Skip to main content
Top
Published in: Respiratory Research 1/2010

Open Access 01-12-2010 | Research

Corticosteroid effects on ventilator-induced diaphragm dysfunction in anesthetized rats depend on the dose administered

Authors: Karen Maes, Anouk Agten, Ashley Smuder, Scott K Powers, Marc Decramer, Ghislaine Gayan-Ramirez

Published in: Respiratory Research | Issue 1/2010

Login to get access

Abstract

Background

High dose of corticosteroids has been previously shown to protect against controlled mechanical ventilation (CMV)-induced diaphragmatic dysfunction while inhibiting calpain activation. Because literature suggests that the calpain inhibiting effect of corticosteroid depends on the dose administered, we determined whether lower doses of corticosteroids would also provide protection of the diaphragm during CMV. This may be important for patients undergoing mechanical ventilation and receiving corticosteroids.

Methods

Rats were assigned to controls or to 24 hours of CMV while being treated at the start of mechanical ventilation with a single intramuscular administration of either saline, or 5 mg/kg (low MP) or 30 mg/kg (high MP) of methylprednisolone.

Results

Diaphragmatic force was decreased after CMV and this was exacerbated in the low MP group while high MP rescued this diaphragmatic dysfunction. Atrophy was more severe in the low MP group than after CMV while no atrophy was observed in the high MP group. A significant and similar increase in calpain activity was observed in both the low MP and CMV groups whereas the high dose prevented calpain activation. Expression of calpastatin, the endogenous inhibitor of calpain, was decreased in the CMV and low MP groups but its level was preserved to controls in the high MP group. Caspase-3 activity increased in all CMV groups but to a lesser extent in the low and high MP groups. The 20S proteasome activity was increased in CMV only.

