Skip to main content
Top
Published in: Seminars in Immunopathology 1/2011

01-01-2011 | Review

Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease

Authors: John P. Driver, David V. Serreze, Yi-Guang Chen

Published in: Seminars in Immunopathology | Issue 1/2011

Login to get access

Abstract

For almost 30 years, the non-obese diabetic (NOD) mouse has served as the primary model for dissecting the genetic and pathogenic basis for T-lymphocyte-mediated autoimmune type 1 diabetes (T1D). However, while sharing many similarities, it is becoming increasingly appreciated that there are also some differences in the immunopathogenic basis of T1D development between humans and NOD mice. This review will focus on aspects of T1D development in NOD mice that are similar and different from that in humans.
Literature
1.
go back to reference Mordes JP, Serreze DV, Greiner DL, Rossini AA (2004) Animal models of autoimmune diabetes mellitus. In: LeRoith D, Taylor SI, Olefsky JM (eds) Diabetes mellitus: a fundamental and clinical text. Lippincott Williams and Wilkins, Philadelphia, pp 591–610 Mordes JP, Serreze DV, Greiner DL, Rossini AA (2004) Animal models of autoimmune diabetes mellitus. In: LeRoith D, Taylor SI, Olefsky JM (eds) Diabetes mellitus: a fundamental and clinical text. Lippincott Williams and Wilkins, Philadelphia, pp 591–610
2.
go back to reference Tanaguchi H, Makino S, Ikegami H (2007) The NOD mouse and its related strains. In: Shafrir E (ed) Animal models of diabetes frontiers in research, 2nd edn. CRC, Boca Raton, pp 41–60 Tanaguchi H, Makino S, Ikegami H (2007) The NOD mouse and its related strains. In: Shafrir E (ed) Animal models of diabetes frontiers in research, 2nd edn. CRC, Boca Raton, pp 41–60
3.
go back to reference Delovitch TL, Singh B (1997) The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 7:291–297CrossRef Delovitch TL, Singh B (1997) The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 7:291–297CrossRef
4.
go back to reference Prochazka M, Leiter EH, Serreze DV, Coleman DL (1987) Three recessive loci required for insulin-dependent diabetes in NOD mice. Science 237:286–289PubMedCrossRef Prochazka M, Leiter EH, Serreze DV, Coleman DL (1987) Three recessive loci required for insulin-dependent diabetes in NOD mice. Science 237:286–289PubMedCrossRef
5.
go back to reference Wicker LS, Todd JA, Peterson LB (1995) Genetic control of autoimmune diabetes in the NOD mouse. Ann Rev Immunol 13:179–200CrossRef Wicker LS, Todd JA, Peterson LB (1995) Genetic control of autoimmune diabetes in the NOD mouse. Ann Rev Immunol 13:179–200CrossRef
6.
go back to reference Prochazka M, Serreze DV, Worthen SM, Leiter EH (1989) Genetic control of diabetogenesis in NOD/Lt mice: development and analysis of congenic stocks. Diabetes 38:1446–1455PubMedCrossRef Prochazka M, Serreze DV, Worthen SM, Leiter EH (1989) Genetic control of diabetogenesis in NOD/Lt mice: development and analysis of congenic stocks. Diabetes 38:1446–1455PubMedCrossRef
7.
go back to reference Acha-Orbea H, McDevitt HO (1987) The first external domain of the nonobese diabetic mouse class II I-Aβ chain is unique. Proc Natl Acad Sci USA 84:2435–2439PubMedCrossRef Acha-Orbea H, McDevitt HO (1987) The first external domain of the nonobese diabetic mouse class II I-Aβ chain is unique. Proc Natl Acad Sci USA 84:2435–2439PubMedCrossRef
8.
go back to reference Miyazaki T, Uno M, Uehira M, Kikutani H, Kishimoto T, Kimoto M, Nishimoto H, Miyazaki J, Yamamura K (1990) Direct evidence for the contribution of the unique I-Anod to the development of insulitis in non-obese diabetic mice. Nature 345:722–724PubMedCrossRef Miyazaki T, Uno M, Uehira M, Kikutani H, Kishimoto T, Kimoto M, Nishimoto H, Miyazaki J, Yamamura K (1990) Direct evidence for the contribution of the unique I-Anod to the development of insulitis in non-obese diabetic mice. Nature 345:722–724PubMedCrossRef
9.
go back to reference Lund T, O'Reilly L, Hutchings P, Kanagawa O, Simpson E, Gravely R, Chandler P, Dyson J, Picard JK, Edwards A, Kioussis D, Cooke A (1990) Prevention of insulin-dependent diabetes mellitus in non-obese diabetic mice by transgenes encoding modified I-A β-chain or normal I-E α-chain. Nature 345:727–729PubMedCrossRef Lund T, O'Reilly L, Hutchings P, Kanagawa O, Simpson E, Gravely R, Chandler P, Dyson J, Picard JK, Edwards A, Kioussis D, Cooke A (1990) Prevention of insulin-dependent diabetes mellitus in non-obese diabetic mice by transgenes encoding modified I-A β-chain or normal I-E α-chain. Nature 345:727–729PubMedCrossRef
10.
go back to reference Slattery RM, Kjer-Nielsen L, Allison J, Charlton B, Mandel T, Miller JFAP (1990) Prevention of diabetes in non-obese diabetic I-Ak transgenic mice. Nature 345:724–726PubMedCrossRef Slattery RM, Kjer-Nielsen L, Allison J, Charlton B, Mandel T, Miller JFAP (1990) Prevention of diabetes in non-obese diabetic I-Ak transgenic mice. Nature 345:724–726PubMedCrossRef
11.
go back to reference Todd JA, Acha-Orbea H, Bell JI, Chao N, Fronek Z, Jacob CO, McDermott M, Sinha AA, Timmerman L, Steinman L, McDevitt HO (1988) A molecular basis for MHC class II—associated autoimmunity. Science 240:1003–1009PubMedCrossRef Todd JA, Acha-Orbea H, Bell JI, Chao N, Fronek Z, Jacob CO, McDermott M, Sinha AA, Timmerman L, Steinman L, McDevitt HO (1988) A molecular basis for MHC class II—associated autoimmunity. Science 240:1003–1009PubMedCrossRef
12.
go back to reference Ikegami H, Makino S, Yamato E, Kawaguchi Y, Ueda H, Sakamoto T, Takekawa K, Ogihara T (1995) Identification of a new susceptibility locus for insulin-dependent diabetes mellitus by ancestral haplotype congenic mapping. J Clin Invest 96:1936–1942PubMedCrossRef Ikegami H, Makino S, Yamato E, Kawaguchi Y, Ueda H, Sakamoto T, Takekawa K, Ogihara T (1995) Identification of a new susceptibility locus for insulin-dependent diabetes mellitus by ancestral haplotype congenic mapping. J Clin Invest 96:1936–1942PubMedCrossRef
13.
go back to reference Serreze DV, Chapman HD, Varnum DS, Gerling I, Leiter EH, Shultz LD (1997) Initiation of autoimmune diabetes in NOD/Lt mice is MHC class I-dependent. J Immunol 158:3978–3986PubMed Serreze DV, Chapman HD, Varnum DS, Gerling I, Leiter EH, Shultz LD (1997) Initiation of autoimmune diabetes in NOD/Lt mice is MHC class I-dependent. J Immunol 158:3978–3986PubMed
14.
go back to reference Serreze DV, Leiter EH, Christianson GJ, Greiner D, Roopenian DC (1994) MHC class I deficient NOD-B2m null mice are diabetes and insulitis resistant. Diabetes 43:505–509PubMedCrossRef Serreze DV, Leiter EH, Christianson GJ, Greiner D, Roopenian DC (1994) MHC class I deficient NOD-B2m null mice are diabetes and insulitis resistant. Diabetes 43:505–509PubMedCrossRef
15.
go back to reference Serreze DV, Bridgett M, Chapman HD, Chen E, Richard SD, Leiter EH (1998) Subcongenic analysis of the Idd13 locus in NOD/Lt mice: evidence for several susceptibility genes including a possible diabetogenic role for β2-microglobulin. J Immunol 160:1472–1478PubMed Serreze DV, Bridgett M, Chapman HD, Chen E, Richard SD, Leiter EH (1998) Subcongenic analysis of the Idd13 locus in NOD/Lt mice: evidence for several susceptibility genes including a possible diabetogenic role for β2-microglobulin. J Immunol 160:1472–1478PubMed
16.
go back to reference Hamilton-Williams EE, Serreze DV, Charlton B, Johnson EA, Marron MP, Mullbacher A, Slattery RM (2001) Transgenic rescue implicates β2-microglobulin as a diabetes susceptibility gene in NOD mice. Proc Natl Acad Sci USA 98:11533–11538PubMedCrossRef Hamilton-Williams EE, Serreze DV, Charlton B, Johnson EA, Marron MP, Mullbacher A, Slattery RM (2001) Transgenic rescue implicates β2-microglobulin as a diabetes susceptibility gene in NOD mice. Proc Natl Acad Sci USA 98:11533–11538PubMedCrossRef
17.
go back to reference Nejentsev S, Howson JMM, Walker NM, Szeszko J, Field SF, Stevens HE, Reynolds P, Hardy M, King E, Masters J, Hulme J, Maier LM, Smyth D, Bailey R, Cooper JD, Ribas G, Campbell RD, Consortium TWTCC, Clayton DG, Todd JA (2007) Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 450:887–892PubMedCrossRef Nejentsev S, Howson JMM, Walker NM, Szeszko J, Field SF, Stevens HE, Reynolds P, Hardy M, King E, Masters J, Hulme J, Maier LM, Smyth D, Bailey R, Cooper JD, Ribas G, Campbell RD, Consortium TWTCC, Clayton DG, Todd JA (2007) Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 450:887–892PubMedCrossRef
18.
go back to reference Marron MP, Graser RT, Chapman HD, Serreze DV (2002) Functional evidence for the mediation of diabetogenic T cell responses by human HLA-A2.1 MHC class I molecules through transgenic expression in NOD mice. Proc Natl Acad Sci USA 99:13753–13758PubMedCrossRef Marron MP, Graser RT, Chapman HD, Serreze DV (2002) Functional evidence for the mediation of diabetogenic T cell responses by human HLA-A2.1 MHC class I molecules through transgenic expression in NOD mice. Proc Natl Acad Sci USA 99:13753–13758PubMedCrossRef
19.
go back to reference Wicker LS, Todd JA, Prins J-B, Podolin PL, Renjilian RJ, Peterson LB (1994) Resistance alleles at two non-MHC-linked insulin dependent diabetes loci on chromosome 3, Idd3 and Idd10, protect NOD mice from diabetes. J Exp Med 180:1705–1713PubMedCrossRef Wicker LS, Todd JA, Prins J-B, Podolin PL, Renjilian RJ, Peterson LB (1994) Resistance alleles at two non-MHC-linked insulin dependent diabetes loci on chromosome 3, Idd3 and Idd10, protect NOD mice from diabetes. J Exp Med 180:1705–1713PubMedCrossRef
20.
go back to reference McGuire HM, Vogelzang A, Hill N, Flodstrom-Tullberg M, Sprent J, King C (2009) Loss of parity between IL-2 and IL-21 in the NOD Idd3 locus. Proc Natl Acad Sci U S A 106:19438–19443PubMedCrossRef McGuire HM, Vogelzang A, Hill N, Flodstrom-Tullberg M, Sprent J, King C (2009) Loss of parity between IL-2 and IL-21 in the NOD Idd3 locus. Proc Natl Acad Sci U S A 106:19438–19443PubMedCrossRef
21.
go back to reference Yamanouchi J, Rainbow D, Serra P, Howlett S, Hunter K, Garner VE, Gonzalez-Munoz A, Clark J, Veijola R, Cubbon R, Chen SL, Rosa R, Cumiskey AM, Serreze DV, Gregory S, Rogers J, Lyons PA, Healy B, Smink LJ, Todd JA, Peterson LB, Wicker LS, Santamaria P (2007) Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat Genet 39:329–337PubMedCrossRef Yamanouchi J, Rainbow D, Serra P, Howlett S, Hunter K, Garner VE, Gonzalez-Munoz A, Clark J, Veijola R, Cubbon R, Chen SL, Rosa R, Cumiskey AM, Serreze DV, Gregory S, Rogers J, Lyons PA, Healy B, Smink LJ, Todd JA, Peterson LB, Wicker LS, Santamaria P (2007) Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat Genet 39:329–337PubMedCrossRef
22.
go back to reference Lyons PA, Armitage N, Argentina F, Denny P, Hill NJ, Lord CJ, Wilusz MB, Peterson LB, Wicker LS, Todd JA (2000) Congenic mapping of the type 1 diabetes locus, ldd3, to a 780-kb region of mouse chromosome 3: identification of a candidate segment of ancestral DNA by haplotype mapping. Genome Res 10:446–453PubMedCrossRef Lyons PA, Armitage N, Argentina F, Denny P, Hill NJ, Lord CJ, Wilusz MB, Peterson LB, Wicker LS, Todd JA (2000) Congenic mapping of the type 1 diabetes locus, ldd3, to a 780-kb region of mouse chromosome 3: identification of a candidate segment of ancestral DNA by haplotype mapping. Genome Res 10:446–453PubMedCrossRef
23.
go back to reference King C, Ilic A, Koelsch K, Sarvetnick N (2004) Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell 117:265–277PubMedCrossRef King C, Ilic A, Koelsch K, Sarvetnick N (2004) Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell 117:265–277PubMedCrossRef
24.
go back to reference Serreze DV, Leiter EH (1988) Defective activation of T suppressor cell function in nonobese diabetic mice. Potential relation to cytokine deficiencies. J Immunol 140:3801–3807PubMed Serreze DV, Leiter EH (1988) Defective activation of T suppressor cell function in nonobese diabetic mice. Potential relation to cytokine deficiencies. J Immunol 140:3801–3807PubMed
25.
go back to reference Serreze DV, Hamaguchi K, Leiter EH (1989) Immunostimulation circumvents diabetes in NOD/Lt mice. J Autoimmunity 2:759–776CrossRef Serreze DV, Hamaguchi K, Leiter EH (1989) Immunostimulation circumvents diabetes in NOD/Lt mice. J Autoimmunity 2:759–776CrossRef
26.
go back to reference Spolski R, Kashyap M, Robinson C, Yu Z, Leonard WJ (2008) IL-21 signaling is critical for the development of type I diabetes in the NOD mouse. Proc Natl Acad Sci U S A 105:14028–14033PubMedCrossRef Spolski R, Kashyap M, Robinson C, Yu Z, Leonard WJ (2008) IL-21 signaling is critical for the development of type I diabetes in the NOD mouse. Proc Natl Acad Sci U S A 105:14028–14033PubMedCrossRef
27.
go back to reference Sutherland AP, Van Belle T, Wurster AL, Suto A, Michaud M, Zhang D, Grusby MJ, von Herrath M (2009) Interleukin-21 is required for the development of type 1 diabetes in NOD mice. Diabetes 58:1144–1155PubMedCrossRef Sutherland AP, Van Belle T, Wurster AL, Suto A, Michaud M, Zhang D, Grusby MJ, von Herrath M (2009) Interleukin-21 is required for the development of type 1 diabetes in NOD mice. Diabetes 58:1144–1155PubMedCrossRef
28.
go back to reference Tang Q, Adams JY, Penaranda C, Melli K, Piaggio E, Sgouroudis E, Piccirillo CA, Salomon BL, Bluestone JA (2008) Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28:687–697PubMedCrossRef Tang Q, Adams JY, Penaranda C, Melli K, Piaggio E, Sgouroudis E, Piccirillo CA, Salomon BL, Bluestone JA (2008) Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28:687–697PubMedCrossRef
29.
go back to reference Podolin PL, Wilusz MB, Cubbon RM, Pajvani U, Lord CJ, Todd JA, Peterson LB, Wicker LS, Lyons PA (2000) Differential glycosylation of interleukin 2, the molecular basis for the NOD Idd3 type 1 diabetes gene? Cytokine 12:477–482PubMedCrossRef Podolin PL, Wilusz MB, Cubbon RM, Pajvani U, Lord CJ, Todd JA, Peterson LB, Wicker LS, Lyons PA (2000) Differential glycosylation of interleukin 2, the molecular basis for the NOD Idd3 type 1 diabetes gene? Cytokine 12:477–482PubMedCrossRef
30.
