Skip to main content
Top
Published in: Molecular and Cellular Pediatrics 1/2024

Open Access 01-12-2024 | Type 1 Diabetes | Review

Tipping the balance in autoimmunity: are regulatory t cells the cause, the cure, or both?

Authors: Matthias Hardtke-Wolenski, Sybille Landwehr-Kenzel

Published in: Molecular and Cellular Pediatrics | Issue 1/2024

Login to get access

Abstract

Regulatory T cells (Tregs) are a specialized subgroup of T-cell lymphocytes that is crucial for maintaining immune homeostasis and preventing excessive immune responses. Depending on their differentiation route, Tregs can be subdivided into thymically derived Tregs (tTregs) and peripherally induced Tregs (pTregs), which originate from conventional T cells after extrathymic differentiation at peripheral sites. Although the regulatory attributes of tTregs and pTregs partially overlap, their modes of action, protein expression profiles, and functional stability exhibit specific characteristics unique to each subset. Over the last few years, our knowledge of Treg differentiation, maturation, plasticity, and correlations between their phenotypes and functions has increased. Genetic and functional studies in patients with numeric and functional Treg deficiencies have contributed to our mechanistic understanding of immune dysregulation and autoimmune pathologies. This review provides an overview of our current knowledge of Treg biology, discusses monogenetic Treg pathologies and explores the role of Tregs in various other autoimmune disorders. Additionally, we discuss novel approaches that explore Tregs as targets or agents of innovative treatment options.
Literature
2.
go back to reference Chen WJ, Jin W, Hardegen N et al (2003) Conversion of Peripheral CD4+CD25− Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-β Induction of Transcription Factor Foxp3. J Exp Med 198(12):1875–1886PubMedPubMedCentralCrossRef Chen WJ, Jin W, Hardegen N et al (2003) Conversion of Peripheral CD4+CD25− Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-β Induction of Transcription Factor Foxp3. J Exp Med 198(12):1875–1886PubMedPubMedCentralCrossRef
4.
go back to reference Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061PubMedCrossRef Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061PubMedCrossRef
5.
go back to reference Liu W, Putnam AL, Xu-yu Z et al (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203(7):1701–1711PubMedPubMedCentralCrossRef Liu W, Putnam AL, Xu-yu Z et al (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203(7):1701–1711PubMedPubMedCentralCrossRef
6.
go back to reference Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330–336PubMedCrossRef Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330–336PubMedCrossRef
7.
8.
go back to reference Darrasse-Jèze G, Marodon G, Salomon BL, Catala M, Klatzmann D (2005) Ontogeny of CD4+CD25+ regulatory/suppressor T cells in human fetuses. Blood 105(12):4715–4721PubMedCrossRef Darrasse-Jèze G, Marodon G, Salomon BL, Catala M, Klatzmann D (2005) Ontogeny of CD4+CD25+ regulatory/suppressor T cells in human fetuses. Blood 105(12):4715–4721PubMedCrossRef
9.
go back to reference Cupedo T, Nagasawa M, Weijer K, Blom B, Spits H (2005) Development and activation of regulatory T cells in the human fetus. Eur J Immunol 35(2):383–390PubMedCrossRef Cupedo T, Nagasawa M, Weijer K, Blom B, Spits H (2005) Development and activation of regulatory T cells in the human fetus. Eur J Immunol 35(2):383–390PubMedCrossRef
10.
go back to reference Mazerolles F, Stolzenberg M-C, Pelle O et al (2018) Autoimmune Lymphoproliferative Syndrome-FAS Patients Have an Abnormal Regulatory T Cell (Treg) Phenotype but Display Normal Natural Treg-Suppressive Function on T Cell Proliferation. Front Immunol 9:718PubMedPubMedCentralCrossRef Mazerolles F, Stolzenberg M-C, Pelle O et al (2018) Autoimmune Lymphoproliferative Syndrome-FAS Patients Have an Abnormal Regulatory T Cell (Treg) Phenotype but Display Normal Natural Treg-Suppressive Function on T Cell Proliferation. Front Immunol 9:718PubMedPubMedCentralCrossRef
13.
go back to reference Hsieh C-S, Lee H-M, Lio C-WJ (2012) Selection of regulatory T cells in the thymus. Nat. Rev. Immunol 12(3):157–167PubMedCrossRef Hsieh C-S, Lee H-M, Lio C-WJ (2012) Selection of regulatory T cells in the thymus. Nat. Rev. Immunol 12(3):157–167PubMedCrossRef
14.
go back to reference Jordan MS, Boesteanu A, Reed AJ et al (2001) Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2(4):301–306PubMedCrossRef Jordan MS, Boesteanu A, Reed AJ et al (2001) Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2(4):301–306PubMedCrossRef
15.
go back to reference Moran AE, Holzapfel KL, Xing Y et al (2011) T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J Exp Med 208(6):1279–1289PubMedPubMedCentralCrossRef Moran AE, Holzapfel KL, Xing Y et al (2011) T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J Exp Med 208(6):1279–1289PubMedPubMedCentralCrossRef
16.
go back to reference Kieback E, Hilgenberg E, Stervbo U et al (2016) Thymus-Derived Regulatory T Cells Are Positively Selected on Natural Self-Antigen through Cognate Interactions of High Functional Avidity. Immunity 44(5):1114–1126PubMedCrossRef Kieback E, Hilgenberg E, Stervbo U et al (2016) Thymus-Derived Regulatory T Cells Are Positively Selected on Natural Self-Antigen through Cognate Interactions of High Functional Avidity. Immunity 44(5):1114–1126PubMedCrossRef
17.
go back to reference Pacholczyk R, Ignatowicz H, Kraj P, Ignatowicz L (2006) Origin and T Cell Receptor Diversity of Foxp3+CD4+CD25+ T Cells. Immunity 25(2):249–259PubMedCrossRef Pacholczyk R, Ignatowicz H, Kraj P, Ignatowicz L (2006) Origin and T Cell Receptor Diversity of Foxp3+CD4+CD25+ T Cells. Immunity 25(2):249–259PubMedCrossRef
18.
go back to reference Lei H, Kuchenbecker L, Streitz M et al (2015) Human CD45RA- FoxP3hi Memory-Type Regulatory T Cells Show Distinct TCR Repertoires with Conventional T Cells and Play an Important Role in Controlling Early Immune Activation. Am J Transplant 15(10):2625–2635PubMedCrossRef Lei H, Kuchenbecker L, Streitz M et al (2015) Human CD45RA- FoxP3hi Memory-Type Regulatory T Cells Show Distinct TCR Repertoires with Conventional T Cells and Play an Important Role in Controlling Early Immune Activation. Am J Transplant 15(10):2625–2635PubMedCrossRef
19.
go back to reference Wyss L, Stadinski BD, King CG et al (2016) Affinity for self antigen selects Treg cells with distinct functional properties. Nat Immunol 17(9):1093–1101PubMedPubMedCentralCrossRef Wyss L, Stadinski BD, King CG et al (2016) Affinity for self antigen selects Treg cells with distinct functional properties. Nat Immunol 17(9):1093–1101PubMedPubMedCentralCrossRef
21.
22.
go back to reference Polansky JK, Schreiber L, Thelemann C et al (2010) Methylation matters: binding of Ets-1 to the demethylated Foxp3 gene contributes to the stabilization of Foxp3 expression in regulatory T cells. J Mol Med Berl Ger 88(10):1029–1040CrossRef Polansky JK, Schreiber L, Thelemann C et al (2010) Methylation matters: binding of Ets-1 to the demethylated Foxp3 gene contributes to the stabilization of Foxp3 expression in regulatory T cells. J Mol Med Berl Ger 88(10):1029–1040CrossRef
23.
go back to reference Polansky JK, Kretschmer K, Freyer J et al (2008) DNA methylation controls Foxp3 gene expression. Eur J Immunol 38(6):1654–1663PubMedCrossRef Polansky JK, Kretschmer K, Freyer J et al (2008) DNA methylation controls Foxp3 gene expression. Eur J Immunol 38(6):1654–1663PubMedCrossRef
24.
go back to reference Toker A, Engelbert D, Garg G et al (2013) Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J. Immunol. Baltim. Md 1950 190(7):3180–8 Toker A, Engelbert D, Garg G et al (2013) Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J. Immunol. Baltim. Md 1950 190(7):3180–8
25.
go back to reference Kitagawa Y, Ohkura N, Kidani Y et al (2017) Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nat Immunol 18(2):173–183PubMedCrossRef Kitagawa Y, Ohkura N, Kidani Y et al (2017) Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nat Immunol 18(2):173–183PubMedCrossRef
27.
go back to reference Kondo M, Tanaka Y, Kuwabara T et al (2016) SATB1 Plays a Critical Role in Establishment of Immune Tolerance. J Immunol 196(2):563–572PubMedCrossRef Kondo M, Tanaka Y, Kuwabara T et al (2016) SATB1 Plays a Critical Role in Establishment of Immune Tolerance. J Immunol 196(2):563–572PubMedCrossRef
28.
go back to reference Beyer M, Thabet Y, Müller R-U et al (2011) Repression of SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation. Nat Immunol 12(9):898–907PubMedPubMedCentralCrossRef Beyer M, Thabet Y, Müller R-U et al (2011) Repression of SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation. Nat Immunol 12(9):898–907PubMedPubMedCentralCrossRef
29.
go back to reference Sallusto F, Kremmer E, Palermo B et al (1999) Switch in chemokine receptor expression upon TCR stimulation reveals novel homing potential for recently activated T cells. Eur J Immunol 29(6):2037–2045PubMedCrossRef Sallusto F, Kremmer E, Palermo B et al (1999) Switch in chemokine receptor expression upon TCR stimulation reveals novel homing potential for recently activated T cells. Eur J Immunol 29(6):2037–2045PubMedCrossRef
30.
go back to reference Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401(6754):708–712PubMedCrossRef Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401(6754):708–712PubMedCrossRef
32.
go back to reference Schmueck-Henneresse M, Sharaf R, Vogt K et al (2015) Peripheral Blood-Derived Virus-Specific Memory Stem T Cells Mature to Functional Effector Memory Subsets with Self-Renewal Potency. J Immunol 194(11):5559–5567PubMedCrossRef Schmueck-Henneresse M, Sharaf R, Vogt K et al (2015) Peripheral Blood-Derived Virus-Specific Memory Stem T Cells Mature to Functional Effector Memory Subsets with Self-Renewal Potency. J Immunol 194(11):5559–5567PubMedCrossRef
33.
go back to reference Berger C, Jensen MC, Lansdorp PM et al (2008) Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invesitgation 118(1):294–305CrossRef Berger C, Jensen MC, Lansdorp PM et al (2008) Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invesitgation 118(1):294–305CrossRef
36.
go back to reference Menning A, Höpken UE, Siegmund K et al (2007) Distinctive role of CCR7 in migration and functional activity of naive- and effector/memory-like Treg subsets. Eur J Immunol 37(6):1575–1583PubMedCrossRef Menning A, Höpken UE, Siegmund K et al (2007) Distinctive role of CCR7 in migration and functional activity of naive- and effector/memory-like Treg subsets. Eur J Immunol 37(6):1575–1583PubMedCrossRef
37.
go back to reference Wing K, Onishi Y, Prieto-Martin P et al (2008) CTLA-4 Control over Foxp3+ Regulatory T Cell Function. Science 322(5899):271–275PubMedCrossRef Wing K, Onishi Y, Prieto-Martin P et al (2008) CTLA-4 Control over Foxp3+ Regulatory T Cell Function. Science 322(5899):271–275PubMedCrossRef
38.
go back to reference Grossman WJ, Verbsky JW, Barchet W et al (2004) Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21(4):589–601PubMedCrossRef Grossman WJ, Verbsky JW, Barchet W et al (2004) Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21(4):589–601PubMedCrossRef
39.
