et al.: Activation of protease-activated receptor-2 reduces airways inflammation in experimental allergic asthma. Clin Exper Allergy 2007, 37:1436–1443. D'Agostino B, Roviezzo F, De Palma R, Terracciano S, De Nardo M, Gallelli L, Abbate GF, D'Aiuto E, Russo M, Cirino G, et al.: Activation of protease-activated receptor-2 reduces airways inflammation in experimental allergic asthma. Clin Exper Allergy 2007, 37:1436–1443.
Metadata
Title
Mucosal sensitization to German cockroach involves protease-activated receptor-2
Authors
Kristen Page
John R Ledford
Ping Zhou
Krista Dienger
Marsha Wills-Karp
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2010
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-11-62

Other articles of this Issue 1/2010

Respiratory Research 1/2010 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.