go back to reference Vella A, Cooper JD, Lowe CE, Walker N, Nutland S, Widmer B, Jones R, Ring SM, McArdle W, Pembrey ME, Strachan DP, Dunger DB, Twells RC, Clayton DG, Todd JA (2005) Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms. Am J Hum Genet 76:773–779PubMedCrossRef Vella A, Cooper JD, Lowe CE, Walker N, Nutland S, Widmer B, Jones R, Ring SM, McArdle W, Pembrey ME, Strachan DP, Dunger DB, Twells RC, Clayton DG, Todd JA (2005) Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms. Am J Hum Genet 76:773–779PubMedCrossRef
31.
go back to reference Asano K, Ikegami H, Fujisawa T, Nishino M, Nojima K, Kawabata Y, Noso S, Hiromine Y, Fukai A, Ogihara T (2007) Molecular scanning of interleukin-21 gene and genetic susceptibility to type 1 diabetes. Hum Immunol 68:384–391PubMedCrossRef Asano K, Ikegami H, Fujisawa T, Nishino M, Nojima K, Kawabata Y, Noso S, Hiromine Y, Fukai A, Ogihara T (2007) Molecular scanning of interleukin-21 gene and genetic susceptibility to type 1 diabetes. Hum Immunol 68:384–391PubMedCrossRef
32.
go back to reference Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, Julier C, Morahan G, Nerup J, Nierras C, Plagnol V, Pociot F, Schuilenburg H, Smyth DJ, Stevens H, Todd JA, Walker NM, Rich SS (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41:703–707PubMedCrossRef Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, Julier C, Morahan G, Nerup J, Nierras C, Plagnol V, Pociot F, Schuilenburg H, Smyth DJ, Stevens H, Todd JA, Walker NM, Rich SS (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41:703–707PubMedCrossRef
33.
go back to reference Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, Rainbow DB, Hunter KM, Smith AN, Di Genova G, Herr MH, Dahlman I, Payne F, Smyth D, Lowe C, Twells RC, Howlett S, Healy B, Nutland S, Rance HE, Everett V, Smink LJ, Lam AC, Cordell HJ, Walker NM, Bordin C, Hulme J, Motzo C, Cucca F, Hess JF, Metzker ML, Rogers J, Gregory S, Allahabadia A, Nithiyananthan R, Tuomilehto-Wolf E, Tuomilehto J, Bingley P, Gillespie KM, Undlien DE, Ronningen KS, Guja C, Ionescu-Tirgoviste C, Savage DA, Maxwell AP, Carson DJ, Patterson CC, Franklyn JA, Clayton DG, Peterson LB, Wicker LS, Todd JA, Gough SC (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511PubMedCrossRef Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, Rainbow DB, Hunter KM, Smith AN, Di Genova G, Herr MH, Dahlman I, Payne F, Smyth D, Lowe C, Twells RC, Howlett S, Healy B, Nutland S, Rance HE, Everett V, Smink LJ, Lam AC, Cordell HJ, Walker NM, Bordin C, Hulme J, Motzo C, Cucca F, Hess JF, Metzker ML, Rogers J, Gregory S, Allahabadia A, Nithiyananthan R, Tuomilehto-Wolf E, Tuomilehto J, Bingley P, Gillespie KM, Undlien DE, Ronningen KS, Guja C, Ionescu-Tirgoviste C, Savage DA, Maxwell AP, Carson DJ, Patterson CC, Franklyn JA, Clayton DG, Peterson LB, Wicker LS, Todd JA, Gough SC (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511PubMedCrossRef
34.
go back to reference Vijayakrishnan L, Slavik JM, Illes Z, Greenwald RJ, Rainbow D, Greve B, Peterson LB, Hafler DA, Freeman GJ, Sharpe AH, Wicker LS, Kuchroo VK (2004) An autoimmune disease associated CTLa-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity 20:563–575PubMedCrossRef Vijayakrishnan L, Slavik JM, Illes Z, Greenwald RJ, Rainbow D, Greve B, Peterson LB, Hafler DA, Freeman GJ, Sharpe AH, Wicker LS, Kuchroo VK (2004) An autoimmune disease associated CTLa-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity 20:563–575PubMedCrossRef
35.
go back to reference Sansom DM, Walker LS (2006) The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol Rev 212:131–148PubMedCrossRef Sansom DM, Walker LS (2006) The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol Rev 212:131–148PubMedCrossRef
36.
go back to reference Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–275PubMedCrossRef Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–275PubMedCrossRef
37.
go back to reference Araki M, Chung D, Liu S, Rainbow DB, Chamberlain G, Garner V, Hunter KM, Vijayakrishnan L, Peterson LB, Oukka M, Sharpe AH, Sobel R, Kuchroo VK, Wicker LS (2009) Genetic evidence that the differential expression of the ligand-independent isoform of CTLA-4 is the molecular basis of the Idd5.1 type 1 diabetes region in nonobese diabetic mice. J Immunol 183:5146–5157PubMedCrossRef Araki M, Chung D, Liu S, Rainbow DB, Chamberlain G, Garner V, Hunter KM, Vijayakrishnan L, Peterson LB, Oukka M, Sharpe AH, Sobel R, Kuchroo VK, Wicker LS (2009) Genetic evidence that the differential expression of the ligand-independent isoform of CTLA-4 is the molecular basis of the Idd5.1 type 1 diabetes region in nonobese diabetic mice. J Immunol 183:5146–5157PubMedCrossRef
38.
go back to reference McAleer MA, Reifsnyder P, Palmer SM, Prochazka M, Love JM, Copeman JB, Powell EE, Rodrigues NR, Prins JB, Serreze DV et al (1995) Crosses of NOD mice with the related NON strain. A polygenic model for IDDM. Diabetes 44:1186–1195PubMedCrossRef McAleer MA, Reifsnyder P, Palmer SM, Prochazka M, Love JM, Copeman JB, Powell EE, Rodrigues NR, Prins JB, Serreze DV et al (1995) Crosses of NOD mice with the related NON strain. A polygenic model for IDDM. Diabetes 44:1186–1195PubMedCrossRef
39.
go back to reference Ghosh S, Palmer SM, Rodrigues NR, Cordell HJ, Hearne CM, Cornall RJ, Prins JB, McShane P, Lathrop GM, Peterson LB et al (1993) Polygenic control of autoimmune diabetes in nonobese diabetic mice. Nat Genet 4:404–409PubMedCrossRef Ghosh S, Palmer SM, Rodrigues NR, Cordell HJ, Hearne CM, Cornall RJ, Prins JB, McShane P, Lathrop GM, Peterson LB et al (1993) Polygenic control of autoimmune diabetes in nonobese diabetic mice. Nat Genet 4:404–409PubMedCrossRef
40.
go back to reference DiLorenzo TP, Lieberman SM, Takaki T, Honda S, Chapman HD, Santamaria P, Serreze DV, Nathenson SG (2002) During the early prediabetic period in NOD Mice, the pathogenic CD8+ T cell population comprises multiple antigenic specificities. Clin Immunol 105:332–341PubMedCrossRef DiLorenzo TP, Lieberman SM, Takaki T, Honda S, Chapman HD, Santamaria P, Serreze DV, Nathenson SG (2002) During the early prediabetic period in NOD Mice, the pathogenic CD8+ T cell population comprises multiple antigenic specificities. Clin Immunol 105:332–341PubMedCrossRef
41.
go back to reference Serreze DV, Choisy-Rossi CM, Grier AE, Holl TM, Chapman HD, Gahagan JR, Osborne MA, Zhang W, King BL, Brown A, Roopenian D, Marron MP (2008) Through regulation of TCR expression levels, an Idd7 region gene(s) interactively contributes to the impaired thymic deletion of autoreactive diabetogenic CD8+ T cells in nonobese diabetic mice. J Immunol 180:3250–3259PubMed Serreze DV, Choisy-Rossi CM, Grier AE, Holl TM, Chapman HD, Gahagan JR, Osborne MA, Zhang W, King BL, Brown A, Roopenian D, Marron MP (2008) Through regulation of TCR expression levels, an Idd7 region gene(s) interactively contributes to the impaired thymic deletion of autoreactive diabetogenic CD8+ T cells in nonobese diabetic mice. J Immunol 180:3250–3259PubMed
42.
go back to reference Choisy-Rossi CM, Holl TM, Pierce MA, Chapman HD, Serreze DV (2004) Enhanced pathogenicity of diabetogenic T cells escaping a non-MHC gene-controlled near death experience. J Immunol 173:3791–3800PubMed Choisy-Rossi CM, Holl TM, Pierce MA, Chapman HD, Serreze DV (2004) Enhanced pathogenicity of diabetogenic T cells escaping a non-MHC gene-controlled near death experience. J Immunol 173:3791–3800PubMed
43.
go back to reference Lyons PA, Hancock WW, Denny P, Lord CJ, Hill NJ, Armitage N, Siegmund T, Todd JA, Phillipps MS, Hess JF, Chen S-L, Fischer PA, Peterson LB, Wicker LS (2000) The NOD Idd9 genetic interval influences the pathogenicity of insulitis and contains molecular variants of Cd30, Tnfr2, and Cd137. Immunity 13:107–115PubMedCrossRef Lyons PA, Hancock WW, Denny P, Lord CJ, Hill NJ, Armitage N, Siegmund T, Todd JA, Phillipps MS, Hess JF, Chen S-L, Fischer PA, Peterson LB, Wicker LS (2000) The NOD Idd9 genetic interval influences the pathogenicity of insulitis and contains molecular variants of Cd30, Tnfr2, and Cd137. Immunity 13:107–115PubMedCrossRef
44.
go back to reference Waldner H, Sobel RA, Price N, Kuchroo VK (2006) The autoimmune diabetes locus Idd9 regulates development of type 1 diabetes by affecting the homing of islet-specific T cells. J Immunol 176:5455–5462PubMed Waldner H, Sobel RA, Price N, Kuchroo VK (2006) The autoimmune diabetes locus Idd9 regulates development of type 1 diabetes by affecting the homing of islet-specific T cells. J Immunol 176:5455–5462PubMed
45.
go back to reference Ueno A, Wang J, Cheng L, Im JS, Shi Y, Porcelli SA, Yang Y (2008) Enhanced early expansion and maturation of semi-invariant NK T cells inhibited autoimmune pathogenesis in congenic nonobese diabetic mice. J Immunol 181:6789–6796PubMed Ueno A, Wang J, Cheng L, Im JS, Shi Y, Porcelli SA, Yang Y (2008) Enhanced early expansion and maturation of semi-invariant NK T cells inhibited autoimmune pathogenesis in congenic nonobese diabetic mice. J Immunol 181:6789–6796PubMed
46.
go back to reference Yamanouchi J, Puertas MC, Verdaguer J, Lyons PA, Rainbow DB, Chamberlain G, Hunter KM, Peterson LB, Wicker LS, Santamaria P (2010) The Idd9.1 locus controls the suppressive activity of FoxP3 + CD4 + CD25+ regulatory T-cells. Diabetes 59:272–281PubMedCrossRef Yamanouchi J, Puertas MC, Verdaguer J, Lyons PA, Rainbow DB, Chamberlain G, Hunter KM, Peterson LB, Wicker LS, Santamaria P (2010) The Idd9.1 locus controls the suppressive activity of FoxP3 + CD4 + CD25+ regulatory T-cells. Diabetes 59:272–281PubMedCrossRef
47.
go back to reference Hill NJ, Stotland A, Solomon M, Secrest P, Getzoff E, Sarvetnick N (2007) Resistance of the target islet tissue to autoimmune destruction contributes to genetic susceptibility in type 1 diabetes. Biol Direct 2:5PubMedCrossRef Hill NJ, Stotland A, Solomon M, Secrest P, Getzoff E, Sarvetnick N (2007) Resistance of the target islet tissue to autoimmune destruction contributes to genetic susceptibility in type 1 diabetes. Biol Direct 2:5PubMedCrossRef
48.
go back to reference Silveira PA, Chapman HD, Stolp J, Johnson E, Cox SL, Hunter K, Wicker LS, Serreze DV (2006) Genes within the Idd5 and Idd9/11 diabetes susceptibility loci affect the pathogenic activity of B cells in nonobese diabetic mice. J Immunol 177:7033–7041PubMed Silveira PA, Chapman HD, Stolp J, Johnson E, Cox SL, Hunter K, Wicker LS, Serreze DV (2006) Genes within the Idd5 and Idd9/11 diabetes susceptibility loci affect the pathogenic activity of B cells in nonobese diabetic mice. J Immunol 177:7033–7041PubMed
49.
go back to reference Brodnicki TC, Fletcher AL, Pellicci DG, Berzins SP, McClive P, Quirk F, Webster KE, Scott HS, Boyd RL, Godfrey DI, Morahan G (2005) Localization of Idd11 is not associated with thymus and nkt cell abnormalities in NOD mice. Diabetes 54:3453–3457PubMedCrossRef Brodnicki TC, Fletcher AL, Pellicci DG, Berzins SP, McClive P, Quirk F, Webster KE, Scott HS, Boyd RL, Godfrey DI, Morahan G (2005) Localization of Idd11 is not associated with thymus and nkt cell abnormalities in NOD mice. Diabetes 54:3453–3457PubMedCrossRef
50.
go back to reference Reifsnyder PC, Li R, Silveira P, Churchill GA, Serreze DV, Leiter EH (2005) Conditioning the genome identifies additional diabetes resistance loci in type 1 diabetes resistant NOR/Lt mice. Genes Immun 6:528–538PubMedCrossRef Reifsnyder PC, Li R, Silveira P, Churchill GA, Serreze DV, Leiter EH (2005) Conditioning the genome identifies additional diabetes resistance loci in type 1 diabetes resistant NOR/Lt mice. Genes Immun 6:528–538PubMedCrossRef
51.
go back to reference Mao HZ, Roussos ET, Peterfy M (2006) Genetic analysis of the diabetes-prone C57BLKS/J mouse strain reveals genetic contribution from multiple strains. Biochim Biophys Acta 1762:440–446PubMed Mao HZ, Roussos ET, Peterfy M (2006) Genetic analysis of the diabetes-prone C57BLKS/J mouse strain reveals genetic contribution from multiple strains. Biochim Biophys Acta 1762:440–446PubMed
52.
go back to reference McClive PJ, Huang D, Morahan G (1994) C57BL/6 and C57BL/10 inbred mouse strains differ at multiple loci on chromosome 4. Immunogenetics 39:286–288PubMedCrossRef McClive PJ, Huang D, Morahan G (1994) C57BL/6 and C57BL/10 inbred mouse strains differ at multiple loci on chromosome 4. Immunogenetics 39:286–288PubMedCrossRef
53.
go back to reference Rolf J, Motta V, Duarte N, Lundholm M, Berntman E, Bergman ML, Sorokin L, Cardell SL, Holmberg D (2005) The enlarged population of marginal zone/CD1d(high) B lymphocytes in nonobese diabetic mice maps to diabetes susceptibility region Idd11. J Immunol 174:4821–4827PubMed Rolf J, Motta V, Duarte N, Lundholm M, Berntman E, Bergman ML, Sorokin L, Cardell SL, Holmberg D (2005) The enlarged population of marginal zone/CD1d(high) B lymphocytes in nonobese diabetic mice maps to diabetes susceptibility region Idd11. J Immunol 174:4821–4827PubMed
54.
go back to reference Marino E, Batten M, Groom J, Walters S, Liuwantara D, Mackay F, Grey ST (2008) Marginal-zone B-cells of nonobese diabetic mice expand with diabetes onset, invade the pancreatic lymph nodes, and present autoantigen to diabetogenic T-cells. Diabetes 57:395–404PubMedCrossRef Marino E, Batten M, Groom J, Walters S, Liuwantara D, Mackay F, Grey ST (2008) Marginal-zone B-cells of nonobese diabetic mice expand with diabetes onset, invade the pancreatic lymph nodes, and present autoantigen to diabetogenic T-cells. Diabetes 57:395–404PubMedCrossRef
55.