40.
go back to reference Cao X, Cai SF, Fehniger TA et al (2007) Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27(4):635–646PubMedCrossRef Cao X, Cai SF, Fehniger TA et al (2007) Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27(4):635–646PubMedCrossRef
41.
go back to reference Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S (2008) Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A 105(29):10113–10118PubMedPubMedCentralCrossRef Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S (2008) Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A 105(29):10113–10118PubMedPubMedCentralCrossRef
42.
go back to reference Sage PT, Paterson AM, Lovitch SB, Sharpe AH (2014) The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells. Immunity 41(6):1026–1039PubMedPubMedCentralCrossRef Sage PT, Paterson AM, Lovitch SB, Sharpe AH (2014) The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells. Immunity 41(6):1026–1039PubMedPubMedCentralCrossRef
44.
go back to reference Ovcinnikovs V, Ross EM, Petersone L et al (2019) CTLA-4-mediated transendocytosis of costimulatory molecules primarily targets migratory dendritic cells. Sci. Immunol 4(35):eaaw0902PubMedPubMedCentralCrossRef Ovcinnikovs V, Ross EM, Petersone L et al (2019) CTLA-4-mediated transendocytosis of costimulatory molecules primarily targets migratory dendritic cells. Sci. Immunol 4(35):eaaw0902PubMedPubMedCentralCrossRef
45.
go back to reference Kennedy A, Waters E, Rowshanravan B et al (2022) Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation. Nat Immunol 23(9):1365–1378PubMedPubMedCentralCrossRef Kennedy A, Waters E, Rowshanravan B et al (2022) Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation. Nat Immunol 23(9):1365–1378PubMedPubMedCentralCrossRef
46.
go back to reference Qureshi OS, Zheng Y, Nakamura K et al (2011) Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332(6029):600–603PubMedPubMedCentralCrossRef Qureshi OS, Zheng Y, Nakamura K et al (2011) Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332(6029):600–603PubMedPubMedCentralCrossRef
48.
go back to reference Romano M, Fanelli G, Tan N et al (2018) Expanded Regulatory T Cells Induce Alternatively Activated Monocytes With a Reduced Capacity to Expand T Helper-17 Cells. Front Immunol 9:1625PubMedPubMedCentralCrossRef Romano M, Fanelli G, Tan N et al (2018) Expanded Regulatory T Cells Induce Alternatively Activated Monocytes With a Reduced Capacity to Expand T Helper-17 Cells. Front Immunol 9:1625PubMedPubMedCentralCrossRef
51.
go back to reference Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T (2001) PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci U S A 98(24):13866–13871PubMedPubMedCentralCrossRef Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T (2001) PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci U S A 98(24):13866–13871PubMedPubMedCentralCrossRef
52.
go back to reference Patsoukis N, Brown J, Petkova V et al (2012) Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci. Signal 5(230):ra46PubMedPubMedCentralCrossRef Patsoukis N, Brown J, Petkova V et al (2012) Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci. Signal 5(230):ra46PubMedPubMedCentralCrossRef
53.
go back to reference Hofmeyer KA, Jeon H, Zang X (2011) The PD-1/PD-L1 (B7–H1) pathway in chronic infection-induced cytotoxic T lymphocyte exhaustion. J Biomed Biotechnol 2011:451694PubMedPubMedCentralCrossRef Hofmeyer KA, Jeon H, Zang X (2011) The PD-1/PD-L1 (B7–H1) pathway in chronic infection-induced cytotoxic T lymphocyte exhaustion. J Biomed Biotechnol 2011:451694PubMedPubMedCentralCrossRef
54.
go back to reference Jiang S, Park SE, Yadav P, Paoletti LC, Wessels MR (2012) Regulation and function of pilus island 1 in group B streptococcus. J Bacteriol 194(10):2479–2490PubMedPubMedCentralCrossRef Jiang S, Park SE, Yadav P, Paoletti LC, Wessels MR (2012) Regulation and function of pilus island 1 in group B streptococcus. J Bacteriol 194(10):2479–2490PubMedPubMedCentralCrossRef
55.
go back to reference Priyadharshini B, Loschi M, Newton RH et al (2018) Cutting Edge: TGF-β and Phosphatidylinositol 3-Kinase Signals Modulate Distinct Metabolism of Regulatory T Cell Subsets. J. Immunol. Baltim. Md 1950 201(8):2215–2219 Priyadharshini B, Loschi M, Newton RH et al (2018) Cutting Edge: TGF-β and Phosphatidylinositol 3-Kinase Signals Modulate Distinct Metabolism of Regulatory T Cell Subsets. J. Immunol. Baltim. Md 1950 201(8):2215–2219
56.
go back to reference Gerriets VA, Kishton RJ, Johnson MO et al (2016) Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol 17(12):1459–1466PubMedPubMedCentralCrossRef Gerriets VA, Kishton RJ, Johnson MO et al (2016) Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol 17(12):1459–1466PubMedPubMedCentralCrossRef
58.
go back to reference Koch MA, Tucker-Heard G, Perdue NR et al (2009) The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol 10(6):595–602PubMedPubMedCentralCrossRef Koch MA, Tucker-Heard G, Perdue NR et al (2009) The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol 10(6):595–602PubMedPubMedCentralCrossRef
59.
60.
go back to reference Wohlfert EA, Grainger JR, Bouladoux N et al (2011) GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. J Clin Invest 121(11):4503–4515PubMedPubMedCentralCrossRef Wohlfert EA, Grainger JR, Bouladoux N et al (2011) GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. J Clin Invest 121(11):4503–4515PubMedPubMedCentralCrossRef
61.
go back to reference Zheng Y, Chaudhry A, Kas A et al (2009) Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458(7236):351–356PubMedPubMedCentralCrossRef Zheng Y, Chaudhry A, Kas A et al (2009) Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458(7236):351–356PubMedPubMedCentralCrossRef
62.
63.
go back to reference Kluger MA, Melderis S, Nosko A et al (2016) Treg17 cells are programmed by Stat3 to suppress Th17 responses in systemic lupus. Kidney Int 89(1):158–166PubMedCrossRef Kluger MA, Melderis S, Nosko A et al (2016) Treg17 cells are programmed by Stat3 to suppress Th17 responses in systemic lupus. Kidney Int 89(1):158–166PubMedCrossRef
64.
go back to reference Kluger MA, Luig M, Wegscheid C et al (2014) Stat3 Programs Th17-Specific Regulatory T Cells to Control GN. J Am Soc Nephrol JASN 25(6):1291–1302PubMedCrossRef Kluger MA, Luig M, Wegscheid C et al (2014) Stat3 Programs Th17-Specific Regulatory T Cells to Control GN. J Am Soc Nephrol JASN 25(6):1291–1302PubMedCrossRef
65.
go back to reference Powell BR, Buist NRM, Stenzel P (1982) An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr 100(5):731–737PubMedCrossRef Powell BR, Buist NRM, Stenzel P (1982) An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr 100(5):731–737PubMedCrossRef
66.
go back to reference Satake N, Nakanishi M, Okano M et al (1993) A Japanese family of X-linked auto-immune enteropathy with haemolytic anaemia and polyendocrinopathy. Eur J Pediatr 152(4):313–315PubMedCrossRef Satake N, Nakanishi M, Okano M et al (1993) A Japanese family of X-linked auto-immune enteropathy with haemolytic anaemia and polyendocrinopathy. Eur J Pediatr 152(4):313–315PubMedCrossRef
67.
go back to reference Peake JE, McCrossin RB, Byrne G, Shepherd R (1996) X-linked immune dysregulation, neonatal insulin dependent diabetes, and intractable diarrhoea. Arch Dis Child Fetal Neonatal Ed 74(3):F195–199PubMedPubMedCentralCrossRef Peake JE, McCrossin RB, Byrne G, Shepherd R (1996) X-linked immune dysregulation, neonatal insulin dependent diabetes, and intractable diarrhoea. Arch Dis Child Fetal Neonatal Ed 74(3):F195–199PubMedPubMedCentralCrossRef
68.
go back to reference Goulet OJ, Brousse N, Canioni D et al (1998) Syndrome of Intractable Diarrhoea with Persistent Villous Atrophy in Early Childhood: A Clinicopathological Survey of 47 Cases. J Pediatr Gastroenterol Nutr 26(2):151PubMed Goulet OJ, Brousse N, Canioni D et al (1998) Syndrome of Intractable Diarrhoea with Persistent Villous Atrophy in Early Childhood: A Clinicopathological Survey of 47 Cases. J Pediatr Gastroenterol Nutr 26(2):151PubMed
69.
go back to reference Roberts J, Searle J (1995) Neonatal Diabetes Mellitus Associated with Severe Diarrhea, Hyperimmunoglobulin E Syndrome, and Absence of Islets of Langerhans. Pediatr Pathol Lab Med 15(3):477–483PubMedCrossRef Roberts J, Searle J (1995) Neonatal Diabetes Mellitus Associated with Severe Diarrhea, Hyperimmunoglobulin E Syndrome, and Absence of Islets of Langerhans. Pediatr Pathol Lab Med 15(3):477–483PubMedCrossRef
70.
go back to reference Rocco MD, Marta R (1996) X linked immune dysregulation, neonatal insulin dependent diabetes, and intractable diarrhoea. Arch. Dis. Child. - Fetal Neonatal Ed 75(2):F144PubMedPubMedCentralCrossRef Rocco MD, Marta R (1996) X linked immune dysregulation, neonatal insulin dependent diabetes, and intractable diarrhoea. Arch. Dis. Child. - Fetal Neonatal Ed 75(2):F144PubMedPubMedCentralCrossRef
71.
go back to reference Ferguson PJ, Blanton SH, Saulsbury FT et al (2000) Manifestations and linkage analysis in X-linked autoimmunity-immunodeficiency syndrome. Am J Med Genet 90(5):390–397PubMedCrossRef Ferguson PJ, Blanton SH, Saulsbury FT et al (2000) Manifestations and linkage analysis in X-linked autoimmunity-immunodeficiency syndrome. Am J Med Genet 90(5):390–397PubMedCrossRef
72.
go back to reference Gambineri E, Ciullini Mannurita S, Hagin D et al (2018) Clinical, Immunological, and Molecular Heterogeneity of 173 Patients With the Phenotype of Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-Linked (IPEX) Syndrome. Front Immunol 9:2411PubMedPubMedCentralCrossRef Gambineri E, Ciullini Mannurita S, Hagin D et al (2018) Clinical, Immunological, and Molecular Heterogeneity of 173 Patients With the Phenotype of Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-Linked (IPEX) Syndrome. Front Immunol 9:2411PubMedPubMedCentralCrossRef
73.
go back to reference Clark LB, Appleby MW, Brunkow ME et al (1999) Cellular and molecular characterization of the scurfy mouse mutant. J. Immunol. Baltim. Md 1950 162(5):2546–2554 Clark LB, Appleby MW, Brunkow ME et al (1999) Cellular and molecular characterization of the scurfy mouse mutant. J. Immunol. Baltim. Md 1950 162(5):2546–2554
74.
go back to reference Lyon MF, Peters J, Glenister PH, Ball S, Wright E (1990) The scurfy mouse mutant has previously unrecognized hematological abnormalities and resembles Wiskott-Aldrich syndrome. Proc Natl Acad Sci 87(7):2433–2437PubMedPubMedCentralCrossRef Lyon MF, Peters J, Glenister PH, Ball S, Wright E (1990) The scurfy mouse mutant has previously unrecognized hematological abnormalities and resembles Wiskott-Aldrich syndrome. Proc Natl Acad Sci 87(7):2433–2437PubMedPubMedCentralCrossRef
75.