Conclusions

Administration of 30 mg/kg methylprednisolone during CMV protected against CMV-induced diaphragm dysfunction while 5 mg/kg was more deleterious. The protective effect is due mainly to an inhibition of the calpain system through preservation of calpastatin levels and to a lesser extent to a caspase-3 inhibition.
Literature
1.
go back to reference Askari A, Vignos PJ Jr, Moskowitz RW: Steroid myopathy in connective tissue disease. Am J Med 1976, 61:485–492.CrossRefPubMed Askari A, Vignos PJ Jr, Moskowitz RW: Steroid myopathy in connective tissue disease. Am J Med 1976, 61:485–492.CrossRefPubMed
2.
go back to reference Batchelor TT, Taylor LP, Thaler HT, Posner JB, DeAngelis LM: Steroid myopathy in cancer patients. Neurology 1997, 48:1234–1238.CrossRefPubMed Batchelor TT, Taylor LP, Thaler HT, Posner JB, DeAngelis LM: Steroid myopathy in cancer patients. Neurology 1997, 48:1234–1238.CrossRefPubMed
3.
go back to reference Dekhuijzen PN, Gayan-Ramirez G, Bisschop A, de Bock V, Dom R, Bouillon R, et al.: Rat diaphragm contractility and histopathology are affected differently by low dose treatment with methylprednisolone and deflazacort. Eur Respir J 1995, 8:824–830.PubMed Dekhuijzen PN, Gayan-Ramirez G, Bisschop A, de Bock V, Dom R, Bouillon R, et al.: Rat diaphragm contractility and histopathology are affected differently by low dose treatment with methylprednisolone and deflazacort. Eur Respir J 1995, 8:824–830.PubMed
4.
go back to reference Schakman O, Gilson H, Thissen JP: Mechanisms of glucocorticoid-induced myopathy. J Endocrinol 2008, 197:1–10.CrossRefPubMed Schakman O, Gilson H, Thissen JP: Mechanisms of glucocorticoid-induced myopathy. J Endocrinol 2008, 197:1–10.CrossRefPubMed
5.
go back to reference Hasselgren PO: Glucocorticoids and muscle catabolism. Curr Opin Clin Nutr Metab Care 1999, 2:201–205.CrossRefPubMed Hasselgren PO: Glucocorticoids and muscle catabolism. Curr Opin Clin Nutr Metab Care 1999, 2:201–205.CrossRefPubMed
6.
go back to reference Sacheck JM, Ohtsuka A, McLary SC, Goldberg AL: IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am J Physiol Endocrinol Metab 2004, 287:E591-E601.CrossRefPubMed Sacheck JM, Ohtsuka A, McLary SC, Goldberg AL: IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am J Physiol Endocrinol Metab 2004, 287:E591-E601.CrossRefPubMed
7.
go back to reference Banik NL, Matzelle D, Terry E, Hogan EL: A new mechanism of methylprednisolone and other corticosteroids action demonstrated in vitro: inhibition of a proteinase (calpain) prevents myelin and cytoskeletal protein degradation. Brain Res 1997, 748:205–210.CrossRefPubMed Banik NL, Matzelle D, Terry E, Hogan EL: A new mechanism of methylprednisolone and other corticosteroids action demonstrated in vitro: inhibition of a proteinase (calpain) prevents myelin and cytoskeletal protein degradation. Brain Res 1997, 748:205–210.CrossRefPubMed
8.
go back to reference Wang M, Shen F, Shi LH, Xi T, Li XF, Chen X, et al.: Protective effect of prednisolone on ischemia-induced liver injury in rats. World J Gastroenterol 2008, 14:4332–4337.CrossRefPubMedPubMedCentral Wang M, Shen F, Shi LH, Xi T, Li XF, Chen X, et al.: Protective effect of prednisolone on ischemia-induced liver injury in rats. World J Gastroenterol 2008, 14:4332–4337.CrossRefPubMedPubMedCentral
9.
go back to reference Maes K, Testelmans D, Cadot P, Deruisseau K, Powers SK, Decramer M, et al.: Effects of acute administration of corticosteroids during mechanical ventilation on rat diaphragm. Am J Respir Crit Care Med 2008, 178:1219–1226.CrossRefPubMedPubMedCentral Maes K, Testelmans D, Cadot P, Deruisseau K, Powers SK, Decramer M, et al.: Effects of acute administration of corticosteroids during mechanical ventilation on rat diaphragm. Am J Respir Crit Care Med 2008, 178:1219–1226.CrossRefPubMedPubMedCentral
10.
go back to reference Pearl JM, Plank DM, McLean KM, Wagner CJ, Duffy JY: Glucocorticoids Improve Calcium Cycling in Cardiac Myocytes after Cardiopulmonary Bypass. J Surg Res 2009. Pearl JM, Plank DM, McLean KM, Wagner CJ, Duffy JY: Glucocorticoids Improve Calcium Cycling in Cardiac Myocytes after Cardiopulmonary Bypass. J Surg Res 2009.
11.