go back to reference Chen YG, Scheuplein F, Osborne MA, Tsaih SW, Chapman HD, Serreze DV (2008) Idd9/11 genetic locus regulates diabetogenic activity of CD4 T-cells in nonobese diabetic (NOD) mice. Diabetes 57:3273–3280PubMedCrossRef Chen YG, Scheuplein F, Osborne MA, Tsaih SW, Chapman HD, Serreze DV (2008) Idd9/11 genetic locus regulates diabetogenic activity of CD4 T-cells in nonobese diabetic (NOD) mice. Diabetes 57:3273–3280PubMedCrossRef
56.
go back to reference Martin AM, Blankenhorn EP, Maxson MN, Zhao M, Leif J, Mordes JP, Greiner DL (1999) Non-major histocompatibility complex-linked diabetes susceptibility loci on chromosomes 4 and 13 in a backcross of the DP-BB/Wor rat to the WF rat. Diabetes 48:50–58PubMedCrossRef Martin AM, Blankenhorn EP, Maxson MN, Zhao M, Leif J, Mordes JP, Greiner DL (1999) Non-major histocompatibility complex-linked diabetes susceptibility loci on chromosomes 4 and 13 in a backcross of the DP-BB/Wor rat to the WF rat. Diabetes 48:50–58PubMedCrossRef
57.
go back to reference Field LL, Tobias R, Magnus T (1994) A locus on chromosome 15q26 (IDDM3) produces susceptibility to insulin dependent diabetes mellitus. Nat Genet 8:189–194PubMedCrossRef Field LL, Tobias R, Magnus T (1994) A locus on chromosome 15q26 (IDDM3) produces susceptibility to insulin dependent diabetes mellitus. Nat Genet 8:189–194PubMedCrossRef
58.
go back to reference Zamani M, Pociot F, Raeymaekers P, Nerup J, Cassiman JJ (1996) Linkage of type I diabetes to 15q26 (IDDM3) in the Danish population. Hum Genet 98:491–496PubMedCrossRef Zamani M, Pociot F, Raeymaekers P, Nerup J, Cassiman JJ (1996) Linkage of type I diabetes to 15q26 (IDDM3) in the Danish population. Hum Genet 98:491–496PubMedCrossRef
59.
go back to reference Serreze DV, Prochazka M, Reifsnyder PC, Bridgett M, Leiter EH (1994) Use of recombinant congenic and congenic strains of NOD mice to identify a new insulin dependent diabetes resistance gene. J Exp Med 180:1553–1558PubMedCrossRef Serreze DV, Prochazka M, Reifsnyder PC, Bridgett M, Leiter EH (1994) Use of recombinant congenic and congenic strains of NOD mice to identify a new insulin dependent diabetes resistance gene. J Exp Med 180:1553–1558PubMedCrossRef
60.
go back to reference Esteban LM, Tsoutsman T, Jordan MA, Roach D, Poulton LD, Brooks A, Naidenko OV, Sidobre S, Godfrey DI, Baxter AG (2003) Genetic control of NKT cell numbers maps to major diabetes and lupus loci. J Immunol 171:2873–2878PubMed Esteban LM, Tsoutsman T, Jordan MA, Roach D, Poulton LD, Brooks A, Naidenko OV, Sidobre S, Godfrey DI, Baxter AG (2003) Genetic control of NKT cell numbers maps to major diabetes and lupus loci. J Immunol 171:2873–2878PubMed
61.
go back to reference Chen YG, Driver JP, Silveira PA, Serreze DV (2007) Subcongenic analysis of genetic basis for impaired development of invariant NKT cells in NOD mice. Immunogenetics 59:705–712PubMedCrossRef Chen YG, Driver JP, Silveira PA, Serreze DV (2007) Subcongenic analysis of genetic basis for impaired development of invariant NKT cells in NOD mice. Immunogenetics 59:705–712PubMedCrossRef
62.
go back to reference Fletcher JM, Jordan MA, Snelgrove SL, Slattery RM, Dufour FD, Kyparissoudis K, Besra GS, Godfrey DI, Baxter AG (2008) Congenic analysis of the NKT cell control gene Nkt2 implicates the peroxisomal protein Pxmp4. J Immunol 181:3400–3412PubMed Fletcher JM, Jordan MA, Snelgrove SL, Slattery RM, Dufour FD, Kyparissoudis K, Besra GS, Godfrey DI, Baxter AG (2008) Congenic analysis of the NKT cell control gene Nkt2 implicates the peroxisomal protein Pxmp4. J Immunol 181:3400–3412PubMed
63.
go back to reference Fox CJ, Paterson AD, Mortin-Toth SM, Danska JS (2000) Two genetic loci regulate T cell-dependent islet inflammation and drive autoimmune diabetes pathogenesis. Am J Hum Genet 67:67–81PubMedCrossRef Fox CJ, Paterson AD, Mortin-Toth SM, Danska JS (2000) Two genetic loci regulate T cell-dependent islet inflammation and drive autoimmune diabetes pathogenesis. Am J Hum Genet 67:67–81PubMedCrossRef
64.
go back to reference Serreze DV, Leiter EH (2001) Genes and pathways underlying autoimmune diabetes in NOD mice. In: von Herrath MG (ed) Molecular pathology of insulin dependent diabetes mellitus. Karger, New York, pp 31–67CrossRef Serreze DV, Leiter EH (2001) Genes and pathways underlying autoimmune diabetes in NOD mice. In: von Herrath MG (ed) Molecular pathology of insulin dependent diabetes mellitus. Karger, New York, pp 31–67CrossRef
65.
go back to reference Walker LS, Abbas AK (2002) The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol 2:11–19PubMedCrossRef Walker LS, Abbas AK (2002) The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol 2:11–19PubMedCrossRef
66.
67.
go back to reference Moser M (2003) Dendritic cells in immunity and tolerance-do they display opposite functions? Immunity 19:5–8PubMedCrossRef Moser M (2003) Dendritic cells in immunity and tolerance-do they display opposite functions? Immunity 19:5–8PubMedCrossRef
69.
go back to reference Dahlen E, Hedlund G, Dawe K (2000) Low CD86 expression in the nonobese diabetic mouse results in the impairment of both T cell activation and CTLA-4 up-regulation. J Immunol 164:2444–2456PubMed Dahlen E, Hedlund G, Dawe K (2000) Low CD86 expression in the nonobese diabetic mouse results in the impairment of both T cell activation and CTLA-4 up-regulation. J Immunol 164:2444–2456PubMed
70.
go back to reference Lee M, Kim AY, Kang Y (2000) Defects in the differentiation and function of bone marrow-derived dendritic cells in non-obese diabetic mice. J Korean Med Sci 15:217–223PubMed Lee M, Kim AY, Kang Y (2000) Defects in the differentiation and function of bone marrow-derived dendritic cells in non-obese diabetic mice. J Korean Med Sci 15:217–223PubMed
71.
go back to reference Strid J, Lopes L, Marcinkiewicz J, Petrovska L, Nowak B, Chain BM, Lund T (2001) A defect in bone marrow derived dendritic cell maturation in the nonobese diabetic mouse. Clin Exp Immunol 123:375–381PubMedCrossRef Strid J, Lopes L, Marcinkiewicz J, Petrovska L, Nowak B, Chain BM, Lund T (2001) A defect in bone marrow derived dendritic cell maturation in the nonobese diabetic mouse. Clin Exp Immunol 123:375–381PubMedCrossRef
72.
go back to reference Boudaly S, Morin J, Berthier R, Marche P, Boitard C (2002) Altered dendritic cells (DC) might be responsible for regulatory T cell imbalance and autoimmunity in nonobese diabetic (NOD) mice. Eur Cytokine Netw 13:29–37PubMed Boudaly S, Morin J, Berthier R, Marche P, Boitard C (2002) Altered dendritic cells (DC) might be responsible for regulatory T cell imbalance and autoimmunity in nonobese diabetic (NOD) mice. Eur Cytokine Netw 13:29–37PubMed
73.
go back to reference Pearson T, Markees TG, Serreze DV, Pierce MA, Marron MP, Wicker LS, Peterson LB, Shultz LD, Mordes JP, Rossini AA, Greiner DL (2003) Genetic dissociation of autoimmunity and resistance to costimulation blockade-induced transplantation tolerance in nonobese diabetic mice. J Immunol 171:185–195PubMed Pearson T, Markees TG, Serreze DV, Pierce MA, Marron MP, Wicker LS, Peterson LB, Shultz LD, Mordes JP, Rossini AA, Greiner DL (2003) Genetic dissociation of autoimmunity and resistance to costimulation blockade-induced transplantation tolerance in nonobese diabetic mice. J Immunol 171:185–195PubMed
74.
go back to reference Ucker DS, Meyers J, Obermiller PS (1992) Activation-driven T cell death. II. Quantitative differences alone distinguish stimuli triggering nontransformed T cell proliferation or death. J Immunol 149:1583–1592PubMed Ucker DS, Meyers J, Obermiller PS (1992) Activation-driven T cell death. II. Quantitative differences alone distinguish stimuli triggering nontransformed T cell proliferation or death. J Immunol 149:1583–1592PubMed
75.
go back to reference Chen YG, Choisy-Rossi CM, Holl TM, Chapman HD, Besra GS, Porcelli SA, Shaffer DJ, Roopenian D, Wilson SB, Serreze DV (2005) Activated NKT cells inhibit autoimmune diabetes through tolerogenic recruitment of dendritic cells to pancreatic lymph nodes. J Immunol 174:1196–1204PubMed Chen YG, Choisy-Rossi CM, Holl TM, Chapman HD, Besra GS, Porcelli SA, Shaffer DJ, Roopenian D, Wilson SB, Serreze DV (2005) Activated NKT cells inhibit autoimmune diabetes through tolerogenic recruitment of dendritic cells to pancreatic lymph nodes. J Immunol 174:1196–1204PubMed
76.
go back to reference Kurts C, Cannarile M, Klebba I, Brocker T (2001) Dendritic cells are sufficient to cross-present self-antigens to CD8 T cells in vivo. J Immunol 166:1439–1442PubMed Kurts C, Cannarile M, Klebba I, Brocker T (2001) Dendritic cells are sufficient to cross-present self-antigens to CD8 T cells in vivo. J Immunol 166:1439–1442PubMed
77.
go back to reference Kurts C, Kosaka H, Carbone FR, Miller JF, Heath WR (1997) Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8(+) T cells. J Exp Med 186:239–245PubMedCrossRef Kurts C, Kosaka H, Carbone FR, Miller JF, Heath WR (1997) Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8(+) T cells. J Exp Med 186:239–245PubMedCrossRef
78.
go back to reference Kreuwel HT, Biggs JA, Pilip IM, Pamer EG, Lo D, Sherman LA (2001) Defective CD8 T cell peripheral tolerance in nonobese diabetic mice. J Immunol 167:1112–1117PubMed Kreuwel HT, Biggs JA, Pilip IM, Pamer EG, Lo D, Sherman LA (2001) Defective CD8 T cell peripheral tolerance in nonobese diabetic mice. J Immunol 167:1112–1117PubMed
79.
go back to reference Clare-Salzler MJ, Brooks J, Chai A, Herle KV, Anderson C (1992) Prevention of diabetes in nonobese diabetic mice by dendritic cell transfer. J Clin Invest 90:741–748PubMedCrossRef Clare-Salzler MJ, Brooks J, Chai A, Herle KV, Anderson C (1992) Prevention of diabetes in nonobese diabetic mice by dendritic cell transfer. J Clin Invest 90:741–748PubMedCrossRef
80.
go back to reference Hamilton-Williams EE, Martinez X, Clark J, Howlett S, Hunter KM, Rainbow DB, Wen L, Shlomchik MJ, Katz JD, Beilhack GF, Wicker LS, Sherman LA (2009) Expression of diabetes-associated genes by dendritic cells and CD4 T cells drives the loss of tolerance in nonobese diabetic mice. J Immunol 183:1533–1541PubMedCrossRef Hamilton-Williams EE, Martinez X, Clark J, Howlett S, Hunter KM, Rainbow DB, Wen L, Shlomchik MJ, Katz JD, Beilhack GF, Wicker LS, Sherman LA (2009) Expression of diabetes-associated genes by dendritic cells and CD4 T cells drives the loss of tolerance in nonobese diabetic mice. J Immunol 183:1533–1541PubMedCrossRef
81.
go back to reference Dai YD, Marrero IG, Gros P, Zaghouani H, Wicker LS, Sercarz EE (2009) Slc11a1 enhances the autoimmune diabetogenic T-cell response by altering processing and presentation of pancreatic islet antigens. Diabetes 58:156–164PubMedCrossRef Dai YD, Marrero IG, Gros P, Zaghouani H, Wicker LS, Sercarz EE (2009) Slc11a1 enhances the autoimmune diabetogenic T-cell response by altering processing and presentation of pancreatic islet antigens. Diabetes 58:156–164PubMedCrossRef
82.
go back to reference Serreze DV, Chapman HD, Varnum DS, Hanson MS, Reifsnyder PC, Richard SD, Fleming SA, Leiter EH, Shultz LD (1996) B lymphocytes are essential for the initiation of T cell mediated autoimmune diabetes: analysis of a new “speed congenic” stock of NOD.Igµ null mice. J Exp Med 184:2049–2053PubMedCrossRef Serreze DV, Chapman HD, Varnum DS, Hanson MS, Reifsnyder PC, Richard SD, Fleming SA, Leiter EH, Shultz LD (1996) B lymphocytes are essential for the initiation of T cell mediated autoimmune diabetes: analysis of a new “speed congenic” stock of NOD.Igµ null mice. J Exp Med 184:2049–2053PubMedCrossRef
83.
go back to reference Akashi T, Nagafuchi S, Anzai K, Kondo S, Kitamura D, Wakana S, Ono J, Kikuchi M, Niho Y, Watanabe T (1997) Direct evidence for the contribution of B cells to the progression of insulitis and the development of diabetes in non-obese diabetic mice. Int Immunol 9:1159–1164PubMedCrossRef Akashi T, Nagafuchi S, Anzai K, Kondo S, Kitamura D, Wakana S, Ono J, Kikuchi M, Niho Y, Watanabe T (1997) Direct evidence for the contribution of B cells to the progression of insulitis and the development of diabetes in non-obese diabetic mice. Int Immunol 9:1159–1164PubMedCrossRef
84.
go back to reference Noorchashm H, Noorchashm N, Kern J, Rostami SY, Barker CF, Naji A (1997) B-cells are required for the initiation of insulitis and sialitis in nonobese diabetic mice. Diabetes 46:941–946PubMedCrossRef Noorchashm H, Noorchashm N, Kern J, Rostami SY, Barker CF, Naji A (1997) B-cells are required for the initiation of insulitis and sialitis in nonobese diabetic mice. Diabetes 46:941–946PubMedCrossRef
85.
go back to reference Yang M, Charlton B, Gautam AM (1997) Development of insulitis and diabetes in B cell-deficient NOD mice. J Autoimmunity 10:257–260CrossRef Yang M, Charlton B, Gautam AM (1997) Development of insulitis and diabetes in B cell-deficient NOD mice. J Autoimmunity 10:257–260CrossRef
86.
go back to reference Hu CY, Rodriguez-Pinto D, Du W, Ahuja A, Henegariu O, Wong FS, Shlomchik MJ, Wen L (2007) Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. J Clin Invest 117:3857–3867PubMedCrossRef Hu CY, Rodriguez-Pinto D, Du W, Ahuja A, Henegariu O, Wong FS, Shlomchik MJ, Wen L (2007) Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. J Clin Invest 117:3857–3867PubMedCrossRef
87.
go back to reference Fiorina P, Vergani A, Dada S, Jurewicz M, Wong M, Law K, Wu E, Tian Z, Abdi R, Guleria I, Rodig S, Dunussi-Joannopoulos K, Bluestone J, Sayegh MH (2008) Targeting CD22 reprograms B-cells and reverses autoimmune diabetes. Diabetes 57:3013–3024PubMedCrossRef Fiorina P, Vergani A, Dada S, Jurewicz M, Wong M, Law K, Wu E, Tian Z, Abdi R, Guleria I, Rodig S, Dunussi-Joannopoulos K, Bluestone J, Sayegh MH (2008) Targeting CD22 reprograms B-cells and reverses autoimmune diabetes. Diabetes 57:3013–3024PubMedCrossRef
88.