76.
go back to reference Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10(4):252–263PubMedCrossRef Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10(4):252–263PubMedCrossRef
77.
go back to reference Barzaghi F, Amaya Hernandez LC, Neven B et al (2018) Long-term follow-up of IPEX syndrome patients after different therapeutic strategies: An international multicenter retrospective study. J Allergy Clin Immunol 141(3):1036–1049.e5PubMedCrossRef Barzaghi F, Amaya Hernandez LC, Neven B et al (2018) Long-term follow-up of IPEX syndrome patients after different therapeutic strategies: An international multicenter retrospective study. J Allergy Clin Immunol 141(3):1036–1049.e5PubMedCrossRef
78.
go back to reference Hwang JL, Park S-Y, Ye H et al (2018) FOXP3 mutations causing early-onset insulin-requiring diabetes but without other features of immune dysregulation, polyendocrinopathy, enteropathy. X-linked syndrome Pediatr Diabetes 19(3):388–392PubMedCrossRef Hwang JL, Park S-Y, Ye H et al (2018) FOXP3 mutations causing early-onset insulin-requiring diabetes but without other features of immune dysregulation, polyendocrinopathy, enteropathy. X-linked syndrome Pediatr Diabetes 19(3):388–392PubMedCrossRef
79.
go back to reference De Benedetti F, Insalaco A, Diamanti A et al (2006) Mechanistic Associations of a Mild Phenotype of Immunodysregulation, Polyendocrinopathy, Enteropathy. X-Linked Syndrome Clin Gastroenterol Hepatol 4(5):653–659PubMedCrossRef De Benedetti F, Insalaco A, Diamanti A et al (2006) Mechanistic Associations of a Mild Phenotype of Immunodysregulation, Polyendocrinopathy, Enteropathy. X-Linked Syndrome Clin Gastroenterol Hepatol 4(5):653–659PubMedCrossRef
80.
go back to reference Cepika A-M, Sato Y, Liu JM-H et al (2018) Tregopathies: Monogenic diseases resulting in regulatory T-cell deficiency. J. Allergy Clin. Immunol 142(6):1679–1695PubMedCrossRef Cepika A-M, Sato Y, Liu JM-H et al (2018) Tregopathies: Monogenic diseases resulting in regulatory T-cell deficiency. J. Allergy Clin. Immunol 142(6):1679–1695PubMedCrossRef
81.
go back to reference Magistrelli G, Jeannin P, Herbault N et al (1999) A soluble form of CTLA-4 generated by alternative splicing is expressed by nonstimulated human T cells. Eur J Immunol 29(11):3596–3602PubMedCrossRef Magistrelli G, Jeannin P, Herbault N et al (1999) A soluble form of CTLA-4 generated by alternative splicing is expressed by nonstimulated human T cells. Eur J Immunol 29(11):3596–3602PubMedCrossRef
82.
go back to reference Tivol EA, Borriello F, Schweitzer AN et al (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3(5):541–547PubMedCrossRef Tivol EA, Borriello F, Schweitzer AN et al (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3(5):541–547PubMedCrossRef
83.
go back to reference Waterhouse P, Penninger JM, Timms E et al (1995) Lymphoproliferative Disorders with Early Lethality in Mice Deficient in Ctla-4. Science 270(5238):985–988PubMedCrossRef Waterhouse P, Penninger JM, Timms E et al (1995) Lymphoproliferative Disorders with Early Lethality in Mice Deficient in Ctla-4. Science 270(5238):985–988PubMedCrossRef
84.
go back to reference Brunkow ME, Jeffery EW, Hjerrild KA et al (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27(1):68–73PubMedCrossRef Brunkow ME, Jeffery EW, Hjerrild KA et al (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27(1):68–73PubMedCrossRef
85.
go back to reference Kulkarni AB, Huh CG, Becker D et al (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci 90(2):770–774PubMedPubMedCentralCrossRef Kulkarni AB, Huh CG, Becker D et al (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci 90(2):770–774PubMedPubMedCentralCrossRef
86.
go back to reference Kuehn HS, Ouyang W, Lo B et al (2014) Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345(6204):1623–1627PubMedPubMedCentralCrossRef Kuehn HS, Ouyang W, Lo B et al (2014) Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345(6204):1623–1627PubMedPubMedCentralCrossRef
87.
go back to reference Schwab C, Gabrysch A, Olbrich P et al (2018) Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects. J Allergy Clin Immunol 142(6):1932–1946PubMedPubMedCentralCrossRef Schwab C, Gabrysch A, Olbrich P et al (2018) Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects. J Allergy Clin Immunol 142(6):1932–1946PubMedPubMedCentralCrossRef
88.
go back to reference Schubert D, Bode C, Kenefeck R et al (2014) Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med 20(12):1410–1416PubMedPubMedCentralCrossRef Schubert D, Bode C, Kenefeck R et al (2014) Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med 20(12):1410–1416PubMedPubMedCentralCrossRef
89.
go back to reference López-Nevado M, González-Granado LI, Ruiz-García R et al (2021) Primary Immune Regulatory Disorders With an Autoimmune Lymphoproliferative Syndrome-Like Phenotype: Immunologic Evaluation. Early Diagnosis and Management Front Immunol 12:671755PubMedCrossRef López-Nevado M, González-Granado LI, Ruiz-García R et al (2021) Primary Immune Regulatory Disorders With an Autoimmune Lymphoproliferative Syndrome-Like Phenotype: Immunologic Evaluation. Early Diagnosis and Management Front Immunol 12:671755PubMedCrossRef
91.
go back to reference Serwas NK, Hoeger B, Ardy RC et al (2019) Human DEF6 deficiency underlies an immunodeficiency syndrome with systemic autoimmunity and aberrant CTLA-4 homeostasis. Nat Commun 10(1):3106PubMedPubMedCentralCrossRef Serwas NK, Hoeger B, Ardy RC et al (2019) Human DEF6 deficiency underlies an immunodeficiency syndrome with systemic autoimmunity and aberrant CTLA-4 homeostasis. Nat Commun 10(1):3106PubMedPubMedCentralCrossRef
92.
go back to reference Fournier B, Tusseau M, Villard M et al (2021) DEF6 deficiency, a mendelian susceptibility to EBV infection, lymphoma, and autoimmunity. J Allergy Clin Immunol 147(2):740–743.e9PubMedCrossRef Fournier B, Tusseau M, Villard M et al (2021) DEF6 deficiency, a mendelian susceptibility to EBV infection, lymphoma, and autoimmunity. J Allergy Clin Immunol 147(2):740–743.e9PubMedCrossRef
93.
go back to reference Alangari A, Alsultan A, Adly N et al (2012) LPS-responsive beige-like anchor (LRBA) gene mutation in a family with inflammatory bowel disease and combined immunodeficiency. J Allergy Clin Immunol 130(2):481–488.e2PubMedPubMedCentralCrossRef Alangari A, Alsultan A, Adly N et al (2012) LPS-responsive beige-like anchor (LRBA) gene mutation in a family with inflammatory bowel disease and combined immunodeficiency. J Allergy Clin Immunol 130(2):481–488.e2PubMedPubMedCentralCrossRef
94.
go back to reference Burns SO, Zenner HL, Plagnol V et al (2012) LRBA gene deletion in a patient presenting with autoimmunity without hypogammaglobulinemia. J Allergy Clin Immunol 130(6):1428–1432PubMedPubMedCentralCrossRef Burns SO, Zenner HL, Plagnol V et al (2012) LRBA gene deletion in a patient presenting with autoimmunity without hypogammaglobulinemia. J Allergy Clin Immunol 130(6):1428–1432PubMedPubMedCentralCrossRef
95.
go back to reference Habibi S, Zaki-Dizaji M, Rafiemanesh H et al (2019) Clinical, Immunologic, and Molecular Spectrum of Patients with LPS-Responsive Beige-Like Anchor Protein Deficiency: A Systematic Review. J Allergy Clin Immunol Pract 7(7):2379–2386.e5PubMedCrossRef Habibi S, Zaki-Dizaji M, Rafiemanesh H et al (2019) Clinical, Immunologic, and Molecular Spectrum of Patients with LPS-Responsive Beige-Like Anchor Protein Deficiency: A Systematic Review. J Allergy Clin Immunol Pract 7(7):2379–2386.e5PubMedCrossRef
96.
go back to reference Revel-Vilk S, Fischer U, Keller B et al (2015) Autoimmune lymphoproliferative syndrome-like disease in patients with LRBA mutation. Clin Immunol 159(1):84–92PubMedCrossRef Revel-Vilk S, Fischer U, Keller B et al (2015) Autoimmune lymphoproliferative syndrome-like disease in patients with LRBA mutation. Clin Immunol 159(1):84–92PubMedCrossRef
97.
go back to reference Charbonnier L-M, Janssen E, Chou J et al (2015) Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like disorder caused by loss-of-function mutations in LRBA. J Allergy Clin Immunol 135(1):217–227PubMedCrossRef Charbonnier L-M, Janssen E, Chou J et al (2015) Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like disorder caused by loss-of-function mutations in LRBA. J Allergy Clin Immunol 135(1):217–227PubMedCrossRef
98.
go back to reference Alkhairy OK, Abolhassani H, Rezaei N et al (2016) Spectrum of Phenotypes Associated with Mutations in LRBA. J Clin Immunol 36(1):33–45PubMedCrossRef Alkhairy OK, Abolhassani H, Rezaei N et al (2016) Spectrum of Phenotypes Associated with Mutations in LRBA. J Clin Immunol 36(1):33–45PubMedCrossRef
99.
go back to reference Jamee M, Hosseinzadeh S, Sharifinejad N et al (2021) Comprehensive comparison between 222 CTLA-4 haploinsufficiency and 212 LRBA deficiency patients: a systematic review. Clin Exp Immunol 205(1):28–43PubMedPubMedCentralCrossRef Jamee M, Hosseinzadeh S, Sharifinejad N et al (2021) Comprehensive comparison between 222 CTLA-4 haploinsufficiency and 212 LRBA deficiency patients: a systematic review. Clin Exp Immunol 205(1):28–43PubMedPubMedCentralCrossRef
100.
go back to reference Lopez-Herrera G, Tampella G, Pan-Hammarström Q et al (2012) Deleterious Mutations in LRBA Are Associated with a Syndrome of Immune Deficiency and Autoimmunity. Am J Hum Genet 90(6):986–1001PubMedPubMedCentralCrossRef Lopez-Herrera G, Tampella G, Pan-Hammarström Q et al (2012) Deleterious Mutations in LRBA Are Associated with a Syndrome of Immune Deficiency and Autoimmunity. Am J Hum Genet 90(6):986–1001PubMedPubMedCentralCrossRef
101.
go back to reference Sharfe N, Dadi HK, Shahar M, Roifman CM (1997) Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc Natl Acad Sci U S A 94(7):3168–3171PubMedPubMedCentralCrossRef Sharfe N, Dadi HK, Shahar M, Roifman CM (1997) Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc Natl Acad Sci U S A 94(7):3168–3171PubMedPubMedCentralCrossRef
102.
go back to reference Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW (2007) CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked–like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol 119(2):482–487PubMedCrossRef Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW (2007) CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked–like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol 119(2):482–487PubMedCrossRef
103.
go back to reference Goudy K, Aydin D, Barzaghi F et al (2013) Human IL2RA null mutation mediates immunodeficiency with lymphoproliferation and autoimmunity. Clin Immunol 146(3):248–261PubMedPubMedCentralCrossRef Goudy K, Aydin D, Barzaghi F et al (2013) Human IL2RA null mutation mediates immunodeficiency with lymphoproliferation and autoimmunity. Clin Immunol 146(3):248–261PubMedPubMedCentralCrossRef
105.
go back to reference Bezrodnik L, Caldirola MS, Seminario AG, Moreira I, Gaillard MI (2014) Follicular bronchiolitis as phenotype associated with CD25 deficiency. Clin Exp Immunol 175(2):227–234PubMedPubMedCentralCrossRef Bezrodnik L, Caldirola MS, Seminario AG, Moreira I, Gaillard MI (2014) Follicular bronchiolitis as phenotype associated with CD25 deficiency. Clin Exp Immunol 175(2):227–234PubMedPubMedCentralCrossRef
107.
go back to reference Al Sukaiti N, Al Sinani A, Al Ismaily S, Shaikh S, Al AS (2014) Pulmonary hemorrhage in a case of CD25 deficiency. LymphoSign J 01(01):39–43CrossRef Al Sukaiti N, Al Sinani A, Al Ismaily S, Shaikh S, Al AS (2014) Pulmonary hemorrhage in a case of CD25 deficiency. LymphoSign J 01(01):39–43CrossRef
108.
go back to reference Fernandez IZ, Baxter RM, Garcia-Perez JE et al (2019) A novel human IL2RB mutation results in T and NK cell–driven immune dysregulation. J Exp Med 216(6):1255–1267PubMedPubMedCentralCrossRef Fernandez IZ, Baxter RM, Garcia-Perez JE et al (2019) A novel human IL2RB mutation results in T and NK cell–driven immune dysregulation. J Exp Med 216(6):1255–1267PubMedPubMedCentralCrossRef
109.
go back to reference Zhang Z, Gothe F, Pennamen P et al (2019) Human interleukin-2 receptor β mutations associated with defects in immunity and peripheral tolerance. J Exp Med 216(6):1311–1327PubMedPubMedCentralCrossRef Zhang Z, Gothe F, Pennamen P et al (2019) Human interleukin-2 receptor β mutations associated with defects in immunity and peripheral tolerance. J Exp Med 216(6):1311–1327PubMedPubMedCentralCrossRef
110.