go back to reference Glanemann M, Strenziok R, Kuntze R, Munchow S, Dikopoulos N, Lippek F, et al.: Ischemic preconditioning and methylprednisolone both equally reduce hepatic ischemia/reperfusion injury. Surgery 2004, 135:203–214.CrossRefPubMed Glanemann M, Strenziok R, Kuntze R, Munchow S, Dikopoulos N, Lippek F, et al.: Ischemic preconditioning and methylprednisolone both equally reduce hepatic ischemia/reperfusion injury. Surgery 2004, 135:203–214.CrossRefPubMed
12.
go back to reference Pearl JM, Nelson DP, Schwartz SM, Wagner CJ, Bauer SM, Setser EA, et al.: Glucocorticoids reduce ischemia-reperfusion-induced myocardial apoptosis in immature hearts. Ann Thorac Surg 2002, 74:830–836.CrossRefPubMed Pearl JM, Nelson DP, Schwartz SM, Wagner CJ, Bauer SM, Setser EA, et al.: Glucocorticoids reduce ischemia-reperfusion-induced myocardial apoptosis in immature hearts. Ann Thorac Surg 2002, 74:830–836.CrossRefPubMed
13.
go back to reference Wang H, Wu YB, Du XH: Effect of dexamethasone on nitric oxide synthase and Caspase-3 gene expressions in endotoxemia in neonate rat brain. Biomed Environ Sci 2005, 18:181–186.PubMed Wang H, Wu YB, Du XH: Effect of dexamethasone on nitric oxide synthase and Caspase-3 gene expressions in endotoxemia in neonate rat brain. Biomed Environ Sci 2005, 18:181–186.PubMed
14.
go back to reference Wang M, Sakon M, Umeshita K, Okuyama M, Shiozaki K, Nagano H, et al.: Prednisolone suppresses ischemia-reperfusion injury of the rat liver by reducing cytokine production and calpain mu activation. J Hepatol 2001, 34:278–283.CrossRefPubMed Wang M, Sakon M, Umeshita K, Okuyama M, Shiozaki K, Nagano H, et al.: Prednisolone suppresses ischemia-reperfusion injury of the rat liver by reducing cytokine production and calpain mu activation. J Hepatol 2001, 34:278–283.CrossRefPubMed
15.
go back to reference DeRuisseau KC, Shanely RA, Akunuri N, Hamilton MT, Van Gammeren D, Zergeroglu AM, et al.: Diaphragm unloading via controlled mechanical ventilation alters the gene expression profile. Am J Respir Crit Care Med 2005, 172:1267–1275.CrossRefPubMedPubMedCentral DeRuisseau KC, Shanely RA, Akunuri N, Hamilton MT, Van Gammeren D, Zergeroglu AM, et al.: Diaphragm unloading via controlled mechanical ventilation alters the gene expression profile. Am J Respir Crit Care Med 2005, 172:1267–1275.CrossRefPubMedPubMedCentral
16.
go back to reference DeRuisseau KC, Kavazis AN, Deering MA, Falk DJ, Van Gammeren D, Yimlamai T, et al.: Mechanical ventilation induces alterations of the ubiquitin-proteasome pathway in the diaphragm. J Appl Physiol 2005, 98:1314–1321.CrossRefPubMed DeRuisseau KC, Kavazis AN, Deering MA, Falk DJ, Van Gammeren D, Yimlamai T, et al.: Mechanical ventilation induces alterations of the ubiquitin-proteasome pathway in the diaphragm. J Appl Physiol 2005, 98:1314–1321.CrossRefPubMed
17.
go back to reference Shanely RA, Zergeroglu MA, Lennon SL, Sugiura T, Yimlamai T, Enns D, et al.: Mechanical ventilation-induced diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity. Am J Respir Crit Care Med 2002, 166:1369–1374.CrossRefPubMed Shanely RA, Zergeroglu MA, Lennon SL, Sugiura T, Yimlamai T, Enns D, et al.: Mechanical ventilation-induced diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity. Am J Respir Crit Care Med 2002, 166:1369–1374.CrossRefPubMed
18.
19.
go back to reference Reagan-Shaw S, Nihal M, Ahmad N: Dose translation from animal to human studies revisited. FASEB J 2008, 22:659–661.CrossRefPubMed Reagan-Shaw S, Nihal M, Ahmad N: Dose translation from animal to human studies revisited. FASEB J 2008, 22:659–661.CrossRefPubMed
20.
go back to reference Dekhuijzen PN, Gayan-Ramirez G, de Bock V, Dom R, Decramer M: Triamcinolone and prednisolone affect contractile properties and histopathology of rat diaphragm differently. J Clin Invest 1993, 92:1534–1542.CrossRefPubMedPubMedCentral Dekhuijzen PN, Gayan-Ramirez G, de Bock V, Dom R, Decramer M: Triamcinolone and prednisolone affect contractile properties and histopathology of rat diaphragm differently. J Clin Invest 1993, 92:1534–1542.CrossRefPubMedPubMedCentral
21.
go back to reference Betters JL, Criswell DS, Shanely RA, Van Gammeren D, Falk D, DeRuisseau KC, et al.: Trolox attenuates mechanical ventilation-induced diaphragmatic dysfunction and proteolysis. Am J Respir Crit Care Med 2004, 170:1179–1184.CrossRefPubMed Betters JL, Criswell DS, Shanely RA, Van Gammeren D, Falk D, DeRuisseau KC, et al.: Trolox attenuates mechanical ventilation-induced diaphragmatic dysfunction and proteolysis. Am J Respir Crit Care Med 2004, 170:1179–1184.CrossRefPubMed