go back to reference Xiu Y, Wong CP, Bouaziz JD, Hamaguchi Y, Wang Y, Pop SM, Tisch RM, Tedder TF (2008) B lymphocyte depletion by CD20 monoclonal antibody prevents diabetes in nonobese diabetic mice despite isotype-specific differences in Fc gamma R effector functions. J Immunol 180:2863–2875PubMed Xiu Y, Wong CP, Bouaziz JD, Hamaguchi Y, Wang Y, Pop SM, Tisch RM, Tedder TF (2008) B lymphocyte depletion by CD20 monoclonal antibody prevents diabetes in nonobese diabetic mice despite isotype-specific differences in Fc gamma R effector functions. J Immunol 180:2863–2875PubMed
89.
go back to reference Zekavat G, Rostami SY, Badkerhanian A, Parsons RF, Koeberlein B, Yu M, Ward CD, Migone TS, Yu L, Eisenbarth GS, Cancro MP, Naji A, Noorchashm H (2008) In vivo BLyS/BAFF neutralization ameliorates islet-directed autoimmunity in nonobese diabetic mice. J Immunol 181:8133–8144PubMed Zekavat G, Rostami SY, Badkerhanian A, Parsons RF, Koeberlein B, Yu M, Ward CD, Migone TS, Yu L, Eisenbarth GS, Cancro MP, Naji A, Noorchashm H (2008) In vivo BLyS/BAFF neutralization ameliorates islet-directed autoimmunity in nonobese diabetic mice. J Immunol 181:8133–8144PubMed
90.
go back to reference Marino E, Villanueva J, Walters S, Liuwantara D, Mackay F, Grey ST (2009) CD4(+)CD25(+) T-cells control autoimmunity in the absence of B-cells. Diabetes 58:1568–1577PubMedCrossRef Marino E, Villanueva J, Walters S, Liuwantara D, Mackay F, Grey ST (2009) CD4(+)CD25(+) T-cells control autoimmunity in the absence of B-cells. Diabetes 58:1568–1577PubMedCrossRef
91.
go back to reference Melanitou E, Devendra D, Liu E, Miao D, Eisenbarth GS (2004) Early and quantal (by litter) expression of insulin autoantibodies in the nonobese diabetic mice predict early diabetes onset. J Immunol 173:6603–6610PubMed Melanitou E, Devendra D, Liu E, Miao D, Eisenbarth GS (2004) Early and quantal (by litter) expression of insulin autoantibodies in the nonobese diabetic mice predict early diabetes onset. J Immunol 173:6603–6610PubMed
92.
go back to reference Serreze DV, Fleming SA, Chapman HD, Richard SD, Leiter EH, Tisch RM (1998) B lymphocytes are critical antigen-presenting cells for the initiation of T cell-mediated autoimmune diabetes in nonobese diabetic mice. J Immunol 161:3912–3918PubMed Serreze DV, Fleming SA, Chapman HD, Richard SD, Leiter EH, Tisch RM (1998) B lymphocytes are critical antigen-presenting cells for the initiation of T cell-mediated autoimmune diabetes in nonobese diabetic mice. J Immunol 161:3912–3918PubMed
93.
go back to reference Greeley SA, Katsumata M, Yu L, Eisenbarth GS, Moore DJ, Goodarzi H, Barker CF, Naji A, Noorchashm H (2002) Elimination of maternally transmitted autoantibodies prevents diabetes in nonobese diabetic mice. Nat Med 8:399–402PubMedCrossRef Greeley SA, Katsumata M, Yu L, Eisenbarth GS, Moore DJ, Goodarzi H, Barker CF, Naji A, Noorchashm H (2002) Elimination of maternally transmitted autoantibodies prevents diabetes in nonobese diabetic mice. Nat Med 8:399–402PubMedCrossRef
94.
go back to reference Wong FS, Wen L, Tang M, Ramanathan M, Visintin I, Daugherty J, Hannum LG, Janeway CA Jr, Shlomchik MJ (2004) Investigation of the role of B-cells in type 1 diabetes in the NOD mouse. Diabetes 53:2581–2587PubMedCrossRef Wong FS, Wen L, Tang M, Ramanathan M, Visintin I, Daugherty J, Hannum LG, Janeway CA Jr, Shlomchik MJ (2004) Investigation of the role of B-cells in type 1 diabetes in the NOD mouse. Diabetes 53:2581–2587PubMedCrossRef
95.
go back to reference Falcone M, Lee J, Patstone G, Yeung B, Sarvetnick N (1998) B lymphocytes are crucial antigen-presenting cells in the pathogenic autoimmune response to GAD65 antigen in nonobese diabetic mice. J Immunol 161:1163–1168PubMed Falcone M, Lee J, Patstone G, Yeung B, Sarvetnick N (1998) B lymphocytes are crucial antigen-presenting cells in the pathogenic autoimmune response to GAD65 antigen in nonobese diabetic mice. J Immunol 161:1163–1168PubMed
96.
go back to reference Greeley SA, Moore DJ, Noorchashm H, Noto LE, Rostami SY, Schlachterman A, Song HK, Koeberlein B, Barker CF, Naji A (2001) Impaired activation of islet reactive CD4 T cells in pancreatic lymph nodes of B cell deficient nonobese diabetic mice. J Immunol 167:4351–4357PubMed Greeley SA, Moore DJ, Noorchashm H, Noto LE, Rostami SY, Schlachterman A, Song HK, Koeberlein B, Barker CF, Naji A (2001) Impaired activation of islet reactive CD4 T cells in pancreatic lymph nodes of B cell deficient nonobese diabetic mice. J Immunol 167:4351–4357PubMed
97.
go back to reference Tian J, Zekzer D, Lu Y, Dang H, Kaufman DL (2006) B cells are crucial for determinant spreading of T cell autoimmunity among beta cell antigens in diabetes-prone nonobese diabetic mice. J Immunol 176:2654–2661PubMed Tian J, Zekzer D, Lu Y, Dang H, Kaufman DL (2006) B cells are crucial for determinant spreading of T cell autoimmunity among beta cell antigens in diabetes-prone nonobese diabetic mice. J Immunol 176:2654–2661PubMed
98.
go back to reference Noorchashm H, Lieu YK, Noorchashm N, Rostami SY, Greeley SA, Schlachterman A, Song HK, Noto LE, Jevnikar AM, Barker CF, Naji A (1999) I-Ag7-mediated antigen presentation by B lymphocytes is critical in overcoming a checkpoint in T cell tolerance to islet beta cells of nonobese diabetic mice. J Immunol 163:743–750PubMed Noorchashm H, Lieu YK, Noorchashm N, Rostami SY, Greeley SA, Schlachterman A, Song HK, Noto LE, Jevnikar AM, Barker CF, Naji A (1999) I-Ag7-mediated antigen presentation by B lymphocytes is critical in overcoming a checkpoint in T cell tolerance to islet beta cells of nonobese diabetic mice. J Immunol 163:743–750PubMed
99.
go back to reference Silveira P, Johnson EA, Chapman HD, Tisch RM, Serreze DV (2002) The preferential ability of B lymphocytes to act as diabetogenic APC in NOD mice depends on expression of self-antigen specific immunoglobulin receptors. Eur J Immunol 32:3657–3666PubMedCrossRef Silveira P, Johnson EA, Chapman HD, Tisch RM, Serreze DV (2002) The preferential ability of B lymphocytes to act as diabetogenic APC in NOD mice depends on expression of self-antigen specific immunoglobulin receptors. Eur J Immunol 32:3657–3666PubMedCrossRef
100.
go back to reference Hulbert C, Riseili B, Rojas M, Thomas JW (2001) B cell specificity contributes to the outcome of diabetes in nonobese diabetic mice. J Immunol 167:5535–5538PubMed Hulbert C, Riseili B, Rojas M, Thomas JW (2001) B cell specificity contributes to the outcome of diabetes in nonobese diabetic mice. J Immunol 167:5535–5538PubMed
101.
go back to reference Luther SA, Lopez T, Bai W, Hanahan D, Cyster JG (2000) BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin dependent lymphoid neogenesis. Immunity 12:471–481PubMedCrossRef Luther SA, Lopez T, Bai W, Hanahan D, Cyster JG (2000) BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin dependent lymphoid neogenesis. Immunity 12:471–481PubMedCrossRef
102.
go back to reference Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6:205–217PubMedCrossRef Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6:205–217PubMedCrossRef
103.
go back to reference Wu Q, Saloman B, Chen M, Wang Y, Hoffman LM, Bluestone JA, Fu YX (2001) Reversal of spontaneous autoimmune insulitis in nonobese diabetic mice by soluble lymphotoxin receptor. J Exp Med 193:1327–1332PubMedCrossRef Wu Q, Saloman B, Chen M, Wang Y, Hoffman LM, Bluestone JA, Fu YX (2001) Reversal of spontaneous autoimmune insulitis in nonobese diabetic mice by soluble lymphotoxin receptor. J Exp Med 193:1327–1332PubMedCrossRef
104.
go back to reference Lee Y, Chin RK, Christiansen P, Sun Y, Tumanov AV, Wang J, Chervonsky AV, Fu YX (2006) Recruitment and activation of naive T cells in the islets by lymphotoxin beta receptor-dependent tertiary lymphoid structure. Immunity 25:499–509PubMedCrossRef Lee Y, Chin RK, Christiansen P, Sun Y, Tumanov AV, Wang J, Chervonsky AV, Fu YX (2006) Recruitment and activation of naive T cells in the islets by lymphotoxin beta receptor-dependent tertiary lymphoid structure. Immunity 25:499–509PubMedCrossRef
105.
go back to reference Guleria I, Gubbels Bupp M, Dada S, Fife B, Tang Q, Ansari MJ, Trikudanathan S, Vadivel N, Fiorina P, Yagita H, Azuma M, Atkinson M, Bluestone JA, Sayegh MH (2007) Mechanisms of PDL1-mediated regulation of autoimmune diabetes. Clin Immunol 125:16–25PubMedCrossRef Guleria I, Gubbels Bupp M, Dada S, Fife B, Tang Q, Ansari MJ, Trikudanathan S, Vadivel N, Fiorina P, Yagita H, Azuma M, Atkinson M, Bluestone JA, Sayegh MH (2007) Mechanisms of PDL1-mediated regulation of autoimmune diabetes. Clin Immunol 125:16–25PubMedCrossRef
106.
go back to reference Chiu PP, Serreze DV, Danska JS (2001) Development and function of diabetogenic T-cells in B-cell-deficient nonobese diabetic mice. Diabetes 50:763–770PubMedCrossRef Chiu PP, Serreze DV, Danska JS (2001) Development and function of diabetogenic T-cells in B-cell-deficient nonobese diabetic mice. Diabetes 50:763–770PubMedCrossRef
107.
go back to reference Silveira PA, Dombrowsky J, Johnson E, Chapman HD, Nemazee D, Serreze DV (2004) B-cell selection defects underlie the development of diabetogenic antigen presenting cells in NOD mice. J Immunol 172:5086–5094PubMed Silveira PA, Dombrowsky J, Johnson E, Chapman HD, Nemazee D, Serreze DV (2004) B-cell selection defects underlie the development of diabetogenic antigen presenting cells in NOD mice. J Immunol 172:5086–5094PubMed
108.
go back to reference Serreze DV, Gaedeke JW, Leiter EH (1993) Hematopoietic stem-cell defects underlying abnormal macrophage development and maturation in NOD/Lt mice: defective regulation of cytokine receptors and protein kinase C. Proc Natl Acad Sci U S A 90:9625–9629PubMedCrossRef Serreze DV, Gaedeke JW, Leiter EH (1993) Hematopoietic stem-cell defects underlying abnormal macrophage development and maturation in NOD/Lt mice: defective regulation of cytokine receptors and protein kinase C. Proc Natl Acad Sci U S A 90:9625–9629PubMedCrossRef
109.
go back to reference Serreze DV, Gaskins HR, Leiter EH (1993) Defects in the differentiation and function of antigen presenting cells in NOD/Lt mice. J Immunol 150:2534–2543PubMed Serreze DV, Gaskins HR, Leiter EH (1993) Defects in the differentiation and function of antigen presenting cells in NOD/Lt mice. J Immunol 150:2534–2543PubMed
110.
go back to reference Anderson AC, Chandwaskar R, Lee DH, Kuchroo VK (2008) Cutting edge: the Idd3 genetic interval determines regulatory T cell function through CD11b + CD11c- APC. J Immunol 181:7449–7452PubMed Anderson AC, Chandwaskar R, Lee DH, Kuchroo VK (2008) Cutting edge: the Idd3 genetic interval determines regulatory T cell function through CD11b + CD11c- APC. J Immunol 181:7449–7452PubMed
111.
go back to reference Lleo A, Selmi C, Invernizzi P, Podda M, Gershwin ME (2008) The consequences of apoptosis in autoimmunity. J Autoimmun 31:257–262PubMedCrossRef Lleo A, Selmi C, Invernizzi P, Podda M, Gershwin ME (2008) The consequences of apoptosis in autoimmunity. J Autoimmun 31:257–262PubMedCrossRef
112.
go back to reference O'Brien BA, Huang Y, Geng X, Dutz JP, Finegood DT (2002) Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced. Diabetes 51:2481–2488PubMedCrossRef O'Brien BA, Huang Y, Geng X, Dutz JP, Finegood DT (2002) Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced. Diabetes 51:2481–2488PubMedCrossRef
113.
go back to reference Stoffels K, Overbergh L, Giulietti A, Kasran A, Bouillon R, Gysemans C, Mathieu C (2004) NOD macrophages produce high levels of inflammatory cytokines upon encounter of apoptotic or necrotic cells. J Autoimmun 23:9–15PubMedCrossRef Stoffels K, Overbergh L, Giulietti A, Kasran A, Bouillon R, Gysemans C, Mathieu C (2004) NOD macrophages produce high levels of inflammatory cytokines upon encounter of apoptotic or necrotic cells. J Autoimmun 23:9–15PubMedCrossRef
114.
go back to reference O'Brien BA, Geng X, Orteu CH, Huang Y, Ghoreishi M, Zhang Y, Bush JA, Li G, Finegood DT, Dutz JP (2006) A deficiency in the in vivo clearance of apoptotic cells is a feature of the NOD mouse. J Autoimmun 26:104–115PubMedCrossRef O'Brien BA, Geng X, Orteu CH, Huang Y, Ghoreishi M, Zhang Y, Bush JA, Li G, Finegood DT, Dutz JP (2006) A deficiency in the in vivo clearance of apoptotic cells is a feature of the NOD mouse. J Autoimmun 26:104–115PubMedCrossRef
115.
go back to reference Trudeau JD, Dutz JP, Arany E, Hill DJ, Fieldus WE, Finegood DT (2000) Neonatal beta-cell apoptosis: a trigger for autoimmune diabetes? Diabetes 49:1–7PubMedCrossRef Trudeau JD, Dutz JP, Arany E, Hill DJ, Fieldus WE, Finegood DT (2000) Neonatal beta-cell apoptosis: a trigger for autoimmune diabetes? Diabetes 49:1–7PubMedCrossRef
116.
go back to reference Litherland SA, Grebe KM, Belkin NS, Paek E, Elf J, Atkinson M, Morel L, Clare-Salzler MJ, McDuffie M (2005) Nonobese diabetic mouse congenic analysis reveals chromosome 11 locus contributing to diabetes susceptibility, macrophage STAT5 dysfunction, and granulocyte-macrophage colony-stimulating factor overproduction. J Immunol 175:4561–4565PubMed Litherland SA, Grebe KM, Belkin NS, Paek E, Elf J, Atkinson M, Morel L, Clare-Salzler MJ, McDuffie M (2005) Nonobese diabetic mouse congenic analysis reveals chromosome 11 locus contributing to diabetes susceptibility, macrophage STAT5 dysfunction, and granulocyte-macrophage colony-stimulating factor overproduction. J Immunol 175:4561–4565PubMed
117.
go back to reference Leiter EH (2005) Nonobese diabetic mice and the genetics of diabetes susceptibility. Curr Diab Rep 5:141–148PubMedCrossRef Leiter EH (2005) Nonobese diabetic mice and the genetics of diabetes susceptibility. Curr Diab Rep 5:141–148PubMedCrossRef
118.