go back to reference Engelhardt KR, Shah N, Faizura-Yeop I et al (2013) Clinical outcome in IL-10– and IL-10 receptor–deficient patients with or without hematopoietic stem cell transplantation. J Allergy Clin Immunol 131(3):825–830.e9PubMedCrossRef Engelhardt KR, Shah N, Faizura-Yeop I et al (2013) Clinical outcome in IL-10– and IL-10 receptor–deficient patients with or without hematopoietic stem cell transplantation. J Allergy Clin Immunol 131(3):825–830.e9PubMedCrossRef
111.
go back to reference Shah N, Kammermeier J, Elawad M, Glocker E-O (2012) Interleukin-10 and interleukin-10-receptor defects in inflammatory bowel disease. Curr Allergy Asthma Rep 12(5):373–379PubMedCrossRef Shah N, Kammermeier J, Elawad M, Glocker E-O (2012) Interleukin-10 and interleukin-10-receptor defects in inflammatory bowel disease. Curr Allergy Asthma Rep 12(5):373–379PubMedCrossRef
112.
go back to reference Zhou X, Wang J, Shi W et al (2010) Isolation of purified and live Foxp3+ regulatory T cells using FACS sorting on scatter plot. J Mol Cell Biol 2(3):164–169PubMedPubMedCentralCrossRef Zhou X, Wang J, Shi W et al (2010) Isolation of purified and live Foxp3+ regulatory T cells using FACS sorting on scatter plot. J Mol Cell Biol 2(3):164–169PubMedPubMedCentralCrossRef
113.
go back to reference Chaudhry A, Samstein RM, Treuting P et al (2011) Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34(4):566–578PubMedPubMedCentralCrossRef Chaudhry A, Samstein RM, Treuting P et al (2011) Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34(4):566–578PubMedPubMedCentralCrossRef
114.
go back to reference Sharifinejad N, Zaki-Dizaji M, Sepahvandi R et al (2022) The clinical, molecular, and therapeutic features of patients with IL10/IL10R deficiency: a systematic review. Clin Exp Immunol 208(3):281–291PubMedPubMedCentralCrossRef Sharifinejad N, Zaki-Dizaji M, Sepahvandi R et al (2022) The clinical, molecular, and therapeutic features of patients with IL10/IL10R deficiency: a systematic review. Clin Exp Immunol 208(3):281–291PubMedPubMedCentralCrossRef
115.
go back to reference Russell SM, Keegan AD, Harada N et al (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-4 receptor. Science 262(5141):1880–1883PubMedCrossRef Russell SM, Keegan AD, Harada N et al (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-4 receptor. Science 262(5141):1880–1883PubMedCrossRef
116.
go back to reference Noguchi M, Nakamura Y, Russell SM et al (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science 262(5141):1877–1880PubMedCrossRef Noguchi M, Nakamura Y, Russell SM et al (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science 262(5141):1877–1880PubMedCrossRef
117.
go back to reference Giri JG, Kumaki S, Ahdieh M et al (1995) Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor. EMBO J 14(15):3654–3663PubMedPubMedCentralCrossRef Giri JG, Kumaki S, Ahdieh M et al (1995) Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor. EMBO J 14(15):3654–3663PubMedPubMedCentralCrossRef
118.
go back to reference Avery DT, Deenick EK, Ma CS et al (2010) B cell–intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J Exp Med 207(1):155–171PubMedPubMedCentralCrossRef Avery DT, Deenick EK, Ma CS et al (2010) B cell–intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J Exp Med 207(1):155–171PubMedPubMedCentralCrossRef
119.
go back to reference Waldmann TA (2015) The shared and contrasting roles of interleukin-2 (IL-2) and IL-15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res 3(3):219–227MathSciNetPubMedPubMedCentralCrossRef Waldmann TA (2015) The shared and contrasting roles of interleukin-2 (IL-2) and IL-15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res 3(3):219–227MathSciNetPubMedPubMedCentralCrossRef
120.
go back to reference Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5(5):375–386PubMedCrossRef Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5(5):375–386PubMedCrossRef
123.
go back to reference Oikonomopoulou C, Goussetis E (2020) Autosomal dominant hyper-IgE syndrome: When hematopoietic stem cell transplantation should be considered? Pediatr. Transplant 24(5):e13699 Oikonomopoulou C, Goussetis E (2020) Autosomal dominant hyper-IgE syndrome: When hematopoietic stem cell transplantation should be considered? Pediatr. Transplant 24(5):e13699
124.
go back to reference Flanagan SE, Haapaniemi E, Russell MA et al (2014) Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet 46(8):812–814PubMedPubMedCentralCrossRef Flanagan SE, Haapaniemi E, Russell MA et al (2014) Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet 46(8):812–814PubMedPubMedCentralCrossRef
125.
go back to reference Haapaniemi EM, Kaustio M, Rajala HLM et al (2015) Autoimmunity, hypogammaglobulinemia, lymphoproliferation, and mycobacterial disease in patients with activating mutations in STAT3. Blood 125(4):639–648PubMedPubMedCentralCrossRef Haapaniemi EM, Kaustio M, Rajala HLM et al (2015) Autoimmunity, hypogammaglobulinemia, lymphoproliferation, and mycobacterial disease in patients with activating mutations in STAT3. Blood 125(4):639–648PubMedPubMedCentralCrossRef
126.
go back to reference Milner JD, Vogel TP, Forbes L et al (2015) Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood 125(4):591–599PubMedPubMedCentralCrossRef Milner JD, Vogel TP, Forbes L et al (2015) Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood 125(4):591–599PubMedPubMedCentralCrossRef
127.
go back to reference Khoury T, Molho-Pessach V, Ramot Y et al (2017) Tocilizumab Promotes Regulatory T-cell Alleviation in STAT3 Gain-of-function-associated Multi-organ Autoimmune Syndrome. Clin Ther 39(2):444–449PubMedCrossRef Khoury T, Molho-Pessach V, Ramot Y et al (2017) Tocilizumab Promotes Regulatory T-cell Alleviation in STAT3 Gain-of-function-associated Multi-organ Autoimmune Syndrome. Clin Ther 39(2):444–449PubMedCrossRef
128.
go back to reference Gutiérrez M, Scaglia P, Keselman A et al (2018) Partial growth hormone insensitivity and dysregulatory immune disease associated with de novo germline activating STAT3 mutations. Mol Cell Endocrinol 473:166–177PubMedPubMedCentralCrossRef Gutiérrez M, Scaglia P, Keselman A et al (2018) Partial growth hormone insensitivity and dysregulatory immune disease associated with de novo germline activating STAT3 mutations. Mol Cell Endocrinol 473:166–177PubMedPubMedCentralCrossRef
129.
go back to reference Cohen AC, Nadeau KC, Tu W et al (2006) Cutting Edge: Decreased Accumulation and Regulatory Function of CD4+CD25high T Cells in Human STAT5b Deficiency1. J Immunol 177(5):2770–2774PubMedCrossRef Cohen AC, Nadeau KC, Tu W et al (2006) Cutting Edge: Decreased Accumulation and Regulatory Function of CD4+CD25high T Cells in Human STAT5b Deficiency1. J Immunol 177(5):2770–2774PubMedCrossRef
130.
go back to reference Pelham SJ, Caldirola MS, Avery DT et al (2022) STAT5B restrains human B-cell differentiation to maintain humoral immune homeostasis. J Allergy Clin Immunol 150(4):931–946PubMedCrossRef Pelham SJ, Caldirola MS, Avery DT et al (2022) STAT5B restrains human B-cell differentiation to maintain humoral immune homeostasis. J Allergy Clin Immunol 150(4):931–946PubMedCrossRef
131.
go back to reference Passerini L, Allan SE, Battaglia M et al (2008) STAT5-signaling cytokines regulate the expression of FOXP3 in CD4+CD25+ regulatory T cells and CD4+CD25- effector T cells. Int Immunol 20(3):421–431PubMedCrossRef Passerini L, Allan SE, Battaglia M et al (2008) STAT5-signaling cytokines regulate the expression of FOXP3 in CD4+CD25+ regulatory T cells and CD4+CD25- effector T cells. Int Immunol 20(3):421–431PubMedCrossRef
132.
go back to reference Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA (2007) IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J. Immunol. Baltim. Md 1950 178(1):280–290 Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA (2007) IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J. Immunol. Baltim. Md 1950 178(1):280–290
133.
go back to reference Gutiérrez M (2020) Activating mutations of STAT3: Impact on human growth. Mol Cell Endocrinol 518:110979PubMedCrossRef Gutiérrez M (2020) Activating mutations of STAT3: Impact on human growth. Mol Cell Endocrinol 518:110979PubMedCrossRef
134.
go back to reference Kofoed EM, Hwa V, Little B et al (2003) Growth Hormone Insensitivity Associated with a STAT5b Mutation. N Engl J Med 349(12):1139–1147PubMedCrossRef Kofoed EM, Hwa V, Little B et al (2003) Growth Hormone Insensitivity Associated with a STAT5b Mutation. N Engl J Med 349(12):1139–1147PubMedCrossRef
135.
go back to reference Bernasconi A, Marino R, Ribas A et al (2006) Characterization of Immunodeficiency in a Patient With Growth Hormone Insensitivity Secondary to a Novel STAT5b Gene Mutation. Pediatrics 118(5):e1584–e1592PubMedCrossRef Bernasconi A, Marino R, Ribas A et al (2006) Characterization of Immunodeficiency in a Patient With Growth Hormone Insensitivity Secondary to a Novel STAT5b Gene Mutation. Pediatrics 118(5):e1584–e1592PubMedCrossRef
136.
go back to reference Hwa V, Camacho-Hübner C, Little BM et al (2007) Growth Hormone Insensitivity and Severe Short Stature in Siblings: A Novel Mutation at the Exon 13-Intron 13 Junction of the STAT5b Gene. Horm Res 68(5):218–224PubMed Hwa V, Camacho-Hübner C, Little BM et al (2007) Growth Hormone Insensitivity and Severe Short Stature in Siblings: A Novel Mutation at the Exon 13-Intron 13 Junction of the STAT5b Gene. Horm Res 68(5):218–224PubMed
137.
go back to reference Klammt J, Neumann D, Gevers EF et al (2018) Dominant-negative STAT5B mutations cause growth hormone insensitivity with short stature and mild immune dysregulation. Nat Commun 9(1):2105PubMedPubMedCentralCrossRef Klammt J, Neumann D, Gevers EF et al (2018) Dominant-negative STAT5B mutations cause growth hormone insensitivity with short stature and mild immune dysregulation. Nat Commun 9(1):2105PubMedPubMedCentralCrossRef
140.
go back to reference Wang Y, Ma CS, Ling Y et al (2016) Dual T cell– and B cell–intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med 213(11):2413–2435PubMedPubMedCentralCrossRef Wang Y, Ma CS, Ling Y et al (2016) Dual T cell– and B cell–intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med 213(11):2413–2435PubMedPubMedCentralCrossRef
141.
go back to reference Sorte HS, Osnes LT, Fevang B et al (2016) A potential founder variant in CARMIL2/RLTPR in three Norwegian families with warts, molluscum contagiosum, and T-cell dysfunction. Mol Genet Genomic Med 4(6):604–616PubMedPubMedCentralCrossRef Sorte HS, Osnes LT, Fevang B et al (2016) A potential founder variant in CARMIL2/RLTPR in three Norwegian families with warts, molluscum contagiosum, and T-cell dysfunction. Mol Genet Genomic Med 4(6):604–616PubMedPubMedCentralCrossRef
143.