22.
go back to reference Auclair D, Garrel DR, Chaouki ZA, Ferland LH: Activation of the ubiquitin pathway in rat skeletal muscle by catabolic doses of glucocorticoids. Am J Physiol 1997, 272:C1007-C1016.PubMed Auclair D, Garrel DR, Chaouki ZA, Ferland LH: Activation of the ubiquitin pathway in rat skeletal muscle by catabolic doses of glucocorticoids. Am J Physiol 1997, 272:C1007-C1016.PubMed
23.
go back to reference Dardevet D, Sornet C, Taillandier D, Savary I, Attaix D, Grizard J: Sensitivity and protein turnover response to glucocorticoids are different in skeletal muscle from adult and old rats. Lack of regulation of the ubiquitin-proteasome proteolytic pathway in aging. J Clin Invest 1995, 96:2113–2119.CrossRefPubMedPubMedCentral Dardevet D, Sornet C, Taillandier D, Savary I, Attaix D, Grizard J: Sensitivity and protein turnover response to glucocorticoids are different in skeletal muscle from adult and old rats. Lack of regulation of the ubiquitin-proteasome proteolytic pathway in aging. J Clin Invest 1995, 96:2113–2119.CrossRefPubMedPubMedCentral
24.
go back to reference Deval C, Mordier S, Obled C, Bechet D, Combaret L, Attaix D, et al.: Identification of cathepsin L as a differentially expressed message associated with skeletal muscle wasting. Biochem J 2001, 360:143–150.CrossRefPubMedPubMedCentral Deval C, Mordier S, Obled C, Bechet D, Combaret L, Attaix D, et al.: Identification of cathepsin L as a differentially expressed message associated with skeletal muscle wasting. Biochem J 2001, 360:143–150.CrossRefPubMedPubMedCentral
25.
go back to reference Sohar I, Nagy I, Heiner L, Kovacs Z, Guba F: Proteases and proteinase inhibitors in experimental glucocorticosteroid myopathy. Acta Physiol Acad Sci Hung 1982, 60:43–51.PubMed Sohar I, Nagy I, Heiner L, Kovacs Z, Guba F: Proteases and proteinase inhibitors in experimental glucocorticosteroid myopathy. Acta Physiol Acad Sci Hung 1982, 60:43–51.PubMed
26.
go back to reference Zhao W, Pan J, Zhao Z, Wu Y, Bauman WA, Cardozo CP: Testosterone protects against dexamethasone-induced muscle atrophy, protein degradation and MAFbx upregulation. J Steroid Biochem Mol Biol 2008, 110:125–129.CrossRefPubMed Zhao W, Pan J, Zhao Z, Wu Y, Bauman WA, Cardozo CP: Testosterone protects against dexamethasone-induced muscle atrophy, protein degradation and MAFbx upregulation. J Steroid Biochem Mol Biol 2008, 110:125–129.CrossRefPubMed
27.
go back to reference Rifai Z, Welle S, Moxley RT III, Lorenson M, Griggs RC: Effect of prednisone on protein metabolism in Duchenne dystrophy. Am J Physiol 1995, 268:E67-E74.PubMed Rifai Z, Welle S, Moxley RT III, Lorenson M, Griggs RC: Effect of prednisone on protein metabolism in Duchenne dystrophy. Am J Physiol 1995, 268:E67-E74.PubMed
28.
go back to reference Alderton JM, Steinhardt RA: Calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes. J Biol Chem 2000, 275:9452–9460.CrossRefPubMed Alderton JM, Steinhardt RA: Calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes. J Biol Chem 2000, 275:9452–9460.CrossRefPubMed
29.
go back to reference Sur P, Sribnick EA, Patel SJ, Ray SK, Banik NL: Dexamethasone decreases temozolomide-induced apoptosis in human gliobastoma T98G cells. Glia 2005, 50:160–167.CrossRefPubMed Sur P, Sribnick EA, Patel SJ, Ray SK, Banik NL: Dexamethasone decreases temozolomide-induced apoptosis in human gliobastoma T98G cells. Glia 2005, 50:160–167.CrossRefPubMed
30.
go back to reference Ostwald K, Hayashi M, Nakamura M, Kawashima S: Subcellular distribution of calpain and calpastatin immunoreactivity and fodrin proteolysis in rabbit hippocampus after hypoxia and glucocorticoid treatment. J Neurochem 1994, 63:1069–1076.CrossRefPubMed Ostwald K, Hayashi M, Nakamura M, Kawashima S: Subcellular distribution of calpain and calpastatin immunoreactivity and fodrin proteolysis in rabbit hippocampus after hypoxia and glucocorticoid treatment. J Neurochem 1994, 63:1069–1076.CrossRefPubMed
31.
go back to reference Schwartz SM, Duffy JY, Pearl JM, Goins S, Wagner CJ, Nelson DP: Glucocorticoids preserve calpastatin and troponin I during cardiopulmonary bypass in immature pigs. Pediatr Res 2003, 54:91–97.CrossRefPubMed Schwartz SM, Duffy JY, Pearl JM, Goins S, Wagner CJ, Nelson DP: Glucocorticoids preserve calpastatin and troponin I during cardiopulmonary bypass in immature pigs. Pediatr Res 2003, 54:91–97.CrossRefPubMed