go back to reference Rapaport MJ, Zipris D, Lazarus AH, Jaramillo A, Serreze DV, Leiter EH, Cyopick P, Delovitch TL (1993) Thymic T cell proliferative unresponsiveness in autoimmune NOD mice. II. IL-4 reverses NOD thymic T cell anergy and prevents the onset of diabetes. J Exp Med 178:87–99CrossRef Rapaport MJ, Zipris D, Lazarus AH, Jaramillo A, Serreze DV, Leiter EH, Cyopick P, Delovitch TL (1993) Thymic T cell proliferative unresponsiveness in autoimmune NOD mice. II. IL-4 reverses NOD thymic T cell anergy and prevents the onset of diabetes. J Exp Med 178:87–99CrossRef
119.
go back to reference Rapoport MJ, Lazurus AH, Jaramillo A, Speck E, Delovitch TL (1993) Thymic T cell anergy in autoimmune nonobese diabetic mice is mediated by deficient T cell receptor regulation in the pathway of p21ras activation. J Exp Med 177:1221–1226PubMedCrossRef Rapoport MJ, Lazurus AH, Jaramillo A, Speck E, Delovitch TL (1993) Thymic T cell anergy in autoimmune nonobese diabetic mice is mediated by deficient T cell receptor regulation in the pathway of p21ras activation. J Exp Med 177:1221–1226PubMedCrossRef
120.
go back to reference Decallonne B, van Etten E, Giulietti A, Casteels K, Overbergh L, Bouillon R, Mathieu C (2003) Defect in activation-induced cell death in non-obese diabetic (NOD) T lymphocytes. J Autoimmun 20:219–226PubMedCrossRef Decallonne B, van Etten E, Giulietti A, Casteels K, Overbergh L, Bouillon R, Mathieu C (2003) Defect in activation-induced cell death in non-obese diabetic (NOD) T lymphocytes. J Autoimmun 20:219–226PubMedCrossRef
121.
go back to reference Arreaza G, Salojin K, Yang W, Zhang J, Gill B, Mi QS, Gao JX, Meagher C, Cameron M, Delovitch TL (2003) Deficient activation and resistance to activation-induced apoptosis of CD8+ T cells is associated with defective peripheral tolerance in nonobese diabetic mice. Clin Immunol 107:103–115PubMedCrossRef Arreaza G, Salojin K, Yang W, Zhang J, Gill B, Mi QS, Gao JX, Meagher C, Cameron M, Delovitch TL (2003) Deficient activation and resistance to activation-induced apoptosis of CD8+ T cells is associated with defective peripheral tolerance in nonobese diabetic mice. Clin Immunol 107:103–115PubMedCrossRef
122.
go back to reference Piccirillo CA, Tritt M, Sgouroudis E, Albanese A, Pyzik M, Hay V (2005) Control of type 1 autoimmune diabetes by naturally occurring CD4 + CD25+ regulatory T lymphocytes in neonatal NOD mice. Ann N Y Acad Sci 1051:72–87PubMedCrossRef Piccirillo CA, Tritt M, Sgouroudis E, Albanese A, Pyzik M, Hay V (2005) Control of type 1 autoimmune diabetes by naturally occurring CD4 + CD25+ regulatory T lymphocytes in neonatal NOD mice. Ann N Y Acad Sci 1051:72–87PubMedCrossRef
123.
go back to reference Godfrey DI, Kronenberg M (2004) Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 114:1379–1388PubMed Godfrey DI, Kronenberg M (2004) Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 114:1379–1388PubMed
124.
go back to reference Zipris D, Lazarus AH, Crow AR, Hadazija M, Delovitch TL (1991) Defective thymic T cell activation by concanavalin A and anti-CD3 in autoimmune nonobese diabetic mice: evidence of thymic T cell anergy that correlates with the onset of insulitis. J Immunol 146:3763–3771PubMed Zipris D, Lazarus AH, Crow AR, Hadazija M, Delovitch TL (1991) Defective thymic T cell activation by concanavalin A and anti-CD3 in autoimmune nonobese diabetic mice: evidence of thymic T cell anergy that correlates with the onset of insulitis. J Immunol 146:3763–3771PubMed
125.
go back to reference Sebzda E, Wallace VA, Mayer J, Yeung RSM, Mak T, Ohashi PS (1994) Positive and negative thymocyte selection induced by different concentrations of a single peptide. Science 263:1615–1618PubMedCrossRef Sebzda E, Wallace VA, Mayer J, Yeung RSM, Mak T, Ohashi PS (1994) Positive and negative thymocyte selection induced by different concentrations of a single peptide. Science 263:1615–1618PubMedCrossRef
126.
go back to reference Ashton-Rickardt PG, Bandeira A, Delany JR, Kaer LV, Pircher H-B, Zinkernagel RM, Tonegawa S (1994) Evidence for a differential avidity model of T cell selection in the thymus. Cell 76:651–663PubMedCrossRef Ashton-Rickardt PG, Bandeira A, Delany JR, Kaer LV, Pircher H-B, Zinkernagel RM, Tonegawa S (1994) Evidence for a differential avidity model of T cell selection in the thymus. Cell 76:651–663PubMedCrossRef
127.
go back to reference Liston A, Lesage S, Gray DH, O'Reilly LA, Strasser A, Fahrer AM, Boyd RL, Wilson J, Baxter AG, Gallo EM, Crabtree GR, Peng K, Wilson SR, Goodnow CC (2004) Generalized resistance to thymic deletion in the NOD mouse; a polygenic trait characterized by defective induction of Bim. Immunity 21:817–830PubMed Liston A, Lesage S, Gray DH, O'Reilly LA, Strasser A, Fahrer AM, Boyd RL, Wilson J, Baxter AG, Gallo EM, Crabtree GR, Peng K, Wilson SR, Goodnow CC (2004) Generalized resistance to thymic deletion in the NOD mouse; a polygenic trait characterized by defective induction of Bim. Immunity 21:817–830PubMed
128.
go back to reference Zucchelli S, Holler P, Yamagata T, Roy M, Benoist C, Mathis D (2005) Defective central tolerance induction in NOD mice: genomics and genetics. Immunity 22:385–396PubMedCrossRef Zucchelli S, Holler P, Yamagata T, Roy M, Benoist C, Mathis D (2005) Defective central tolerance induction in NOD mice: genomics and genetics. Immunity 22:385–396PubMedCrossRef
129.
go back to reference Rocha B, Von Boehmer H (1991) Peripheral selection of the T cell repertoire. Science 251:1225–1231PubMedCrossRef Rocha B, Von Boehmer H (1991) Peripheral selection of the T cell repertoire. Science 251:1225–1231PubMedCrossRef
130.
go back to reference Zhang L, Martin DR, Fung-Leung W-P, Teh H-S, Miller RG (1992) Peripheral deletion of mature CD8+ antigen specific T cells after in vivo exposure to male antigen. J Immunol 148:3740–3745PubMed Zhang L, Martin DR, Fung-Leung W-P, Teh H-S, Miller RG (1992) Peripheral deletion of mature CD8+ antigen specific T cells after in vivo exposure to male antigen. J Immunol 148:3740–3745PubMed
131.
go back to reference Critchfield JM, Racke MK, Zuniga-Pflucker JC, Cannella B, Raine CS, Goverman J, Lenardo MJ (1994) T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science 263:1139–1143PubMedCrossRef Critchfield JM, Racke MK, Zuniga-Pflucker JC, Cannella B, Raine CS, Goverman J, Lenardo MJ (1994) T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science 263:1139–1143PubMedCrossRef
132.
go back to reference Pelfry CM, Tranquill LR, Boehme SA, McFarland HF, Lenardo MJ (1995) Two mechanisms of antigen-specific apoptosis of myelin basic protein (MBP)-specific T lymphocytes derived from multiple sclerosis patients and normal individuals. J Immunol 154:6191–6202 Pelfry CM, Tranquill LR, Boehme SA, McFarland HF, Lenardo MJ (1995) Two mechanisms of antigen-specific apoptosis of myelin basic protein (MBP)-specific T lymphocytes derived from multiple sclerosis patients and normal individuals. J Immunol 154:6191–6202
133.
go back to reference Cameron MJ, Arreaza GA, Zucker P, Chensue SW, Strieter RM, Chakrabarti S, Delovitch TL (1997) IL-4 prevents insulitis and insulin dependent diabetes mellitus in nonobese diabetic mice by potentiation of regulatory T helper-2 cell function. J Immunol 159:4686–4692PubMed Cameron MJ, Arreaza GA, Zucker P, Chensue SW, Strieter RM, Chakrabarti S, Delovitch TL (1997) IL-4 prevents insulitis and insulin dependent diabetes mellitus in nonobese diabetic mice by potentiation of regulatory T helper-2 cell function. J Immunol 159:4686–4692PubMed
134.
go back to reference Chandy KG, Charles AM, Kershnar A, Buckingham B, Waldeck N, Gupta S (1984) Autologous mixed lymphocyte reaction in man: XV. Cellular and molecular basis of deficient autologous mixed lymphocyte response in insulin-dependent diabetes mellitus. J Clin Immunol 4:424–428PubMedCrossRef Chandy KG, Charles AM, Kershnar A, Buckingham B, Waldeck N, Gupta S (1984) Autologous mixed lymphocyte reaction in man: XV. Cellular and molecular basis of deficient autologous mixed lymphocyte response in insulin-dependent diabetes mellitus. J Clin Immunol 4:424–428PubMedCrossRef
135.
go back to reference Rasanen L, Hyoty H, Lehto M, Kallioniemi OP, Antonen J, Huupponen T, Karjalainen J, Leinikki P (1988) Defective autologous mixed leukocyte reaction in newly diagnosed type 1 diabetes mellitus. Clin Exp Immunol 71:470–474PubMed Rasanen L, Hyoty H, Lehto M, Kallioniemi OP, Antonen J, Huupponen T, Karjalainen J, Leinikki P (1988) Defective autologous mixed leukocyte reaction in newly diagnosed type 1 diabetes mellitus. Clin Exp Immunol 71:470–474PubMed
136.
go back to reference Giordano C, Panto F, Caruso C, Modica MA, Zambito AM, Sapienza N, Amato MP, Galluzzo A (1989) Interleukin 2 and soluble interleukin 2-receptor secretion defect in vitro in newly diagnosed type I diabetic patients. Diabetes 38:310–315PubMedCrossRef Giordano C, Panto F, Caruso C, Modica MA, Zambito AM, Sapienza N, Amato MP, Galluzzo A (1989) Interleukin 2 and soluble interleukin 2-receptor secretion defect in vitro in newly diagnosed type I diabetic patients. Diabetes 38:310–315PubMedCrossRef
137.
go back to reference De Maria R, Todaro M, Stassi G, Di Blasi F, Giordano M, Galluzzo A, Giordano C (1994) Defective T cell receptor/CD3 complex signaling in human type I diabetes. Eur J Immunol 24:999–1002PubMedCrossRef De Maria R, Todaro M, Stassi G, Di Blasi F, Giordano M, Galluzzo A, Giordano C (1994) Defective T cell receptor/CD3 complex signaling in human type I diabetes. Eur J Immunol 24:999–1002PubMedCrossRef
138.
go back to reference Giordano C, De Maria R, Stassi G, Todaro M, Richiusa P, Giordano M, Testi R, Galluzzo A (1995) Defective expression of the apoptosis-inducing CD95 (Fas/APO-1) molecule on T and B cells in IDDM. Diabetologia 38:1449–1454PubMedCrossRef Giordano C, De Maria R, Stassi G, Todaro M, Richiusa P, Giordano M, Testi R, Galluzzo A (1995) Defective expression of the apoptosis-inducing CD95 (Fas/APO-1) molecule on T and B cells in IDDM. Diabetologia 38:1449–1454PubMedCrossRef
139.
go back to reference Dosch H, Cheung RK, Karges W, Pietropaolo M, Becker DJ (1999) Persistent T cell anergy in human type 1 diabetes. J Immunol 163:6933–6940PubMed Dosch H, Cheung RK, Karges W, Pietropaolo M, Becker DJ (1999) Persistent T cell anergy in human type 1 diabetes. J Immunol 163:6933–6940PubMed
140.
go back to reference Nervi S, Atlan-Gepner C, Kahn-Perles B, Lecine P, Vialettes B, Imbert J, Naquet P (2000) Specific deficiency of p56lck expression in T lymphocytes from type 1 diabetic patients. J Immunol 165:5874–5883PubMed Nervi S, Atlan-Gepner C, Kahn-Perles B, Lecine P, Vialettes B, Imbert J, Naquet P (2000) Specific deficiency of p56lck expression in T lymphocytes from type 1 diabetic patients. J Immunol 165:5874–5883PubMed
141.
go back to reference Dendrou CA, Plagnol V, Fung E, Yang JH, Downes K, Cooper JD, Nutland S, Coleman G, Himsworth M, Hardy M, Burren O, Healy B, Walker NM, Koch K, Ouwehand WH, Bradley JR, Wareham NJ, Todd JA, Wicker LS (2009) Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource. Nat Genet 41:1011–1015PubMedCrossRef Dendrou CA, Plagnol V, Fung E, Yang JH, Downes K, Cooper JD, Nutland S, Coleman G, Himsworth M, Hardy M, Burren O, Healy B, Walker NM, Koch K, Ouwehand WH, Bradley JR, Wareham NJ, Todd JA, Wicker LS (2009) Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource. Nat Genet 41:1011–1015PubMedCrossRef
142.
go back to reference Li XC, Demirci G, Ferrari-Lacraz S, Groves C, Coyle A, Malek TR, Strom TB (2001) IL-15 and IL-2: a matter of life and death for T cells in vivo. Nat Med 7:114–118PubMedCrossRef Li XC, Demirci G, Ferrari-Lacraz S, Groves C, Coyle A, Malek TR, Strom TB (2001) IL-15 and IL-2: a matter of life and death for T cells in vivo. Nat Med 7:114–118PubMedCrossRef
143.
go back to reference Lenardo MJ (1991) Interleukin-2 programs mouse alpha beta T lymphocytes for apoptosis. Nature 353:858–861PubMedCrossRef Lenardo MJ (1991) Interleukin-2 programs mouse alpha beta T lymphocytes for apoptosis. Nature 353:858–861PubMedCrossRef
144.
go back to reference You S, Belghith M, Cobbold S, Alyanakian MA, Gouarin C, Barriot S, Garcia C, Waldmann H, Bach JF, Chatenoud L (2005) Autoimmune diabetes onset results from qualitative rather than quantitative age-dependent changes in pathogenic T-cells. Diabetes 54:1415–1422PubMedCrossRef You S, Belghith M, Cobbold S, Alyanakian MA, Gouarin C, Barriot S, Garcia C, Waldmann H, Bach JF, Chatenoud L (2005) Autoimmune diabetes onset results from qualitative rather than quantitative age-dependent changes in pathogenic T-cells. Diabetes 54:1415–1422PubMedCrossRef
145.
go back to reference Gregori S, Giarratana N, Smiroldo S, Adorini L (2003) Dynamics of pathogenic and suppressor T cells in autoimmune diabetes development. J Immunol 171:4040–4047PubMed Gregori S, Giarratana N, Smiroldo S, Adorini L (2003) Dynamics of pathogenic and suppressor T cells in autoimmune diabetes development. J Immunol 171:4040–4047PubMed
146.
go back to reference Vandenbark AA, Culbertson NE, Bartholomew RM, Huan J, Agotsch M, LaTocha D, Yadav V, Mass M, Whitham R, Lovera J, Milano J, Theofan G, Chou YK, Offner H, Bourdette DN (2008) Therapeutic vaccination with a trivalent T-cell receptor (TCR) peptide vaccine restores deficient FoxP3 expression and TCR recognition in subjects with multiple sclerosis. Immunology 123:66–78PubMedCrossRef Vandenbark AA, Culbertson NE, Bartholomew RM, Huan J, Agotsch M, LaTocha D, Yadav V, Mass M, Whitham R, Lovera J, Milano J, Theofan G, Chou YK, Offner H, Bourdette DN (2008) Therapeutic vaccination with a trivalent T-cell receptor (TCR) peptide vaccine restores deficient FoxP3 expression and TCR recognition in subjects with multiple sclerosis. Immunology 123:66–78PubMedCrossRef
147.
go back to reference Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, Bluestone JA (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12:431–440PubMedCrossRef Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, Bluestone JA (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12:431–440PubMedCrossRef
148.