145.
go back to reference Matsuzaka Y, Okamoto K, Mabuchi T et al (2004) Identification, expression analysis and polymorphism of a novel RLTPR gene encoding a RGD motif, tropomodulin domain and proline/leucine-rich regions. Gene 343(2):291–304PubMedCrossRef Matsuzaka Y, Okamoto K, Mabuchi T et al (2004) Identification, expression analysis and polymorphism of a novel RLTPR gene encoding a RGD motif, tropomodulin domain and proline/leucine-rich regions. Gene 343(2):291–304PubMedCrossRef
146.
go back to reference Roncagalli R, Cucchetti M, Jarmuzynski N et al (2016) The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med 213(11):2437–2457PubMedPubMedCentralCrossRef Roncagalli R, Cucchetti M, Jarmuzynski N et al (2016) The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med 213(11):2437–2457PubMedPubMedCentralCrossRef
147.
go back to reference Magg T, Shcherbina A, Arslan D et al (2019) CARMIL2 Deficiency Presenting as Very Early Onset Inflammatory Bowel Disease. Inflamm Bowel Dis 25(11):1788–1795PubMedPubMedCentralCrossRef Magg T, Shcherbina A, Arslan D et al (2019) CARMIL2 Deficiency Presenting as Very Early Onset Inflammatory Bowel Disease. Inflamm Bowel Dis 25(11):1788–1795PubMedPubMedCentralCrossRef
148.
go back to reference Lévy R, Gothe F, Momenilandi M et al (2022) Human CARMIL2 deficiency underlies a broader immunological and clinical phenotype than CD28 deficiency. J Exp Med 220(2):e20220275PubMedPubMedCentralCrossRef Lévy R, Gothe F, Momenilandi M et al (2022) Human CARMIL2 deficiency underlies a broader immunological and clinical phenotype than CD28 deficiency. J Exp Med 220(2):e20220275PubMedPubMedCentralCrossRef
149.
go back to reference Kolukisa B, Baser D, Akcam B et al (2022) Evolution and long-term outcomes of combined immunodeficiency due to CARMIL2 deficiency. Allergy 77(3):1004–1019PubMedCrossRef Kolukisa B, Baser D, Akcam B et al (2022) Evolution and long-term outcomes of combined immunodeficiency due to CARMIL2 deficiency. Allergy 77(3):1004–1019PubMedCrossRef
150.
go back to reference Igarashi K, Ochiai K, Itoh-Nakadai A, Muto A (2014) Orchestration of plasma cell differentiation by Bach2 and its gene regulatory network. Immunol Rev 261(1):116–125PubMedCrossRef Igarashi K, Ochiai K, Itoh-Nakadai A, Muto A (2014) Orchestration of plasma cell differentiation by Bach2 and its gene regulatory network. Immunol Rev 261(1):116–125PubMedCrossRef
151.
go back to reference Roychoudhuri R, Hirahara K, Mousavi K et al (2013) BACH2 represses effector programs to stabilize T(reg)-mediated immune homeostasis. Nature 498(7455):506–510PubMedPubMedCentralCrossRef Roychoudhuri R, Hirahara K, Mousavi K et al (2013) BACH2 represses effector programs to stabilize T(reg)-mediated immune homeostasis. Nature 498(7455):506–510PubMedPubMedCentralCrossRef
152.
go back to reference Tsukumo S, Unno M, Muto A et al (2013) Bach2 maintains T cells in a naive state by suppressing effector memory-related genes. Proc Natl Acad Sci 110(26):10735–10740PubMedPubMedCentralCrossRef Tsukumo S, Unno M, Muto A et al (2013) Bach2 maintains T cells in a naive state by suppressing effector memory-related genes. Proc Natl Acad Sci 110(26):10735–10740PubMedPubMedCentralCrossRef
153.
154.
go back to reference Afzali B, Grönholm J, Vandrovcova J et al (2017) BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency. Nat Immunol 18(7):813–823PubMedPubMedCentralCrossRef Afzali B, Grönholm J, Vandrovcova J et al (2017) BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency. Nat Immunol 18(7):813–823PubMedPubMedCentralCrossRef
155.
go back to reference Kim EH, Gasper DJ, Lee SH et al (2014) Bach2 Regulates Homeostasis of Foxp3+ Regulatory T Cells and Protects against Fatal Lung Disease in Mice. J Immunol 192(3):985–995PubMedCrossRef Kim EH, Gasper DJ, Lee SH et al (2014) Bach2 Regulates Homeostasis of Foxp3+ Regulatory T Cells and Protects against Fatal Lung Disease in Mice. J Immunol 192(3):985–995PubMedCrossRef
157.
go back to reference Cipolletta D, Feuerer M, Li A et al (2012) PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486(7404):549–553PubMedPubMedCentralCrossRef Cipolletta D, Feuerer M, Li A et al (2012) PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486(7404):549–553PubMedPubMedCentralCrossRef
158.
go back to reference Tan TG, Mathis D, Benoist C (2016) Singular role for T-BET+CXCR3+ regulatory T cells in protection from autoimmune diabetes. Proc Natl Acad Sci U A 113(49):14103–14108CrossRef Tan TG, Mathis D, Benoist C (2016) Singular role for T-BET+CXCR3+ regulatory T cells in protection from autoimmune diabetes. Proc Natl Acad Sci U A 113(49):14103–14108CrossRef
159.
go back to reference Herold KC, Vignali DA, Cooke A, Bluestone JA (2013) Type 1 diabetes: translating mechanistic observations into effective clinical outcomes. Nat Rev Immunol 13(4):243–256PubMedPubMedCentralCrossRef Herold KC, Vignali DA, Cooke A, Bluestone JA (2013) Type 1 diabetes: translating mechanistic observations into effective clinical outcomes. Nat Rev Immunol 13(4):243–256PubMedPubMedCentralCrossRef
160.
go back to reference Gregory GA, Robinson TIG, Linklater SE et al (2022) Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. Lancet Diabetes Endocrinol 10(10):741–760PubMedCrossRef Gregory GA, Robinson TIG, Linklater SE et al (2022) Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. Lancet Diabetes Endocrinol 10(10):741–760PubMedCrossRef
161.
go back to reference Tuomilehto J, Ogle GD, Lund-Blix NA, Stene LC (2020) Update on Worldwide Trends in Occurrence of Childhood Type 1 Diabetes in 2020. Pediatr Endocrinol Rev 17(Suppl 1):198–209PubMed Tuomilehto J, Ogle GD, Lund-Blix NA, Stene LC (2020) Update on Worldwide Trends in Occurrence of Childhood Type 1 Diabetes in 2020. Pediatr Endocrinol Rev 17(Suppl 1):198–209PubMed
162.
go back to reference Yaciuk JC, Pan Y, Schwarz K et al (2015) Defective selection of thymic regulatory T cells accompanies autoimmunity and pulmonary infiltrates in Tcra-deficient mice double transgenic for human La/Sjogren’s syndrome-B and human La-specific TCR. J Immunol 194(4):1514–1522PubMedCrossRef Yaciuk JC, Pan Y, Schwarz K et al (2015) Defective selection of thymic regulatory T cells accompanies autoimmunity and pulmonary infiltrates in Tcra-deficient mice double transgenic for human La/Sjogren’s syndrome-B and human La-specific TCR. J Immunol 194(4):1514–1522PubMedCrossRef
163.
go back to reference Long SA, Buckner JH (2011) CD4+FOXP3+ T regulatory cells in human autoimmunity: more than a numbers game. J Immunol 187(5):2061–2066PubMedCrossRef Long SA, Buckner JH (2011) CD4+FOXP3+ T regulatory cells in human autoimmunity: more than a numbers game. J Immunol 187(5):2061–2066PubMedCrossRef
164.
go back to reference Brusko TM, Hulme MA, Myhr CB, Haller MJ, Atkinson MA (2007) Assessing the in vitro suppressive capacity of regulatory T cells. Immunol Invest 36(5–6):607–628PubMedCrossRef Brusko TM, Hulme MA, Myhr CB, Haller MJ, Atkinson MA (2007) Assessing the in vitro suppressive capacity of regulatory T cells. Immunol Invest 36(5–6):607–628PubMedCrossRef
165.
go back to reference Viisanen T, Gazali AM, Ihantola EL et al (2019) FOXP3+ Regulatory T Cell Compartment Is Altered in Children With Newly Diagnosed Type 1 Diabetes but Not in Autoantibody-Positive at-Risk Children. Front Immunol 10:19PubMedPubMedCentralCrossRef Viisanen T, Gazali AM, Ihantola EL et al (2019) FOXP3+ Regulatory T Cell Compartment Is Altered in Children With Newly Diagnosed Type 1 Diabetes but Not in Autoantibody-Positive at-Risk Children. Front Immunol 10:19PubMedPubMedCentralCrossRef
167.
go back to reference Anderson MS, Bluestone JA (2005) The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 23:447–485PubMedCrossRef Anderson MS, Bluestone JA (2005) The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 23:447–485PubMedCrossRef
168.
go back to reference Markle JG, Frank DN, Mortin-Toth S et al (2013) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339(6123):1084–1088PubMedCrossRef Markle JG, Frank DN, Mortin-Toth S et al (2013) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339(6123):1084–1088PubMedCrossRef
169.
go back to reference Driver JP, Serreze DV, Chen YG (2011) Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Semin Immunopathol 33(1):67–87PubMedCrossRef Driver JP, Serreze DV, Chen YG (2011) Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Semin Immunopathol 33(1):67–87PubMedCrossRef
170.
go back to reference Driver JP, Chen YG, Zhang W, Asrat S, Serreze DV (2011) Unmasking genes in a type 1 diabetes-resistant mouse strain that enhances pathogenic CD8 T-cell responses. Diabetes 60(4):1354–1359PubMedPubMedCentralCrossRef Driver JP, Chen YG, Zhang W, Asrat S, Serreze DV (2011) Unmasking genes in a type 1 diabetes-resistant mouse strain that enhances pathogenic CD8 T-cell responses. Diabetes 60(4):1354–1359PubMedPubMedCentralCrossRef
171.
go back to reference Barrett JC, Clayton DG, Concannon P et al (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41(6):703–707PubMedPubMedCentralCrossRef Barrett JC, Clayton DG, Concannon P et al (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41(6):703–707PubMedPubMedCentralCrossRef
172.
go back to reference Todd JA, Walker NM, Cooper JD et al (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39(7):857–864PubMedPubMedCentralCrossRef Todd JA, Walker NM, Cooper JD et al (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39(7):857–864PubMedPubMedCentralCrossRef
173.
go back to reference Long SA, Cerosaletti K, Wan JY et al (2011) An autoimmune-associated variant in PTPN2 reveals an impairment of IL-2R signaling in CD4(+) T cells. Genes Immun 12(2):116–125PubMedCrossRef Long SA, Cerosaletti K, Wan JY et al (2011) An autoimmune-associated variant in PTPN2 reveals an impairment of IL-2R signaling in CD4(+) T cells. Genes Immun 12(2):116–125PubMedCrossRef
174.
go back to reference Yang JH, Cutler AJ, Ferreira RC et al (2015) Natural Variation in Interleukin-2 Sensitivity Influences Regulatory T-Cell Frequency and Function in Individuals With Long-standing Type 1 Diabetes. Diabetes 64(11):3891–3902PubMedCrossRef Yang JH, Cutler AJ, Ferreira RC et al (2015) Natural Variation in Interleukin-2 Sensitivity Influences Regulatory T-Cell Frequency and Function in Individuals With Long-standing Type 1 Diabetes. Diabetes 64(11):3891–3902PubMedCrossRef
175.
go back to reference Dendrou CA, Wicker LS (2008) The IL-2/CD25 pathway determines susceptibility to T1D in humans and NOD mice. J Clin Immunol 28(6):685–696PubMedCrossRef Dendrou CA, Wicker LS (2008) The IL-2/CD25 pathway determines susceptibility to T1D in humans and NOD mice. J Clin Immunol 28(6):685–696PubMedCrossRef
176.
go back to reference Long SA, Rieck M, Sanda S et al (2012) Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs beta-cell function. Diabetes 61(9):2340–2348PubMedPubMedCentralCrossRef Long SA, Rieck M, Sanda S et al (2012) Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs beta-cell function. Diabetes 61(9):2340–2348PubMedPubMedCentralCrossRef
177.
go back to reference Trotta E, Bessette PH, Silveria SL et al (2018) A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat Med 24(7):1005–1014PubMedPubMedCentralCrossRef Trotta E, Bessette PH, Silveria SL et al (2018) A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat Med 24(7):1005–1014PubMedPubMedCentralCrossRef
179.
go back to reference Sockolosky JT, Trotta E, Parisi G et al (2018) Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359(6379):1037–1042PubMedPubMedCentralCrossRef Sockolosky JT, Trotta E, Parisi G et al (2018) Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359(6379):1037–1042PubMedPubMedCentralCrossRef
180.
go back to reference Ward NC, Lui JB, Hernandez R et al (2020) Persistent IL-2 Receptor Signaling by IL-2/CD25 Fusion Protein Controls Diabetes in NOD Mice by Multiple Mechanisms. Diabetes 69(11):2400–2413PubMedPubMedCentralCrossRef Ward NC, Lui JB, Hernandez R et al (2020) Persistent IL-2 Receptor Signaling by IL-2/CD25 Fusion Protein Controls Diabetes in NOD Mice by Multiple Mechanisms. Diabetes 69(11):2400–2413PubMedPubMedCentralCrossRef
181.