32.
go back to reference Niazi Z, Flodin P, Joyce L, Smith J, Mauer H, Lillehei RC: Effects of glucocorticosteroids in patients undergoing coronary artery bypass surgery. Chest 1979, 76:262–268.CrossRefPubMed Niazi Z, Flodin P, Joyce L, Smith J, Mauer H, Lillehei RC: Effects of glucocorticosteroids in patients undergoing coronary artery bypass surgery. Chest 1979, 76:262–268.CrossRefPubMed
33.
go back to reference Schroeder VA, Pearl JM, Schwartz SM, Shanley TP, Manning PB, Nelson DP: Combined steroid treatment for congenital heart surgery improves oxygen delivery and reduces postbypass inflammatory mediator expression. Circulation 2003, 107:2823–2828.CrossRefPubMed Schroeder VA, Pearl JM, Schwartz SM, Shanley TP, Manning PB, Nelson DP: Combined steroid treatment for congenital heart surgery improves oxygen delivery and reduces postbypass inflammatory mediator expression. Circulation 2003, 107:2823–2828.CrossRefPubMed
34.
go back to reference Toledo-Pereyra LH, Lin CY, Kundler H, Replogle RL: Steroids in heart surgery: a clinical double-blind and randomized study. Am Surg 1980, 46:155–160.PubMed Toledo-Pereyra LH, Lin CY, Kundler H, Replogle RL: Steroids in heart surgery: a clinical double-blind and randomized study. Am Surg 1980, 46:155–160.PubMed
35.
go back to reference Leijendekker WJ, Passaquin AC, Metzinger L, Ruegg UT: Regulation of cytosolic calcium in skeletal muscle cells of the mdx mouse under conditions of stress. Br J Pharmacol 1996, 118:611–616.CrossRefPubMedPubMedCentral Leijendekker WJ, Passaquin AC, Metzinger L, Ruegg UT: Regulation of cytosolic calcium in skeletal muscle cells of the mdx mouse under conditions of stress. Br J Pharmacol 1996, 118:611–616.CrossRefPubMedPubMedCentral
36.
go back to reference Maes K, Testelmans D, Powers S, Decramer M, Gayan-Ramirez G: Leupeptin Inhibits Ventilator-induced Diaphragm Dysfunction in Rats. Am J Respir Crit Care Med 2007, 175:1134–1138.CrossRefPubMed Maes K, Testelmans D, Powers S, Decramer M, Gayan-Ramirez G: Leupeptin Inhibits Ventilator-induced Diaphragm Dysfunction in Rats. Am J Respir Crit Care Med 2007, 175:1134–1138.CrossRefPubMed
37.
go back to reference Sassoon CS, Zhu E, Pham HT, Nelson RS, Fang L, Baker MJ, et al.: Acute effects of high-dose methylprednisolone on diaphragm muscle function. Muscle Nerve 2008, 38:1161–1172.CrossRefPubMed Sassoon CS, Zhu E, Pham HT, Nelson RS, Fang L, Baker MJ, et al.: Acute effects of high-dose methylprednisolone on diaphragm muscle function. Muscle Nerve 2008, 38:1161–1172.CrossRefPubMed
38.
go back to reference Wang L, Luo GJ, Wang JJ, Hasselgren PO: Dexamethasone stimulates proteasome- and calcium-dependent proteolysis in cultured L6 myotubes. Shock 1998, 10:298–306.CrossRefPubMed Wang L, Luo GJ, Wang JJ, Hasselgren PO: Dexamethasone stimulates proteasome- and calcium-dependent proteolysis in cultured L6 myotubes. Shock 1998, 10:298–306.CrossRefPubMed
39.
go back to reference Yin HN, Chai JK, Yu YM, Shen CA, Wu YQ, Yao YM, et al.: Regulation of signaling pathways downstream of IGF-I/insulin by androgen in skeletal muscle of glucocorticoid-treated rats. J Trauma 2009, 66:1083–1090.CrossRefPubMedPubMedCentral Yin HN, Chai JK, Yu YM, Shen CA, Wu YQ, Yao YM, et al.: Regulation of signaling pathways downstream of IGF-I/insulin by androgen in skeletal muscle of glucocorticoid-treated rats. J Trauma 2009, 66:1083–1090.CrossRefPubMedPubMedCentral
40.
go back to reference Beyette J, Mason GG, Murray RZ, Cohen GM, Rivett AJ: Proteasome activities decrease during dexamethasone-induced apoptosis of thymocytes. Biochem J 1998,332(Pt 2):315–320.CrossRefPubMedPubMedCentral Beyette J, Mason GG, Murray RZ, Cohen GM, Rivett AJ: Proteasome activities decrease during dexamethasone-induced apoptosis of thymocytes. Biochem J 1998,332(Pt 2):315–320.CrossRefPubMedPubMedCentral
Metadata
Title
Corticosteroid effects on ventilator-induced diaphragm dysfunction in anesthetized rats depend on the dose administered
Authors
Karen Maes
Anouk Agten
Ashley Smuder
Scott K Powers
Marc Decramer
Ghislaine Gayan-Ramirez
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2010
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-11-178

Other articles of this Issue 1/2010

Respiratory Research 1/2010 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.