go back to reference Bour-Jordan H, Salomon BL, Thompson HL, Szot GL, Bernhard MR, Bluestone JA (2004) Costimulation controls diabetes by altering the balance of pathogenic and regulatory T cells. J Clin Invest 114:979–987PubMed Bour-Jordan H, Salomon BL, Thompson HL, Szot GL, Bernhard MR, Bluestone JA (2004) Costimulation controls diabetes by altering the balance of pathogenic and regulatory T cells. J Clin Invest 114:979–987PubMed
149.
go back to reference Mellanby RJ, Thomas D, Phillips JM, Cooke A (2007) Diabetes in non-obese diabetic mice is not associated with quantitative changes in CD4+ CD25+ Foxp3+ regulatory T cells. Immunology 121:15–28PubMedCrossRef Mellanby RJ, Thomas D, Phillips JM, Cooke A (2007) Diabetes in non-obese diabetic mice is not associated with quantitative changes in CD4+ CD25+ Foxp3+ regulatory T cells. Immunology 121:15–28PubMedCrossRef
150.
go back to reference Tritt M, Sgouroudis E (2008) d'Hennezel E, Albanese A, Piccirillo CA: Functional waning of naturally occurring CD4+ regulatory T-cells contributes to the onset of autoimmune diabetes. Diabetes 57:113–123PubMedCrossRef Tritt M, Sgouroudis E (2008) d'Hennezel E, Albanese A, Piccirillo CA: Functional waning of naturally occurring CD4+ regulatory T-cells contributes to the onset of autoimmune diabetes. Diabetes 57:113–123PubMedCrossRef
151.
go back to reference D'Alise AM, Auyeung V, Feuerer M, Nishio J, Fontenot J, Benoist C, Mathis D (2008) The defect in T-cell regulation in NOD mice is an effect on the T-cell effectors. Proc Natl Acad Sci U S A 105:19857–19862PubMedCrossRef D'Alise AM, Auyeung V, Feuerer M, Nishio J, Fontenot J, Benoist C, Mathis D (2008) The defect in T-cell regulation in NOD mice is an effect on the T-cell effectors. Proc Natl Acad Sci U S A 105:19857–19862PubMedCrossRef
152.
go back to reference Gregg RK, Jain R, Schoenleber SJ, Divekar R, Bell JJ, Lee HH, Yu P, Zaghouani H (2004) A sudden decline in active membrane-bound TGF-beta impairs both T regulatory cell function and protection against autoimmune diabetes. J Immunol 173:7308–7316PubMed Gregg RK, Jain R, Schoenleber SJ, Divekar R, Bell JJ, Lee HH, Yu P, Zaghouani H (2004) A sudden decline in active membrane-bound TGF-beta impairs both T regulatory cell function and protection against autoimmune diabetes. J Immunol 173:7308–7316PubMed
153.
go back to reference Sgouroudis E, Albanese A, Piccirillo CA (2008) Impact of protective IL-2 allelic variants on CD4+ Foxp3+ regulatory T cell function in situ and resistance to autoimmune diabetes in NOD mice. J Immunol 181:6283–6292PubMed Sgouroudis E, Albanese A, Piccirillo CA (2008) Impact of protective IL-2 allelic variants on CD4+ Foxp3+ regulatory T cell function in situ and resistance to autoimmune diabetes in NOD mice. J Immunol 181:6283–6292PubMed
154.
go back to reference Krishnamurthy B, Dudek NL, McKenzie MD, Purcell AW, Brooks AG, Gellert S, Colman PG, Harrison LC, Lew AM, Thomas HE, Kay TW (2006) Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. J Clin Invest 116:3258–3265PubMedCrossRef Krishnamurthy B, Dudek NL, McKenzie MD, Purcell AW, Brooks AG, Gellert S, Colman PG, Harrison LC, Lew AM, Thomas HE, Kay TW (2006) Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. J Clin Invest 116:3258–3265PubMedCrossRef
155.
go back to reference Sgouroudis E, Piccirillo CA (2009) Control of type 1 diabetes by CD4 + Foxp3+ regulatory T cells: lessons from mouse models and implications for human disease. Diabetes Metab Res Rev 25:208–218PubMedCrossRef Sgouroudis E, Piccirillo CA (2009) Control of type 1 diabetes by CD4 + Foxp3+ regulatory T cells: lessons from mouse models and implications for human disease. Diabetes Metab Res Rev 25:208–218PubMedCrossRef
156.
go back to reference Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22:817–890PubMedCrossRef Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22:817–890PubMedCrossRef
157.
go back to reference Jordan MA, Fletcher JM, Pellicci D, Baxter AG (2007) Slamf1, the NKT cell control gene Nkt1. J Immunol 178:1618–1627PubMed Jordan MA, Fletcher JM, Pellicci D, Baxter AG (2007) Slamf1, the NKT cell control gene Nkt1. J Immunol 178:1618–1627PubMed
158.
go back to reference Falcone M, Yeung B, Tucker L, Rodriguez E, Sarvetnick N (1999) A defect in interleukin 12-induced activation and interferon γ secretion of peripheral natural killer T cells in nonobese diabetic mice suggests new pathogenic mechanisms for insulin-dependent diabetes mellitus. J Exp Med 190:963–972PubMedCrossRef Falcone M, Yeung B, Tucker L, Rodriguez E, Sarvetnick N (1999) A defect in interleukin 12-induced activation and interferon γ secretion of peripheral natural killer T cells in nonobese diabetic mice suggests new pathogenic mechanisms for insulin-dependent diabetes mellitus. J Exp Med 190:963–972PubMedCrossRef
159.
go back to reference Hammond KJ, Pellicci DG, Poulton LD, Naidenko OV, Scalzo AA, Baxter AG, Godfrey DI (2001) CD1d-restricted NKT cells: an interstrain comparison. J Immunol 167:1164–1173PubMed Hammond KJ, Pellicci DG, Poulton LD, Naidenko OV, Scalzo AA, Baxter AG, Godfrey DI (2001) CD1d-restricted NKT cells: an interstrain comparison. J Immunol 167:1164–1173PubMed
160.
go back to reference Wang B, Geng YB, Wang CR (2001) CD1-restricted NK T cells protect nonobese diabetic mice from developing diabetes. J Exp Med 194:313–320PubMedCrossRef Wang B, Geng YB, Wang CR (2001) CD1-restricted NK T cells protect nonobese diabetic mice from developing diabetes. J Exp Med 194:313–320PubMedCrossRef
161.
go back to reference Sharif S, Arreaza GA, Zucker P, Mi Q-S, Sondhi J, Naidenko OV, Kronenberg M, Koezuka Y, Delovitch TL, Gombert J-M, Leite-de-Moraes M, Gouarin C, Zhu R, Hameg A, Nakayama T, Taniguchi M, Lepault F, Lehuen A, Bach J-F, Herbelin A (2001) Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrance of autoimmune type 1 diabetes. Nat Med 7:1057–1062PubMedCrossRef Sharif S, Arreaza GA, Zucker P, Mi Q-S, Sondhi J, Naidenko OV, Kronenberg M, Koezuka Y, Delovitch TL, Gombert J-M, Leite-de-Moraes M, Gouarin C, Zhu R, Hameg A, Nakayama T, Taniguchi M, Lepault F, Lehuen A, Bach J-F, Herbelin A (2001) Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrance of autoimmune type 1 diabetes. Nat Med 7:1057–1062PubMedCrossRef
162.
go back to reference Naumov YN, Bahjat KS, Gausling R, Abraham R, Exley MA, Koezuka Y, Balk SB, Strominger JL, Clare-Salzer M, Wilson SB (2001) Activation of CD1d restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc Natl Acad Sci USA 98:13838–13843PubMedCrossRef Naumov YN, Bahjat KS, Gausling R, Abraham R, Exley MA, Koezuka Y, Balk SB, Strominger JL, Clare-Salzer M, Wilson SB (2001) Activation of CD1d restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc Natl Acad Sci USA 98:13838–13843PubMedCrossRef
163.
go back to reference Hong S, Wilson MT, Serizawa I, Wu L, Singh N, Naidenko OV, Miura T, Haba T, Scherer DC, Wei J, Kronenberg M, Koezuka Y, Van Kaer L (2001) The natural killer T cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat Med 7:1052–1056PubMedCrossRef Hong S, Wilson MT, Serizawa I, Wu L, Singh N, Naidenko OV, Miura T, Haba T, Scherer DC, Wei J, Kronenberg M, Koezuka Y, Van Kaer L (2001) The natural killer T cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat Med 7:1052–1056PubMedCrossRef
164.
go back to reference Hammond KJL, Poulton LD, Palmisano L, Silveira P, Godfrey DI, Baxter AG (1998) α/ß T cell receptor (TCR) CD4-CD8- (NKT) thymocytes prevent insulin dependent diabetes mellitus in non-obese diabetic (NOD) mice by influence of interleukin (IL)-4 and/or IL-10. J Exp Med 187:1047–1056PubMedCrossRef Hammond KJL, Poulton LD, Palmisano L, Silveira P, Godfrey DI, Baxter AG (1998) α/ß T cell receptor (TCR) CD4-CD8- (NKT) thymocytes prevent insulin dependent diabetes mellitus in non-obese diabetic (NOD) mice by influence of interleukin (IL)-4 and/or IL-10. J Exp Med 187:1047–1056PubMedCrossRef
165.
go back to reference Lehuen A, Lantz O, Beaudoin L, Laloux V, Carnaud C, Bendelac A, Bach JF, Monteiro RC (1998) Overexpression of natural killer T cells protects Valpha14- Jalpha281 transgenic nonobese diabetic mice against diabetes. J Exp Med 188:1831–1839PubMedCrossRef Lehuen A, Lantz O, Beaudoin L, Laloux V, Carnaud C, Bendelac A, Bach JF, Monteiro RC (1998) Overexpression of natural killer T cells protects Valpha14- Jalpha281 transgenic nonobese diabetic mice against diabetes. J Exp Med 188:1831–1839PubMedCrossRef
166.
go back to reference Shi FD, Flodstrom M, Balasa B, Kim SH, Van Gunst K, Strominger JL, Wilson SB, Sarvetnick N (2001) Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. Proc Natl Acad Sci U S A 98:6777–6782PubMedCrossRef Shi FD, Flodstrom M, Balasa B, Kim SH, Van Gunst K, Strominger JL, Wilson SB, Sarvetnick N (2001) Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. Proc Natl Acad Sci U S A 98:6777–6782PubMedCrossRef
167.
go back to reference Pillai AB, George TI, Dutt S, Strober S (2009) Host natural killer T cells induce an interleukin-4-dependent expansion of donor CD4 + CD25 + Foxp3+ T regulatory cells that protects against graft-versus-host disease. Blood 113:4458–4467PubMedCrossRef Pillai AB, George TI, Dutt S, Strober S (2009) Host natural killer T cells induce an interleukin-4-dependent expansion of donor CD4 + CD25 + Foxp3+ T regulatory cells that protects against graft-versus-host disease. Blood 113:4458–4467PubMedCrossRef
168.
go back to reference Wang J, Cho S, Ueno A, Cheng L, Xu BY, Desrosiers MD, Shi Y, Yang Y (2008) Ligand-dependent induction of noninflammatory dendritic cells by anergic invariant NKT cells minimizes autoimmune inflammation. J Immunol 181:2438–2445PubMed Wang J, Cho S, Ueno A, Cheng L, Xu BY, Desrosiers MD, Shi Y, Yang Y (2008) Ligand-dependent induction of noninflammatory dendritic cells by anergic invariant NKT cells minimizes autoimmune inflammation. J Immunol 181:2438–2445PubMed
169.
go back to reference Driver JP, Scheuplein F, Chen YG, Grier AE, Wilson SB, Serreze DV (2010) iNKT-cell control of type-1 diabetes: a dendritic cell genetic decision of a silver bullet or Russian roulette. Diabetes 59:423–432PubMedCrossRef Driver JP, Scheuplein F, Chen YG, Grier AE, Wilson SB, Serreze DV (2010) iNKT-cell control of type-1 diabetes: a dendritic cell genetic decision of a silver bullet or Russian roulette. Diabetes 59:423–432PubMedCrossRef
170.
go back to reference Jahng AW, Maricic I, Pedersen B, Burdin N, Naidenko O, Kronenberg M, Koezuka Y, Kumar V (2001) Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J Exp Med 194:1789–1799PubMedCrossRef Jahng AW, Maricic I, Pedersen B, Burdin N, Naidenko O, Kronenberg M, Koezuka Y, Kumar V (2001) Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J Exp Med 194:1789–1799PubMedCrossRef
171.
go back to reference Singh AK, Wilson MT, Hong S, Olivares-Villagomez D, Du C, Stanic AK, Joyce S, Sriram S, Koezuka Y, Van Kaer L (2001) Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J Exp Med 194:1801–1811PubMedCrossRef Singh AK, Wilson MT, Hong S, Olivares-Villagomez D, Du C, Stanic AK, Joyce S, Sriram S, Koezuka Y, Van Kaer L (2001) Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J Exp Med 194:1801–1811PubMedCrossRef
172.
go back to reference Zeng D, Liu Y, Sidobre S, Kronenberg M, Strober S (2003) Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus. J Clin Invest 112:1211–1222PubMed Zeng D, Liu Y, Sidobre S, Kronenberg M, Strober S (2003) Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus. J Clin Invest 112:1211–1222PubMed
173.
go back to reference Forestier C, Molano A, Im JS, Dutronc Y, Diamond B, Davidson A, Illarionov PA, Besra GS, Porcelli SA (2005) Expansion and hyperactivity of CD1d-restricted NKT cells during the progression of systemic lupus erythematosus in (New Zealand Black x New Zealand White)F1 mice. J Immunol 175:763–770PubMed Forestier C, Molano A, Im JS, Dutronc Y, Diamond B, Davidson A, Illarionov PA, Besra GS, Porcelli SA (2005) Expansion and hyperactivity of CD1d-restricted NKT cells during the progression of systemic lupus erythematosus in (New Zealand Black x New Zealand White)F1 mice. J Immunol 175:763–770PubMed
174.
go back to reference Mukherjee R, Chaturvedi P, Qin HY, Singh B (2003) CD4+CD25+ regulatory T cells generated in response to insulin B:9-23 peptide prevent adoptive transfer of diabetes by diabetogenic T cells. J Autoimmun 21:221–237PubMedCrossRef Mukherjee R, Chaturvedi P, Qin HY, Singh B (2003) CD4+CD25+ regulatory T cells generated in response to insulin B:9-23 peptide prevent adoptive transfer of diabetes by diabetogenic T cells. J Autoimmun 21:221–237PubMedCrossRef
175.
go back to reference Feili-Hariri M, Morel PA (2001) Phenotypic and functional characteristics of BM-derived DC from NOD and non-diabetes prone strains. Clin Immunol 98:133–142PubMedCrossRef Feili-Hariri M, Morel PA (2001) Phenotypic and functional characteristics of BM-derived DC from NOD and non-diabetes prone strains. Clin Immunol 98:133–142PubMedCrossRef
176.
go back to reference Tian J, Kaufman DL (2009) Antigen-based therapy for the treatment of type 1 diabetes. Diabetes 58:1939–1946PubMedCrossRef Tian J, Kaufman DL (2009) Antigen-based therapy for the treatment of type 1 diabetes. Diabetes 58:1939–1946PubMedCrossRef
177.
go back to reference Atkinson MA, Maclaren NK, Luchetta R (1990) Insulitis and diabetes in NOD mice reduced by prohylactic insulin therapy. Diabetes 39:933–937PubMedCrossRef Atkinson MA, Maclaren NK, Luchetta R (1990) Insulitis and diabetes in NOD mice reduced by prohylactic insulin therapy. Diabetes 39:933–937PubMedCrossRef
178.
go back to reference Gotfredsen CF, Buschard K, Frandsen E (1985) Reduction of diabetes incidence of BB rats by early prophylactic insulin treatment of diabetes-prone animals. Diabetologia 28:933–935PubMedCrossRef Gotfredsen CF, Buschard K, Frandsen E (1985) Reduction of diabetes incidence of BB rats by early prophylactic insulin treatment of diabetes-prone animals. Diabetologia 28:933–935PubMedCrossRef
179.