go back to reference Ohkura N, Yasumizu Y, Kitagawa Y et al (2020) Regulatory T Cell-Specific Epigenomic Region Variants Are a Key Determinant of Susceptibility to Common Autoimmune Diseases. Immunity 52(6):1119–1132 e4PubMedCrossRef Ohkura N, Yasumizu Y, Kitagawa Y et al (2020) Regulatory T Cell-Specific Epigenomic Region Variants Are a Key Determinant of Susceptibility to Common Autoimmune Diseases. Immunity 52(6):1119–1132 e4PubMedCrossRef
182.
go back to reference Hull CM, Peakman M, Tree TIM (2017) Regulatory T cell dysfunction in type 1 diabetes: what’s broken and how can we fix it? Diabetologia 60(10):1839–1850PubMedPubMedCentralCrossRef Hull CM, Peakman M, Tree TIM (2017) Regulatory T cell dysfunction in type 1 diabetes: what’s broken and how can we fix it? Diabetologia 60(10):1839–1850PubMedPubMedCentralCrossRef
183.
go back to reference Lindley S, Dayan CM, Bishop A et al (2005) Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 54(1):92–99PubMedCrossRef Lindley S, Dayan CM, Bishop A et al (2005) Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 54(1):92–99PubMedCrossRef
184.
go back to reference Tang Q, Adams JY, Penaranda C et al (2008) Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28(5):687–697PubMedPubMedCentralCrossRef Tang Q, Adams JY, Penaranda C et al (2008) Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28(5):687–697PubMedPubMedCentralCrossRef
185.
go back to reference Bettini ML, Pan F, Bettini M et al (2012) Loss of epigenetic modification driven by the Foxp3 transcription factor leads to regulatory T cell insufficiency. Immunity 36(5):717–730PubMedPubMedCentralCrossRef Bettini ML, Pan F, Bettini M et al (2012) Loss of epigenetic modification driven by the Foxp3 transcription factor leads to regulatory T cell insufficiency. Immunity 36(5):717–730PubMedPubMedCentralCrossRef
186.
go back to reference Baker RL, Jamison BL, Wiles TA et al (2018) CD4 T Cells Reactive to Hybrid Insulin Peptides Are Indicators of Disease Activity in the NOD Mouse. Diabetes 67(9):1836–1846PubMedPubMedCentralCrossRef Baker RL, Jamison BL, Wiles TA et al (2018) CD4 T Cells Reactive to Hybrid Insulin Peptides Are Indicators of Disease Activity in the NOD Mouse. Diabetes 67(9):1836–1846PubMedPubMedCentralCrossRef
187.
go back to reference Zhou X, Bailey-Bucktrout SL, Jeker LT et al (2009) Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10(9):1000–1007PubMedPubMedCentralCrossRef Zhou X, Bailey-Bucktrout SL, Jeker LT et al (2009) Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10(9):1000–1007PubMedPubMedCentralCrossRef
188.
go back to reference McGovern J, Holler A, Thomas S, Stauss HJ (2022) Forced Fox-P3 expression can improve the safety and antigen-specific function of engineered regulatory T cells. J Autoimmun 132:102888PubMedPubMedCentralCrossRef McGovern J, Holler A, Thomas S, Stauss HJ (2022) Forced Fox-P3 expression can improve the safety and antigen-specific function of engineered regulatory T cells. J Autoimmun 132:102888PubMedPubMedCentralCrossRef
189.
go back to reference Henschel P, Landwehr-Kenzel S, Engels N et al (2023) Supraphysiological FOXP3 expression in human CAR-Tregs results in improved stability, efficacy, and safety of CAR-Treg products for clinical application. J Autoimmun 138:103057PubMedCrossRef Henschel P, Landwehr-Kenzel S, Engels N et al (2023) Supraphysiological FOXP3 expression in human CAR-Tregs results in improved stability, efficacy, and safety of CAR-Treg products for clinical application. J Autoimmun 138:103057PubMedCrossRef
190.
go back to reference de Boer YS, van Gerven NM, Zwiers A et al (2014) Genome-wide association study identifies variants associated with autoimmune hepatitis type 1. Gastroenterology 147(2):443–52 (e5)PubMedCrossRef de Boer YS, van Gerven NM, Zwiers A et al (2014) Genome-wide association study identifies variants associated with autoimmune hepatitis type 1. Gastroenterology 147(2):443–52 (e5)PubMedCrossRef
191.
go back to reference Longhi MS, Hussain MJ, Mitry RR et al (2006) Functional study of CD4+CD25+ regulatory T cells in health and autoimmune hepatitis. J Immunol 176(7):4484–4491PubMedCrossRef Longhi MS, Hussain MJ, Mitry RR et al (2006) Functional study of CD4+CD25+ regulatory T cells in health and autoimmune hepatitis. J Immunol 176(7):4484–4491PubMedCrossRef
192.
go back to reference Ferri S, Longhi MS, De Molo C et al (2010) A multifaceted imbalance of T cells with regulatory function characterizes type 1 autoimmune hepatitis. Hepatology 52(3):999–1007PubMedCrossRef Ferri S, Longhi MS, De Molo C et al (2010) A multifaceted imbalance of T cells with regulatory function characterizes type 1 autoimmune hepatitis. Hepatology 52(3):999–1007PubMedCrossRef
193.
go back to reference Liberal R, Grant CR, Holder BS et al (2012) The impaired immune regulation of autoimmune hepatitis is linked to a defective galectin-9/tim-3 pathway. Hepatology 56(2):677–686PubMedCrossRef Liberal R, Grant CR, Holder BS et al (2012) The impaired immune regulation of autoimmune hepatitis is linked to a defective galectin-9/tim-3 pathway. Hepatology 56(2):677–686PubMedCrossRef
194.
go back to reference Peiseler M, Sebode M, Franke B et al (2012) FOXP3+ regulatory T cells in autoimmune hepatitis are fully functional and not reduced in frequency. J Hepatol 57(1):125–132PubMedCrossRef Peiseler M, Sebode M, Franke B et al (2012) FOXP3+ regulatory T cells in autoimmune hepatitis are fully functional and not reduced in frequency. J Hepatol 57(1):125–132PubMedCrossRef
195.
go back to reference Taubert R, Hardtke-Wolenski M, Noyan F et al (2014) Intrahepatic regulatory T cells in autoimmune hepatitis are associated with treatment response and depleted with current therapies. J Hepatol 61(5):1106–1114PubMedCrossRef Taubert R, Hardtke-Wolenski M, Noyan F et al (2014) Intrahepatic regulatory T cells in autoimmune hepatitis are associated with treatment response and depleted with current therapies. J Hepatol 61(5):1106–1114PubMedCrossRef
196.
go back to reference Diestelhorst J, Junge N, Schlue J et al (2017) Pediatric autoimmune hepatitis shows a disproportionate decline of regulatory T cells in the liver and of IL-2 in the blood of patients undergoing therapy. PLoS ONE 12(7):e0181107PubMedPubMedCentralCrossRef Diestelhorst J, Junge N, Schlue J et al (2017) Pediatric autoimmune hepatitis shows a disproportionate decline of regulatory T cells in the liver and of IL-2 in the blood of patients undergoing therapy. PLoS ONE 12(7):e0181107PubMedPubMedCentralCrossRef
197.
go back to reference John K, Hardtke-Wolenski M, Jaeckel E et al (2017) Increased apoptosis of regulatory T cells in patients with active autoimmune hepatitis. Cell Death Dis 8(12):3219PubMedPubMedCentralCrossRef John K, Hardtke-Wolenski M, Jaeckel E et al (2017) Increased apoptosis of regulatory T cells in patients with active autoimmune hepatitis. Cell Death Dis 8(12):3219PubMedPubMedCentralCrossRef
198.
go back to reference Kido M, Watanabe N, Okazaki T et al (2008) Fatal autoimmune hepatitis induced by concurrent loss of naturally arising regulatory T cells and PD-1-mediated signaling. Gastroenterology 135(4):1333–1343PubMedCrossRef Kido M, Watanabe N, Okazaki T et al (2008) Fatal autoimmune hepatitis induced by concurrent loss of naturally arising regulatory T cells and PD-1-mediated signaling. Gastroenterology 135(4):1333–1343PubMedCrossRef
199.
go back to reference Hardtke-Wolenski M, Taubert R, Noyan F et al (2015) Autoimmune hepatitis in a murine autoimmune polyendocrine syndrome type 1 model is directed against multiple autoantigens. Hepatology 61(4):1295–1305PubMedCrossRef Hardtke-Wolenski M, Taubert R, Noyan F et al (2015) Autoimmune hepatitis in a murine autoimmune polyendocrine syndrome type 1 model is directed against multiple autoantigens. Hepatology 61(4):1295–1305PubMedCrossRef
200.
201.
go back to reference Hardtke-Wolenski M, Fischer K, Noyan F et al (2013) Genetic predisposition and environmental danger signals initiate chronic autoimmune hepatitis driven by CD4+ T cells. Hepatology 58(2):718–728PubMedCrossRef Hardtke-Wolenski M, Fischer K, Noyan F et al (2013) Genetic predisposition and environmental danger signals initiate chronic autoimmune hepatitis driven by CD4+ T cells. Hepatology 58(2):718–728PubMedCrossRef
202.
go back to reference Holdener M, Hintermann E, Bayer M et al (2008) Breaking tolerance to the natural human liver autoantigen cytochrome P450 2D6 by virus infection. J Exp Med 205(6):1409–1422PubMedPubMedCentralCrossRef Holdener M, Hintermann E, Bayer M et al (2008) Breaking tolerance to the natural human liver autoantigen cytochrome P450 2D6 by virus infection. J Exp Med 205(6):1409–1422PubMedPubMedCentralCrossRef
203.
go back to reference Lapierre P, Beland K, Yang R, Alvarez F (2013) Adoptive transfer of ex vivo expanded regulatory T cells in an autoimmune hepatitis murine model restores peripheral tolerance. Hepatology 57(1):217–227PubMedCrossRef Lapierre P, Beland K, Yang R, Alvarez F (2013) Adoptive transfer of ex vivo expanded regulatory T cells in an autoimmune hepatitis murine model restores peripheral tolerance. Hepatology 57(1):217–227PubMedCrossRef
204.
go back to reference Zierden M, Kuhnen E, Odenthal M, Dienes HP (2010) Effects and regulation of autoreactive CD8+ T cells in a transgenic mouse model of autoimmune hepatitis. Gastroenterology 139(3):975–86 (986 e1–3)PubMedCrossRef Zierden M, Kuhnen E, Odenthal M, Dienes HP (2010) Effects and regulation of autoreactive CD8+ T cells in a transgenic mouse model of autoimmune hepatitis. Gastroenterology 139(3):975–86 (986 e1–3)PubMedCrossRef
205.
go back to reference Veltkamp C, Anstaett M, Wahl K et al (2011) Apoptosis of regulatory T lymphocytes is increased in chronic inflammatory bowel disease and reversed by anti-TNFalpha treatment. Gut 60(10):1345–1353PubMedCrossRef Veltkamp C, Anstaett M, Wahl K et al (2011) Apoptosis of regulatory T lymphocytes is increased in chronic inflammatory bowel disease and reversed by anti-TNFalpha treatment. Gut 60(10):1345–1353PubMedCrossRef
206.
go back to reference Mohammadnia-Afrouzi M, Zavaran Hosseini A, Khalili A et al (2015) Decrease of CD4(+) CD25(+) CD127(low) FoxP3(+) regulatory T cells with impaired suppressive function in untreated ulcerative colitis patients. Autoimmunity 48(8):556–561PubMedCrossRef Mohammadnia-Afrouzi M, Zavaran Hosseini A, Khalili A et al (2015) Decrease of CD4(+) CD25(+) CD127(low) FoxP3(+) regulatory T cells with impaired suppressive function in untreated ulcerative colitis patients. Autoimmunity 48(8):556–561PubMedCrossRef
207.
go back to reference Sznurkowska K, Luty J, Bryl E et al (2020) Enhancement of Circulating and Intestinal T Regulatory Cells and Their Expression of Helios and Neuropilin-1 in Children with Inflammatory Bowel Disease. J Inflamm Res 13:995–1005PubMedPubMedCentralCrossRef Sznurkowska K, Luty J, Bryl E et al (2020) Enhancement of Circulating and Intestinal T Regulatory Cells and Their Expression of Helios and Neuropilin-1 in Children with Inflammatory Bowel Disease. J Inflamm Res 13:995–1005PubMedPubMedCentralCrossRef
208.
go back to reference Fantini MC, Rizzo A, Fina D et al (2009) Smad7 controls resistance of colitogenic T cells to regulatory T cell-mediated suppression. Gastroenterology 136(4):1308–16 (e1–3)PubMedCrossRef Fantini MC, Rizzo A, Fina D et al (2009) Smad7 controls resistance of colitogenic T cells to regulatory T cell-mediated suppression. Gastroenterology 136(4):1308–16 (e1–3)PubMedCrossRef
209.
go back to reference Jostins L, Ripke S, Weersma RK et al (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491(7422):119–124PubMedPubMedCentralCrossRef Jostins L, Ripke S, Weersma RK et al (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491(7422):119–124PubMedPubMedCentralCrossRef
210.
go back to reference Luo Y, de Lange KM, Jostins L et al (2017) Exploring the genetic architecture of inflammatory bowel disease by whole-genome sequencing identifies association at ADCY7. Nat Genet 49(2):186–192PubMedPubMedCentralCrossRef Luo Y, de Lange KM, Jostins L et al (2017) Exploring the genetic architecture of inflammatory bowel disease by whole-genome sequencing identifies association at ADCY7. Nat Genet 49(2):186–192PubMedPubMedCentralCrossRef
211.
go back to reference Watanabe T, Asano N, Murray PJ et al (2008) Muramyl dipeptide activation of nucleotide-binding oligomerization domain 2 protects mice from experimental colitis. J Clin Invest 118(2):545–559PubMedPubMedCentral Watanabe T, Asano N, Murray PJ et al (2008) Muramyl dipeptide activation of nucleotide-binding oligomerization domain 2 protects mice from experimental colitis. J Clin Invest 118(2):545–559PubMedPubMedCentral
212.
go back to reference Macho Fernandez E, Valenti V, Rockel C et al (2011) Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut 60(8):1050–1059PubMedCrossRef Macho Fernandez E, Valenti V, Rockel C et al (2011) Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut 60(8):1050–1059PubMedCrossRef
213.
go back to reference Venturi GM, Conway RM, Steeber DA, Tedder TF (2007) CD25+CD4+ regulatory T cell migration requires L-selectin expression: L-selectin transcriptional regulation balances constitutive receptor turnover. J Immunol 178(1):291–300PubMedCrossRef Venturi GM, Conway RM, Steeber DA, Tedder TF (2007) CD25+CD4+ regulatory T cell migration requires L-selectin expression: L-selectin transcriptional regulation balances constitutive receptor turnover. J Immunol 178(1):291–300PubMedCrossRef
214.
go back to reference Suffia I, Reckling SK, Salay G, Belkaid Y (2005) A role for CD103 in the retention of CD4+CD25+ Treg and control of Leishmania major infection. J Immunol 174(9):5444–5455PubMedCrossRef Suffia I, Reckling SK, Salay G, Belkaid Y (2005) A role for CD103 in the retention of CD4+CD25+ Treg and control of Leishmania major infection. J Immunol 174(9):5444–5455PubMedCrossRef
215.
go back to reference Belkaid Y, Rouse BT (2005) Natural regulatory T cells in infectious disease. Nat Immunol 6(4):353–360PubMedCrossRef Belkaid Y, Rouse BT (2005) Natural regulatory T cells in infectious disease. Nat Immunol 6(4):353–360PubMedCrossRef
216.
go back to reference Denning TL, Kim G, Kronenberg M (2005) Cutting edge: CD4+CD25+ regulatory T cells impaired for intestinal homing can prevent colitis. J Immunol 174(12):7487–7491PubMedCrossRef Denning TL, Kim G, Kronenberg M (2005) Cutting edge: CD4+CD25+ regulatory T cells impaired for intestinal homing can prevent colitis. J Immunol 174(12):7487–7491PubMedCrossRef
217.
go back to reference Pedros C, Gaud G, Bernard I et al (2015) An Epistatic Interaction between Themis1 and Vav1 Modulates Regulatory T Cell Function and Inflammatory Bowel Disease Development. J Immunol 195(4):1608–1616PubMedCrossRef Pedros C, Gaud G, Bernard I et al (2015) An Epistatic Interaction between Themis1 and Vav1 Modulates Regulatory T Cell Function and Inflammatory Bowel Disease Development. J Immunol 195(4):1608–1616PubMedCrossRef
218.
219.
go back to reference Schneider MA, Meingassner JG, Lipp M, Moore HD, Rot A (2007) CCR7 is required for the in vivo function of CD4+ CD25+ regulatory T cells. J Exp Med 204(4):735–745PubMedPubMedCentralCrossRef Schneider MA, Meingassner JG, Lipp M, Moore HD, Rot A (2007) CCR7 is required for the in vivo function of CD4+ CD25+ regulatory T cells. J Exp Med 204(4):735–745PubMedPubMedCentralCrossRef
220.
go back to reference Bacchetta R, Bigler M, Touraine JL et al (1994) High levels of interleukin 10 production in vivo are associated with tolerance in SCID patients transplanted with HLA mismatched hematopoietic stem cells. J Exp Med 179(2):493–502PubMedCrossRef Bacchetta R, Bigler M, Touraine JL et al (1994) High levels of interleukin 10 production in vivo are associated with tolerance in SCID patients transplanted with HLA mismatched hematopoietic stem cells. J Exp Med 179(2):493–502PubMedCrossRef
221.
go back to reference Battaglia M, Stabilini A, Migliavacca B et al (2006) Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol 177(12):8338–8347PubMedCrossRef Battaglia M, Stabilini A, Migliavacca B et al (2006) Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol 177(12):8338–8347PubMedCrossRef
222.
go back to reference Battaglia M, Stabilini A, Draghici E et al (2006) Induction of tolerance in type 1 diabetes via both CD4+CD25+ T regulatory cells and T regulatory type 1 cells. Diabetes 55(6):1571–1580PubMedCrossRef Battaglia M, Stabilini A, Draghici E et al (2006) Induction of tolerance in type 1 diabetes via both CD4+CD25+ T regulatory cells and T regulatory type 1 cells. Diabetes 55(6):1571–1580PubMedCrossRef
223.
go back to reference Roncarolo MG, Gregori S, Bacchetta R, Battaglia M, Gagliani N (2018) The Biology of T Regulatory Type 1 Cells and Their Therapeutic Application in Immune-Mediated Diseases. Immunity 49(6):1004–1019PubMedCrossRef Roncarolo MG, Gregori S, Bacchetta R, Battaglia M, Gagliani N (2018) The Biology of T Regulatory Type 1 Cells and Their Therapeutic Application in Immune-Mediated Diseases. Immunity 49(6):1004–1019PubMedCrossRef
224.
go back to reference Hadis U, Wahl B, Schulz O et al (2011) Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34(2):237–246PubMedCrossRef Hadis U, Wahl B, Schulz O et al (2011) Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34(2):237–246PubMedCrossRef
225.
226.
go back to reference Fujikado N, Mann AO, Bansal K et al (2016) Aire Inhibits the Generation of a Perinatal Population of Interleukin-17A-Producing gammadelta T Cells to Promote Immunologic Tolerance. Immunity 45(5):999–1012PubMedPubMedCentralCrossRef Fujikado N, Mann AO, Bansal K et al (2016) Aire Inhibits the Generation of a Perinatal Population of Interleukin-17A-Producing gammadelta T Cells to Promote Immunologic Tolerance. Immunity 45(5):999–1012PubMedPubMedCentralCrossRef
227.
go back to reference Devoss JJ, Shum AK, Johannes KP et al (2008) Effector mechanisms of the autoimmune syndrome in the murine model of autoimmune polyglandular syndrome type 1. J Immunol 181(6):4072–4079PubMedCrossRef Devoss JJ, Shum AK, Johannes KP et al (2008) Effector mechanisms of the autoimmune syndrome in the murine model of autoimmune polyglandular syndrome type 1. J Immunol 181(6):4072–4079PubMedCrossRef
228.
go back to reference Anderson MS, Venanzi ES, Klein L et al (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298(5597):1395–1401PubMedCrossRef Anderson MS, Venanzi ES, Klein L et al (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298(5597):1395–1401PubMedCrossRef
229.
go back to reference Goldberg R, Scotta C, Cooper D et al (2019) Correction of Defective T-Regulatory Cells From Patients With Crohn’s Disease by Ex Vivo Ligation of Retinoic Acid Receptor-alpha. Gastroenterology 156(6):1775–1787PubMedCrossRef Goldberg R, Scotta C, Cooper D et al (2019) Correction of Defective T-Regulatory Cells From Patients With Crohn’s Disease by Ex Vivo Ligation of Retinoic Acid Receptor-alpha. Gastroenterology 156(6):1775–1787PubMedCrossRef
230.
go back to reference Canavan JB, Scotta C, Vossenkamper A et al (2016) Developing in vitro expanded CD45RA+ regulatory T cells as an adoptive cell therapy for Crohn’s disease. Gut 65(4):584–594PubMedCrossRef Canavan JB, Scotta C, Vossenkamper A et al (2016) Developing in vitro expanded CD45RA+ regulatory T cells as an adoptive cell therapy for Crohn’s disease. Gut 65(4):584–594PubMedCrossRef
231.
go back to reference Desreumaux P, Foussat A, Allez M et al (2012) Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn’s disease. Gastroenterology 143(5):1207–1217 (e2)PubMedCrossRef Desreumaux P, Foussat A, Allez M et al (2012) Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn’s disease. Gastroenterology 143(5):1207–1217 (e2)PubMedCrossRef
232.
go back to reference Elinav E, Adam N, Waks T, Eshhar Z (2009) Amelioration of colitis by genetically engineered murine regulatory T cells redirected by antigen-specific chimeric receptor. Gastroenterology 136(5):1721–1731PubMedCrossRef Elinav E, Adam N, Waks T, Eshhar Z (2009) Amelioration of colitis by genetically engineered murine regulatory T cells redirected by antigen-specific chimeric receptor. Gastroenterology 136(5):1721–1731PubMedCrossRef
233.
go back to reference Blat D, Zigmond E, Alteber Z, Waks T, Eshhar Z (2014) Suppression of murine colitis and its associated cancer by carcinoembryonic antigen-specific regulatory T cells. Mol Ther 22(5):1018–1028PubMedPubMedCentralCrossRef Blat D, Zigmond E, Alteber Z, Waks T, Eshhar Z (2014) Suppression of murine colitis and its associated cancer by carcinoembryonic antigen-specific regulatory T cells. Mol Ther 22(5):1018–1028PubMedPubMedCentralCrossRef
234.
go back to reference Maliar A, Servais C, Waks T et al (2012) Redirected T cells that target pancreatic adenocarcinoma antigens eliminate tumors and metastases in mice. Gastroenterology 143(5):1375–1384 e5PubMedCrossRef Maliar A, Servais C, Waks T et al (2012) Redirected T cells that target pancreatic adenocarcinoma antigens eliminate tumors and metastases in mice. Gastroenterology 143(5):1375–1384 e5PubMedCrossRef
235.
go back to reference Elinav E, Waks T, Eshhar Z (2008) Redirection of regulatory T cells with predetermined specificity for the treatment of experimental colitis in mice. Gastroenterology 134(7):2014–2024PubMedCrossRef Elinav E, Waks T, Eshhar Z (2008) Redirection of regulatory T cells with predetermined specificity for the treatment of experimental colitis in mice. Gastroenterology 134(7):2014–2024PubMedCrossRef
236.
go back to reference Wu AJ, Hua H, Munson SH, McDevitt HO (2002) Tumor necrosis factor-alpha regulation of CD4+CD25+ T cell levels in NOD mice. Proc Natl Acad Sci U A 99(19):12287–12292CrossRef Wu AJ, Hua H, Munson SH, McDevitt HO (2002) Tumor necrosis factor-alpha regulation of CD4+CD25+ T cell levels in NOD mice. Proc Natl Acad Sci U A 99(19):12287–12292CrossRef
237.
go back to reference Tarbell KV, Petit L, Zuo X et al (2007) Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med 204(1):191–201PubMedPubMedCentralCrossRef Tarbell KV, Petit L, Zuo X et al (2007) Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med 204(1):191–201PubMedPubMedCentralCrossRef
239.