go back to reference Gottlieb PA, Handler ES, Appel MC, Greiner DL, Mordes JP, Rossini AA (1991) Insulin treatment prevents diabetes mellitus but not thyroiditis in RT6-depleted diabetes resistant BB/Wor rats. Diabetologia 34:296–300PubMedCrossRef Gottlieb PA, Handler ES, Appel MC, Greiner DL, Mordes JP, Rossini AA (1991) Insulin treatment prevents diabetes mellitus but not thyroiditis in RT6-depleted diabetes resistant BB/Wor rats. Diabetologia 34:296–300PubMedCrossRef
180.
go back to reference Group DPT-TS (2002) Effects of insulin in relatives of patients with type 1 diabetes mellitus. New Eng J Med 346:1685–1691CrossRef Group DPT-TS (2002) Effects of insulin in relatives of patients with type 1 diabetes mellitus. New Eng J Med 346:1685–1691CrossRef
181.
go back to reference Group TDPT-TS (2005) Effects of oral insulin in relatives of patients with type 1 diabetes: The diabetes prevention trial-type 1. Diabetes Care 28:1068–1076CrossRef Group TDPT-TS (2005) Effects of oral insulin in relatives of patients with type 1 diabetes: The diabetes prevention trial-type 1. Diabetes Care 28:1068–1076CrossRef
182.
go back to reference Nanto-Salonen K, Kupila A, Simell S, Siljander H, Salonsaari T, Hekkala A, Korhonen S, Erkkola R, Sipila JI, Haavisto L, Siltala M, Tuominen J, Hakalax J, Hyoty H, Ilonen J, Veijola R, Simell T, Knip M, Simell O (2008) Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet 372:1746–1755PubMedCrossRef Nanto-Salonen K, Kupila A, Simell S, Siljander H, Salonsaari T, Hekkala A, Korhonen S, Erkkola R, Sipila JI, Haavisto L, Siltala M, Tuominen J, Hakalax J, Hyoty H, Ilonen J, Veijola R, Simell T, Knip M, Simell O (2008) Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet 372:1746–1755PubMedCrossRef
183.
go back to reference Di Lorenzo TP, Peakman M, Roep BO (2007) Translational mini-review series on type 1 diabetes: Systematic analysis of T cell epitopes in autoimmune diabetes. Clin Exp Immunol 148:1–16PubMedCrossRef Di Lorenzo TP, Peakman M, Roep BO (2007) Translational mini-review series on type 1 diabetes: Systematic analysis of T cell epitopes in autoimmune diabetes. Clin Exp Immunol 148:1–16PubMedCrossRef
184.
go back to reference Tisch R, Yang X-D, Singer SM, Liblau RS, Fugger L, McDevitt HO (1993) Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 366:72–75PubMedCrossRef Tisch R, Yang X-D, Singer SM, Liblau RS, Fugger L, McDevitt HO (1993) Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 366:72–75PubMedCrossRef
185.
go back to reference Kaufman DL, Clare-Salzler M, Tian J, Forsthuber T, Ting GSP, Robinson P, Atkinson MA, Sercarz EE, Tobin AJ, Lehmann PV (1993) Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 366:69–72PubMedCrossRef Kaufman DL, Clare-Salzler M, Tian J, Forsthuber T, Ting GSP, Robinson P, Atkinson MA, Sercarz EE, Tobin AJ, Lehmann PV (1993) Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 366:69–72PubMedCrossRef
186.
go back to reference Nakayama T, Abiru N, Moriyama H, Babaya N, Liu E, Miao D, Yu L, Wegmann DR, Hutton JC, Elliott JF, Eisenbarth GS (2005) Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 435:220–223PubMedCrossRef Nakayama T, Abiru N, Moriyama H, Babaya N, Liu E, Miao D, Yu L, Wegmann DR, Hutton JC, Elliott JF, Eisenbarth GS (2005) Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 435:220–223PubMedCrossRef
187.
go back to reference Ott PA, Dittrich MT, Herzog BA, Guerkov R, Gottlieb PA, Putnam AL, Durinovic-Bello I, Boehm BO, Tary-Lehmann M, Lehmann PV (2004) T cells recognize multiple GAD65 and proinsulin epitopes in human type 1 diabetes, suggesting determinant spreading. J Clin Immunol 24:327–339PubMedCrossRef Ott PA, Dittrich MT, Herzog BA, Guerkov R, Gottlieb PA, Putnam AL, Durinovic-Bello I, Boehm BO, Tary-Lehmann M, Lehmann PV (2004) T cells recognize multiple GAD65 and proinsulin epitopes in human type 1 diabetes, suggesting determinant spreading. J Clin Immunol 24:327–339PubMedCrossRef
188.
go back to reference Ott PA, Herzog BA, Quast S, Hofstetter HH, Boehm BO, Tary-Lehmann M, Durinovic-Bello I, Berner BR, Lehmann PV (2005) Islet-cell antigen-reactive T cells show different expansion rates and Th1/Th2 differentiation in type 1 diabetic patients and healthy controls. Clin Immunol 115:102–114PubMedCrossRef Ott PA, Herzog BA, Quast S, Hofstetter HH, Boehm BO, Tary-Lehmann M, Durinovic-Bello I, Berner BR, Lehmann PV (2005) Islet-cell antigen-reactive T cells show different expansion rates and Th1/Th2 differentiation in type 1 diabetic patients and healthy controls. Clin Immunol 115:102–114PubMedCrossRef
189.
go back to reference Arif S, Tree TI, Astill TP, Tremble JM, Bishop AJ, Dayan CM, Roep BO, Peakman M (2004) Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest 113:451–463PubMed Arif S, Tree TI, Astill TP, Tremble JM, Bishop AJ, Dayan CM, Roep BO, Peakman M (2004) Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest 113:451–463PubMed
190.
go back to reference Chaillous L, Lefevre H, Thivolet C, Boitard C, Lahlou N, Atlan-Gepner C, Bouhanick B, Mogenet A, Nicolino M, Carel JC, Lecomte P, Marechaud R, Bougneres P, Charbonnel B, Sai P (2000) Oral insulin administration and residual beta-cell function in recent-onset type 1 diabetes: a multicentre randomised controlled trial. Diabete Insuline Orale group. Lancet 356:545–549PubMedCrossRef Chaillous L, Lefevre H, Thivolet C, Boitard C, Lahlou N, Atlan-Gepner C, Bouhanick B, Mogenet A, Nicolino M, Carel JC, Lecomte P, Marechaud R, Bougneres P, Charbonnel B, Sai P (2000) Oral insulin administration and residual beta-cell function in recent-onset type 1 diabetes: a multicentre randomised controlled trial. Diabete Insuline Orale group. Lancet 356:545–549PubMedCrossRef
191.
go back to reference Pozzilli P, Pitocco D, Visalli N, Cavallo MG, Buzzetti R, Crino A, Spera S, Suraci C, Multari G, Cervoni M, Manca Bitti ML, Matteoli MC, Marietti G, Ferrazzoli F, Cassone Faldetta MR, Giordano C, Sbriglia M, Sarugeri E, Ghirlanda G (2000) No effect of oral insulin on residual beta-cell function in recent-onset type I diabetes (the IMDIAB VII). IMDIAB Group. Diabetologia 43:1000–1004PubMedCrossRef Pozzilli P, Pitocco D, Visalli N, Cavallo MG, Buzzetti R, Crino A, Spera S, Suraci C, Multari G, Cervoni M, Manca Bitti ML, Matteoli MC, Marietti G, Ferrazzoli F, Cassone Faldetta MR, Giordano C, Sbriglia M, Sarugeri E, Ghirlanda G (2000) No effect of oral insulin on residual beta-cell function in recent-onset type I diabetes (the IMDIAB VII). IMDIAB Group. Diabetologia 43:1000–1004PubMedCrossRef
192.
go back to reference Monetini L, Cavallo MG, Sarugeri E, Sentinelli F, Stefanini L, Bosi E, Thorpe R, Pozzilli P (2004) Cytokine profile and insulin antibody IgG subclasses in patients with recent onset type 1 diabetes treated with oral insulin. Diabetologia 47:1795–1802PubMedCrossRef Monetini L, Cavallo MG, Sarugeri E, Sentinelli F, Stefanini L, Bosi E, Thorpe R, Pozzilli P (2004) Cytokine profile and insulin antibody IgG subclasses in patients with recent onset type 1 diabetes treated with oral insulin. Diabetologia 47:1795–1802PubMedCrossRef
193.
go back to reference Ergun-Longmire B, Marker J, Zeidler A, Rapaport R, Raskin P, Bode B, Schatz D, Vargas A, Rogers D, Schwartz S, Malone J, Krischer J, Maclaren NK (2004) Oral insulin therapy to prevent progression of immune-mediated (type 1) diabetes. Ann N Y Acad Sci 1029:260–277PubMedCrossRef Ergun-Longmire B, Marker J, Zeidler A, Rapaport R, Raskin P, Bode B, Schatz D, Vargas A, Rogers D, Schwartz S, Malone J, Krischer J, Maclaren NK (2004) Oral insulin therapy to prevent progression of immune-mediated (type 1) diabetes. Ann N Y Acad Sci 1029:260–277PubMedCrossRef
194.
go back to reference Huurman VA, van der Meide PE, Duinkerken G, Willemen S, Cohen IR, Elias D, Roep BO (2008) Immunological efficacy of heat shock protein 60 peptide DiaPep277 therapy in clinical type I diabetes. Clin Exp Immunol 152:488–497PubMedCrossRef Huurman VA, van der Meide PE, Duinkerken G, Willemen S, Cohen IR, Elias D, Roep BO (2008) Immunological efficacy of heat shock protein 60 peptide DiaPep277 therapy in clinical type I diabetes. Clin Exp Immunol 152:488–497PubMedCrossRef
195.
go back to reference Agardh CD, Lynch KF, Palmer M, Link K, Lernmark A (2009) GAD65 vaccination: 5 years of follow-up in a randomised dose-escalating study in adult-onset autoimmune diabetes. Diabetologia 52:1363–1368PubMedCrossRef Agardh CD, Lynch KF, Palmer M, Link K, Lernmark A (2009) GAD65 vaccination: 5 years of follow-up in a randomised dose-escalating study in adult-onset autoimmune diabetes. Diabetologia 52:1363–1368PubMedCrossRef
196.
go back to reference Ludvigsson J, Faresjo M, Hjorth M, Axelsson S, Cheramy M, Pihl M, Vaarala O, Forsander G, Ivarsson S, Johansson C, Lindh A, Nilsson NO, Aman J, Ortqvist E, Zerhouni P, Casas R (2008) GAD treatment and insulin secretion in recent-onset type 1 diabetes. N Engl J Med 359:1909–1920PubMedCrossRef Ludvigsson J, Faresjo M, Hjorth M, Axelsson S, Cheramy M, Pihl M, Vaarala O, Forsander G, Ivarsson S, Johansson C, Lindh A, Nilsson NO, Aman J, Ortqvist E, Zerhouni P, Casas R (2008) GAD treatment and insulin secretion in recent-onset type 1 diabetes. N Engl J Med 359:1909–1920PubMedCrossRef
197.
go back to reference Jenkins MK, Ashwell JD, Schwartz RH (1988) Allogeneic non-T spleen cells restore the responsiveness of normal T cell clones stimulated with antigen and chemically modified antigen-presenting cells. J Immunol 140:3324–3330PubMed Jenkins MK, Ashwell JD, Schwartz RH (1988) Allogeneic non-T spleen cells restore the responsiveness of normal T cell clones stimulated with antigen and chemically modified antigen-presenting cells. J Immunol 140:3324–3330PubMed
198.
go back to reference Turley DM, Miller SD (2007) Peripheral tolerance induction using ethylenecarbodiimide-fixed APCs uses both direct and indirect mechanisms of antigen presentation for prevention of experimental autoimmune encephalomyelitis. J Immunol 178:2212–2220PubMed Turley DM, Miller SD (2007) Peripheral tolerance induction using ethylenecarbodiimide-fixed APCs uses both direct and indirect mechanisms of antigen presentation for prevention of experimental autoimmune encephalomyelitis. J Immunol 178:2212–2220PubMed
199.
go back to reference Luo X, Pothoven KL, McCarthy D, DeGutes M, Martin A, Getts DR, Xia G, He J, Zhang X, Kaufman DB, Miller SD (2008) ECDI-fixed allogeneic splenocytes induce donor-specific tolerance for long-term survival of islet transplants via two distinct mechanisms. Proc Natl Acad Sci U S A 105:14527–14532PubMedCrossRef Luo X, Pothoven KL, McCarthy D, DeGutes M, Martin A, Getts DR, Xia G, He J, Zhang X, Kaufman DB, Miller SD (2008) ECDI-fixed allogeneic splenocytes induce donor-specific tolerance for long-term survival of islet transplants via two distinct mechanisms. Proc Natl Acad Sci U S A 105:14527–14532PubMedCrossRef
200.
go back to reference Serreze DV, Osborne MA, Chen YG, Chapman HD, Pearson T, Brehm MA, Greiner DL (2006) Partial versus full allogeneic hemopoietic chimerization is a preferential means to inhibit type 1 diabetes as the latter induces generalized immunosuppression. J Immunol 177:6675–6684PubMed Serreze DV, Osborne MA, Chen YG, Chapman HD, Pearson T, Brehm MA, Greiner DL (2006) Partial versus full allogeneic hemopoietic chimerization is a preferential means to inhibit type 1 diabetes as the latter induces generalized immunosuppression. J Immunol 177:6675–6684PubMed
201.
go back to reference Johnson EA, Silveira P, Chapman HD, Leiter EH, Serreze DV (2001) Inhibition of autoimmune diabetes in nonobese diabetic mice by transgenic restoration of H2-E MHC class II expression: additive, but unequal, involvement of multiple APC subtypes. J Immunol 167:2404–2410PubMed Johnson EA, Silveira P, Chapman HD, Leiter EH, Serreze DV (2001) Inhibition of autoimmune diabetes in nonobese diabetic mice by transgenic restoration of H2-E MHC class II expression: additive, but unequal, involvement of multiple APC subtypes. J Immunol 167:2404–2410PubMed
202.
go back to reference Serreze DV, Leiter EH (1991) Development of diabetogenic T cells from NOD/Lt marrow is blocked when an allo-H-2 haplotype is expressed on cells of hemopoietic origin, but not on thymic epithelium. J Immunol 147:1222–1229PubMed Serreze DV, Leiter EH (1991) Development of diabetogenic T cells from NOD/Lt marrow is blocked when an allo-H-2 haplotype is expressed on cells of hemopoietic origin, but not on thymic epithelium. J Immunol 147:1222–1229PubMed
203.
go back to reference Nikolic B, Takeuchi Y, Leykin I, Fudaba Y, Smith RN, Sykes M (2004) Mixed hematopoietic chimerism allows cure of autoimmune diabetes through allogeneic tolerance and reversal of autoimmunity. Diabetes 53:376–383PubMedCrossRef Nikolic B, Takeuchi Y, Leykin I, Fudaba Y, Smith RN, Sykes M (2004) Mixed hematopoietic chimerism allows cure of autoimmune diabetes through allogeneic tolerance and reversal of autoimmunity. Diabetes 53:376–383PubMedCrossRef
204.
go back to reference Seung E, Iwakoshi N, Woda BA, Markees TG, Mordes JP, Rossini AA, Greiner DL (2000) Allogeneic hematopoietic chimerism in mice treated with sublethal myeloablation and anti-CD154 antibody: absence of graft-versus-host disease, induction of skin allograft tolerance, and prevention of recurrent autoimmunity in islet-allografted NOD/Lt mice. Blood 95:2175–2182PubMed Seung E, Iwakoshi N, Woda BA, Markees TG, Mordes JP, Rossini AA, Greiner DL (2000) Allogeneic hematopoietic chimerism in mice treated with sublethal myeloablation and anti-CD154 antibody: absence of graft-versus-host disease, induction of skin allograft tolerance, and prevention of recurrent autoimmunity in islet-allografted NOD/Lt mice. Blood 95:2175–2182PubMed
205.
go back to reference Seung E, Mordes JP, Rossini AA, Greiner DL (2003) Hematopoietic chimerism and central tolerance created by peripheral-tolerance induction without myeloablative conditioning. J Clin Invest 112:795–808PubMed Seung E, Mordes JP, Rossini AA, Greiner DL (2003) Hematopoietic chimerism and central tolerance created by peripheral-tolerance induction without myeloablative conditioning. J Clin Invest 112:795–808PubMed
206.