go back to reference Tarbell KV, Yamazaki S, Olson K, Toy P, Steinman RM (2004) CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med 199(11):1467–1477PubMedPubMedCentralCrossRef Tarbell KV, Yamazaki S, Olson K, Toy P, Steinman RM (2004) CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med 199(11):1467–1477PubMedPubMedCentralCrossRef
240.
go back to reference Jaeckel E, Lipes MA, von Boehmer H (2004) Recessive tolerance to preproinsulin 2 reduces but does not abolish type 1 diabetes. Nat Immunol 5(10):1028–1035PubMedCrossRef Jaeckel E, Lipes MA, von Boehmer H (2004) Recessive tolerance to preproinsulin 2 reduces but does not abolish type 1 diabetes. Nat Immunol 5(10):1028–1035PubMedCrossRef
241.
go back to reference Tang Q, Henriksen KJ, Bi M et al (2004) In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199(11):1455–1465PubMedPubMedCentralCrossRef Tang Q, Henriksen KJ, Bi M et al (2004) In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199(11):1455–1465PubMedPubMedCentralCrossRef
242.
go back to reference Masteller EL, Warner MR, Tang Q et al (2005) Expansion of functional endogenous antigen-specific CD4+CD25+ regulatory T cells from nonobese diabetic mice. J Immunol 175(5):3053–3059PubMedCrossRef Masteller EL, Warner MR, Tang Q et al (2005) Expansion of functional endogenous antigen-specific CD4+CD25+ regulatory T cells from nonobese diabetic mice. J Immunol 175(5):3053–3059PubMedCrossRef
243.
go back to reference Jaeckel E, Klein L, Martin-Orozco N, von Boehmer H (2003) Normal incidence of diabetes in NOD mice tolerant to glutamic acid decarboxylase. J Exp Med 197(12):1635–1644PubMedPubMedCentralCrossRef Jaeckel E, Klein L, Martin-Orozco N, von Boehmer H (2003) Normal incidence of diabetes in NOD mice tolerant to glutamic acid decarboxylase. J Exp Med 197(12):1635–1644PubMedPubMedCentralCrossRef
244.
go back to reference Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A et al (2014) Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets - results of one year follow-up. Clin Immunol 153(1):23–30PubMedCrossRef Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A et al (2014) Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets - results of one year follow-up. Clin Immunol 153(1):23–30PubMedCrossRef
245.
go back to reference Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A et al (2012) Administration of CD4+CD25highCD127- regulatory T cells preserves β-cell function in type 1 diabetes in children. Diabetes Care 35(9):1817–1820PubMedPubMedCentralCrossRef Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A et al (2012) Administration of CD4+CD25highCD127- regulatory T cells preserves β-cell function in type 1 diabetes in children. Diabetes Care 35(9):1817–1820PubMedPubMedCentralCrossRef
246.
247.
go back to reference Marek-Trzonkowska N, Mysliwiec M, Iwaszkiewicz-Grzes D et al (2016) Factors affecting long-term efficacy of T regulatory cell-based therapy in type 1 diabetes. J Transl Med 14(1):332PubMedPubMedCentralCrossRef Marek-Trzonkowska N, Mysliwiec M, Iwaszkiewicz-Grzes D et al (2016) Factors affecting long-term efficacy of T regulatory cell-based therapy in type 1 diabetes. J Transl Med 14(1):332PubMedPubMedCentralCrossRef
248.
go back to reference Herold KC, Gitelman SE, Ehlers MR et al (2013) Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders. Diabetes 62(11):3766–3774PubMedPubMedCentralCrossRef Herold KC, Gitelman SE, Ehlers MR et al (2013) Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders. Diabetes 62(11):3766–3774PubMedPubMedCentralCrossRef
249.
go back to reference Rigby MR, Harris KM, Pinckney A et al (2015) Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J Clin Invest 125(8):3285–3296PubMedPubMedCentralCrossRef Rigby MR, Harris KM, Pinckney A et al (2015) Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J Clin Invest 125(8):3285–3296PubMedPubMedCentralCrossRef
250.
go back to reference Rigby MR, DiMeglio LA, Rendell MS et al (2013) Targeting of memory T cells with alefacept in new-onset type 1 diabetes (T1DAL study): 12 month results of a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Diabetes Endocrinol 1(4):284–294PubMedPubMedCentralCrossRef Rigby MR, DiMeglio LA, Rendell MS et al (2013) Targeting of memory T cells with alefacept in new-onset type 1 diabetes (T1DAL study): 12 month results of a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Diabetes Endocrinol 1(4):284–294PubMedPubMedCentralCrossRef
253.
go back to reference Kremer J, Henschel P, Simon D et al (2022) Membrane-bound IL-2 improves the expansion, survival, and phenotype of CAR Tregs and confers resistance to calcineurin inhibitors. Front Immunol 13:1005582PubMedPubMedCentralCrossRef Kremer J, Henschel P, Simon D et al (2022) Membrane-bound IL-2 improves the expansion, survival, and phenotype of CAR Tregs and confers resistance to calcineurin inhibitors. Front Immunol 13:1005582PubMedPubMedCentralCrossRef
254.
go back to reference Grinberg-Bleyer Y, Baeyens A, You S et al (2010) IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med 207(9):1871–1878PubMedPubMedCentralCrossRef Grinberg-Bleyer Y, Baeyens A, You S et al (2010) IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med 207(9):1871–1878PubMedPubMedCentralCrossRef
255.
go back to reference Rosenzwajg M, Salet R, Lorenzon R et al (2020) Low-dose IL-2 in children with recently diagnosed type 1 diabetes: a Phase I/II randomised, double-blind, placebo-controlled, dose-finding study. Diabetologia 63(9):1808–1821PubMedCrossRef Rosenzwajg M, Salet R, Lorenzon R et al (2020) Low-dose IL-2 in children with recently diagnosed type 1 diabetes: a Phase I/II randomised, double-blind, placebo-controlled, dose-finding study. Diabetologia 63(9):1808–1821PubMedCrossRef
256.
go back to reference Rosenzwajg M, Lorenzon R, Cacoub P et al (2019) Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann Rheum Dis 78(2):209–217PubMedCrossRef Rosenzwajg M, Lorenzon R, Cacoub P et al (2019) Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann Rheum Dis 78(2):209–217PubMedCrossRef
257.
go back to reference Saadoun D, Rosenzwajg M, Joly F et al (2011) Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med 365(22):2067–2077PubMedCrossRef Saadoun D, Rosenzwajg M, Joly F et al (2011) Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med 365(22):2067–2077PubMedCrossRef
258.
go back to reference Koreth J, Kim HT, Jones KT et al (2017) Efficacy, durability, and response predictors of low-dose interleukin-2 therapy for chronic graft-versus-host disease. Blood 128(1):130–138CrossRef Koreth J, Kim HT, Jones KT et al (2017) Efficacy, durability, and response predictors of low-dose interleukin-2 therapy for chronic graft-versus-host disease. Blood 128(1):130–138CrossRef
259.
go back to reference Castela E, Duff FL, Butori C et al (2014) Effects of Low-Dose Recombinant Interleukin 2 to Promote T-Regulatory Cells in Alopecia Areata. JAMA Dermatol 150(7):748–751PubMedCrossRef Castela E, Duff FL, Butori C et al (2014) Effects of Low-Dose Recombinant Interleukin 2 to Promote T-Regulatory Cells in Alopecia Areata. JAMA Dermatol 150(7):748–751PubMedCrossRef
260.
go back to reference Rosenzwajg M, Churlaud G, Mallone R et al (2015) Low-dose interleukin-2 fosters a dose-dependent regulatory T cell tuned milieu in T1D patients. J Autoimmun 58:48–58PubMedPubMedCentralCrossRef Rosenzwajg M, Churlaud G, Mallone R et al (2015) Low-dose interleukin-2 fosters a dose-dependent regulatory T cell tuned milieu in T1D patients. J Autoimmun 58:48–58PubMedPubMedCentralCrossRef
261.
go back to reference Hartemann A, Bensimon G, Payan CA et al (2013) Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 1(4):295–305PubMedCrossRef Hartemann A, Bensimon G, Payan CA et al (2013) Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 1(4):295–305PubMedCrossRef
263.
264.
go back to reference Tenspolde M, Zimmermann K, Weber LC et al (2019) Regulatory T cells engineered with a novel insulin-specific chimeric antigen receptor as a candidate immunotherapy for type 1 diabetes. J Autoimmun 103:102289PubMedCrossRef Tenspolde M, Zimmermann K, Weber LC et al (2019) Regulatory T cells engineered with a novel insulin-specific chimeric antigen receptor as a candidate immunotherapy for type 1 diabetes. J Autoimmun 103:102289PubMedCrossRef
265.
go back to reference Chung YY, Rahim MN, Heneghan MA (2022) Autoimmune hepatitis and pregnancy: considerations for the clinician. Expert Rev Clin Immunol 18(4):325–333PubMedCrossRef Chung YY, Rahim MN, Heneghan MA (2022) Autoimmune hepatitis and pregnancy: considerations for the clinician. Expert Rev Clin Immunol 18(4):325–333PubMedCrossRef
266.
go back to reference Buitrago-Molina LE, Pietrek J, Noyan F et al (2021) Treg-specific IL-2 therapy can reestablish intrahepatic immune regulation in autoimmune hepatitis. J Autoimmun 117:102591PubMedCrossRef Buitrago-Molina LE, Pietrek J, Noyan F et al (2021) Treg-specific IL-2 therapy can reestablish intrahepatic immune regulation in autoimmune hepatitis. J Autoimmun 117:102591PubMedCrossRef
267.
go back to reference Buitrago-Molina LE, Dywicki J, Noyan F, Schepergerdes L, Pietrek J, Lieber M, Schlue J, Manns MP, Wedemeyer H, Jaeckel E et al (2021) Anti-CD20 Therapy Alters the Protein Signature in Experimental Murine AIH, but Not Exclusively towards Regeneration. Cells 10(6):1471. https://doi.org/10.3390/cells10061471 Buitrago-Molina LE, Dywicki J, Noyan F, Schepergerdes L, Pietrek J, Lieber M, Schlue J, Manns MP, Wedemeyer H, Jaeckel E et al (2021) Anti-CD20 Therapy Alters the Protein Signature in Experimental Murine AIH, but Not Exclusively towards Regeneration. Cells 10(6):1471. https://​doi.​org/​10.​3390/​cells10061471
268.
go back to reference Marceau G, Yang R, Lapierre P, Beland K, Alvarez F (2015) Low-dose anti-CD3 antibody induces remission of active autoimmune hepatitis in xenoimmunized mice. Liver Int 35(1):275–284PubMedCrossRef Marceau G, Yang R, Lapierre P, Beland K, Alvarez F (2015) Low-dose anti-CD3 antibody induces remission of active autoimmune hepatitis in xenoimmunized mice. Liver Int 35(1):275–284PubMedCrossRef
269.
go back to reference Fransson M, Piras E, Burman J et al (2012) CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J Neuroinflammation 9:112PubMedPubMedCentralCrossRef Fransson M, Piras E, Burman J et al (2012) CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J Neuroinflammation 9:112PubMedPubMedCentralCrossRef
270.
go back to reference Saetzler V, Riet T, Schienke A, Henschel P, Freitag K, Haake A, Heppner FL, Buitrago-Molina LE, Noyan F, Jaeckel E et al (2023) Development of Beta-Amyloid-Specific CAR-Tregs for the Treatment of Alzheimer’s Disease. Cells 12(16):2115. https://doi.org/10.3390/cells12162115 Saetzler V, Riet T, Schienke A, Henschel P, Freitag K, Haake A, Heppner FL, Buitrago-Molina LE, Noyan F, Jaeckel E et al (2023) Development of Beta-Amyloid-Specific CAR-Tregs for the Treatment of Alzheimer’s Disease. Cells 12(16):2115. https://​doi.​org/​10.​3390/​cells12162115
Metadata
Title
Tipping the balance in autoimmunity: are regulatory t cells the cause, the cure, or both?
Authors
Matthias Hardtke-Wolenski
Sybille Landwehr-Kenzel
Publication date
01-12-2024
Publisher
Springer International Publishing
Keyword
Type 1 Diabetes
Published in
Molecular and Cellular Pediatrics / Issue 1/2024
Electronic ISSN: 2194-7791
DOI
https://doi.org/10.1186/s40348-024-00176-8