go back to reference Beilhack GF, Scheffold YC, Weismann IL, Taylor C, Jerabeck L, Burge MJ, Masek MA, Shizuru JA (2003) Purified allogeneic hematopoietic stem cell transplantation blocks diabetes pathogenesis in NOD mice. Diabetes 52:59–68PubMedCrossRef Beilhack GF, Scheffold YC, Weismann IL, Taylor C, Jerabeck L, Burge MJ, Masek MA, Shizuru JA (2003) Purified allogeneic hematopoietic stem cell transplantation blocks diabetes pathogenesis in NOD mice. Diabetes 52:59–68PubMedCrossRef
207.
go back to reference Beilhack GF, Landa RR, Masek MA, Shizuru JA (2005) Prevention of type 1 diabetes with major histocompatibility complex-compatible and nonmarrow ablative hematopoietic stem cell transplants. Diabetes 54:1770–1779PubMedCrossRef Beilhack GF, Landa RR, Masek MA, Shizuru JA (2005) Prevention of type 1 diabetes with major histocompatibility complex-compatible and nonmarrow ablative hematopoietic stem cell transplants. Diabetes 54:1770–1779PubMedCrossRef
208.
go back to reference Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H, Becker DJ, Gitelman SE, Goland R, Gottlieb PA, Marks JB, McGee PF, Moran AM, Raskin P, Rodriguez H, Schatz DA, Wherrett D, Wilson DM, Lachin JM, Skyler JS (2009) Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med 361:2143–2152PubMedCrossRef Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H, Becker DJ, Gitelman SE, Goland R, Gottlieb PA, Marks JB, McGee PF, Moran AM, Raskin P, Rodriguez H, Schatz DA, Wherrett D, Wilson DM, Lachin JM, Skyler JS (2009) Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med 361:2143–2152PubMedCrossRef
209.
go back to reference Feili-Hariri M, Flores RR, Vasquez AC, Morel PA (2006) Dendritic cell immunotherapy for autoimmune diabetes. Immunol Res 36:167–173PubMedCrossRef Feili-Hariri M, Flores RR, Vasquez AC, Morel PA (2006) Dendritic cell immunotherapy for autoimmune diabetes. Immunol Res 36:167–173PubMedCrossRef
210.
go back to reference Rutella S, Bonanno G, Pierelli L, Mariotti A, Capoluongo E, Contemi AM, Ameglio F, Curti A, De Ritis DG, Voso MT, Perillo A, Mancuso S, Scambia G, Lemoli RM, Leone G (2004) Granulocyte colony-stimulating factor promotes the generation of regulatory DC through induction of IL-10 and IFN-alpha. Eur J Immunol 34:1291–1302PubMedCrossRef Rutella S, Bonanno G, Pierelli L, Mariotti A, Capoluongo E, Contemi AM, Ameglio F, Curti A, De Ritis DG, Voso MT, Perillo A, Mancuso S, Scambia G, Lemoli RM, Leone G (2004) Granulocyte colony-stimulating factor promotes the generation of regulatory DC through induction of IL-10 and IFN-alpha. Eur J Immunol 34:1291–1302PubMedCrossRef
211.
go back to reference Gaudreau S, Guindi C, Menard M, Besin G, Dupuis G, Amrani A (2007) Granulocyte-macrophage colony-stimulating factor prevents diabetes development in NOD mice by inducing tolerogenic dendritic cells that sustain the suppressive function of CD4 + CD25+ regulatory T cells. J Immunol 179:3638–3647PubMed Gaudreau S, Guindi C, Menard M, Besin G, Dupuis G, Amrani A (2007) Granulocyte-macrophage colony-stimulating factor prevents diabetes development in NOD mice by inducing tolerogenic dendritic cells that sustain the suppressive function of CD4 + CD25+ regulatory T cells. J Immunol 179:3638–3647PubMed
212.
go back to reference Cheatem D, Ganesh BB, Gangi E, Vasu C, Prabhakar BS (2009) Modulation of dendritic cells using granulocyte-macrophage colony-stimulating factor (GM-CSF) delays type 1 diabetes by enhancing CD4 + CD25+ regulatory T cell function. Clin Immunol 131:260–270PubMedCrossRef Cheatem D, Ganesh BB, Gangi E, Vasu C, Prabhakar BS (2009) Modulation of dendritic cells using granulocyte-macrophage colony-stimulating factor (GM-CSF) delays type 1 diabetes by enhancing CD4 + CD25+ regulatory T cell function. Clin Immunol 131:260–270PubMedCrossRef
213.
go back to reference Morin J, Faideau B, Gagnerault MC, Lepault F, Boitard C, Boudaly S (2003) Passive transfer of flt-3 L-derived dendritic cells delays diabetes development in NOD mice and associates with early production of interleukin (IL)-4 and IL-10 in the spleen of recipient mice. Clin Exp Immunol 134:388–395PubMedCrossRef Morin J, Faideau B, Gagnerault MC, Lepault F, Boitard C, Boudaly S (2003) Passive transfer of flt-3 L-derived dendritic cells delays diabetes development in NOD mice and associates with early production of interleukin (IL)-4 and IL-10 in the spleen of recipient mice. Clin Exp Immunol 134:388–395PubMedCrossRef
214.
go back to reference Chatenoud L, Primo J, Bach JF (1997) CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J Immunol 158:2947–2954PubMed Chatenoud L, Primo J, Bach JF (1997) CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J Immunol 158:2947–2954PubMed
215.
go back to reference Herold KC, Gitelman SE, Masharani U, Hagopian W, Bisikirska B, Donaldson D, Rother K, Diamond B, Harlan DM, Bluestone JA (2005) A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 54:1763–1769PubMedCrossRef Herold KC, Gitelman SE, Masharani U, Hagopian W, Bisikirska B, Donaldson D, Rother K, Diamond B, Harlan DM, Bluestone JA (2005) A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 54:1763–1769PubMedCrossRef
216.
go back to reference Keymeulen B, Vandemeulebroucke E, Ziegler AG, Mathieu C, Kaufman L, Hale G, Gorus F, Goldman M, Walter M, Candon S, Schandene L, Crenier L, De Block C, Seigneurin JM, De Pauw P, Pierard D, Weets I, Rebello P, Bird P, Berrie E, Frewin M, Waldmann H, Bach JF, Pipeleers D, Chatenoud L (2005) Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 352:2598–2608PubMedCrossRef Keymeulen B, Vandemeulebroucke E, Ziegler AG, Mathieu C, Kaufman L, Hale G, Gorus F, Goldman M, Walter M, Candon S, Schandene L, Crenier L, De Block C, Seigneurin JM, De Pauw P, Pierard D, Weets I, Rebello P, Bird P, Berrie E, Frewin M, Waldmann H, Bach JF, Pipeleers D, Chatenoud L (2005) Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 352:2598–2608PubMedCrossRef
217.
go back to reference Chatenoud L, Bluestone JA (2007) CD3-specific antibodies: a portal to the treatment of autoimmunity. Nat Rev Immunol 7:622–632PubMedCrossRef Chatenoud L, Bluestone JA (2007) CD3-specific antibodies: a portal to the treatment of autoimmunity. Nat Rev Immunol 7:622–632PubMedCrossRef
218.
go back to reference Parker MJ, Xue S, Alexander JJ, Wasserfall CH, Campbell-Thompson ML, Battaglia M, Gregori S, Mathews CE, Song S, Troutt M, Eisenbeis S, Williams J, Schatz DA, Haller MJ, Atkinson MA (2009) Immune depletion with cellular mobilization imparts immunoregulation and reverses autoimmune diabetes in nonobese diabetic mice. Diabetes 58:2277–2284PubMedCrossRef Parker MJ, Xue S, Alexander JJ, Wasserfall CH, Campbell-Thompson ML, Battaglia M, Gregori S, Mathews CE, Song S, Troutt M, Eisenbeis S, Williams J, Schatz DA, Haller MJ, Atkinson MA (2009) Immune depletion with cellular mobilization imparts immunoregulation and reverses autoimmune diabetes in nonobese diabetic mice. Diabetes 58:2277–2284PubMedCrossRef
219.
go back to reference Suarez-Pinzon WL, Power RF, Yan Y, Wasserfall C, Atkinson M, Rabinovitch A (2008) Combination therapy with glucagon-like peptide-1 and gastrin restores normoglycemia in diabetic NOD mice. Diabetes 57:3281–3288PubMedCrossRef Suarez-Pinzon WL, Power RF, Yan Y, Wasserfall C, Atkinson M, Rabinovitch A (2008) Combination therapy with glucagon-like peptide-1 and gastrin restores normoglycemia in diabetic NOD mice. Diabetes 57:3281–3288PubMedCrossRef
220.
go back to reference Valle A, Jofra T, Stabilini A, Atkinson M, Roncarolo MG, Battaglia M (2009) Rapamycin prevents and breaks the anti-CD3-induced tolerance in NOD mice. Diabetes 58:875–881PubMedCrossRef Valle A, Jofra T, Stabilini A, Atkinson M, Roncarolo MG, Battaglia M (2009) Rapamycin prevents and breaks the anti-CD3-induced tolerance in NOD mice. Diabetes 58:875–881PubMedCrossRef
221.
go back to reference Bluestone JA, Tang Q (2004) Therapeutic vaccination using CD4 + CD25+ antigen-specific regulatory T cells. Proc Natl Acad Sci U S A 101(Suppl 2):14622–14626PubMedCrossRef Bluestone JA, Tang Q (2004) Therapeutic vaccination using CD4 + CD25+ antigen-specific regulatory T cells. Proc Natl Acad Sci U S A 101(Suppl 2):14622–14626PubMedCrossRef
222.
go back to reference Putnam AL, Brusko TM, Lee MR, Liu W, Szot GL, Ghosh T, Atkinson MA, Bluestone JA (2009) Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes 58:652–662PubMedCrossRef Putnam AL, Brusko TM, Lee MR, Liu W, Szot GL, Ghosh T, Atkinson MA, Bluestone JA (2009) Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes 58:652–662PubMedCrossRef
223.
go back to reference Takaki T, Marron MP, Mathews CE, Guttman ST, Bottino R, Trucco M, DiLorenzo TP, Serreze DV (2006) HLA-A*0201-restricted T cells from humanized NOD mice recognize autoantigens of potential clinical relevance to type 1 diabetes. J Immunol 176:3257–3265PubMed Takaki T, Marron MP, Mathews CE, Guttman ST, Bottino R, Trucco M, DiLorenzo TP, Serreze DV (2006) HLA-A*0201-restricted T cells from humanized NOD mice recognize autoantigens of potential clinical relevance to type 1 diabetes. J Immunol 176:3257–3265PubMed
224.
go back to reference Mallone R, Martinuzzi E, Blancou P, Novelli G, Afonso G, Dolz M, Bruno G, Chaillous L, Chatenoud L, Bach JM, van Endert P (2007) CD8+ T-cell responses identify beta-cell autoimmunity in human type 1 diabetes. Diabetes 56:613–621PubMedCrossRef Mallone R, Martinuzzi E, Blancou P, Novelli G, Afonso G, Dolz M, Bruno G, Chaillous L, Chatenoud L, Bach JM, van Endert P (2007) CD8+ T-cell responses identify beta-cell autoimmunity in human type 1 diabetes. Diabetes 56:613–621PubMedCrossRef
225.
go back to reference Kudva YC, Rajagopalan G, Raju R, Abraham RS, Smart M, Hanson J, David CS (2002) Modulation of insulitis and type 1 diabetes by transgenic HLA-DR3 and DQ8 in NOD mice lacking endogenous MHC class II. Hum Immunol 63:987–999PubMedCrossRef Kudva YC, Rajagopalan G, Raju R, Abraham RS, Smart M, Hanson J, David CS (2002) Modulation of insulitis and type 1 diabetes by transgenic HLA-DR3 and DQ8 in NOD mice lacking endogenous MHC class II. Hum Immunol 63:987–999PubMedCrossRef
226.
go back to reference Elliott JF, Liu J, Yuan Z-N, Bautista-Lopez N, Wallbank SL, Suzuki K, Rayner D, Nation P, Robertson MA, Liu G, Kavanagh KM (2003) Autoimmune cardiomyopathy and heart block development develop spontaneously in HLA-DQ8 transgenic IAβ knockout NOD mice. Proc Natl Acad Sci USA 100:13447–13452PubMedCrossRef Elliott JF, Liu J, Yuan Z-N, Bautista-Lopez N, Wallbank SL, Suzuki K, Rayner D, Nation P, Robertson MA, Liu G, Kavanagh KM (2003) Autoimmune cardiomyopathy and heart block development develop spontaneously in HLA-DQ8 transgenic IAβ knockout NOD mice. Proc Natl Acad Sci USA 100:13447–13452PubMedCrossRef
227.
go back to reference Hanna J, Markoulaki S, Mitalipova M, Cheng AW, Cassady JP, Staerk J, Carey BW, Lengner CJ, Foreman R, Love J, Gao Q, Kim J, Jaenisch R (2009) Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell 4:513–524PubMedCrossRef Hanna J, Markoulaki S, Mitalipova M, Cheng AW, Cassady JP, Staerk J, Carey BW, Lengner CJ, Foreman R, Love J, Gao Q, Kim J, Jaenisch R (2009) Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell 4:513–524PubMedCrossRef
228.
go back to reference Nichols J, Jones K, Phillips JM, Newland SA, Roode M, Mansfield W, Smith A, Cooke A (2009) Validated germline-competent embryonic stem cell lines from nonobese diabetic mice. Nat Med 15:814–818PubMedCrossRef Nichols J, Jones K, Phillips JM, Newland SA, Roode M, Mansfield W, Smith A, Cooke A (2009) Validated germline-competent embryonic stem cell lines from nonobese diabetic mice. Nat Med 15:814–818PubMedCrossRef
229.
go back to reference Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7:118–130PubMedCrossRef Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7:118–130PubMedCrossRef
230.
go back to reference Mosier DE, Gulizia RJ, Baird SM, Wilson DB (1988) Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335:256–259PubMedCrossRef Mosier DE, Gulizia RJ, Baird SM, Wilson DB (1988) Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335:256–259PubMedCrossRef
231.
go back to reference McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL (1988) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241:1632–1639PubMedCrossRef McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL (1988) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241:1632–1639PubMedCrossRef
232.
go back to reference Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE (1992) Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 255:1137–1141PubMedCrossRef Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE (1992) Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 255:1137–1141PubMedCrossRef
233.
go back to reference Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan TV, Greiner DL et al (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154:180–191PubMed Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan TV, Greiner DL et al (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154:180–191PubMed
234.
go back to reference Hesselton RM, Greiner DL, Mordes JP, Rajan TV, Sullivan JL, Shultz LD (1995) High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice. J Infect Dis 172:974–982PubMedCrossRef Hesselton RM, Greiner DL, Mordes JP, Rajan TV, Sullivan JL, Shultz LD (1995) High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice. J Infect Dis 172:974–982PubMedCrossRef
235.
go back to reference Lowry PA, Shultz LD, Greiner DL, Hesselton RM, Kittler EL, Tiarks CY, Rao SS, Reilly J, Leif JH, Ramshaw H, Stewart FM, Quesenberry PJ (1996) Improved engraftment of human cord blood stem cells in NOD/LtSz-scid/scid mice after irradiation or multiple-day injections into unirradiated recipients. Biol Blood Marrow Transplant 2:15–23PubMed Lowry PA, Shultz LD, Greiner DL, Hesselton RM, Kittler EL, Tiarks CY, Rao SS, Reilly J, Leif JH, Ramshaw H, Stewart FM, Quesenberry PJ (1996) Improved engraftment of human cord blood stem cells in NOD/LtSz-scid/scid mice after irradiation or multiple-day injections into unirradiated recipients. Biol Blood Marrow Transplant 2:15–23PubMed
236.
go back to reference Pflumio F, Izac B, Katz A, Shultz LD, Vainchenker W, Coulombel L (1996) Phenotype and function of human hematopoietic cells engrafting immune-deficient CB17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells. Blood 88:3731–3740PubMed Pflumio F, Izac B, Katz A, Shultz LD, Vainchenker W, Coulombel L (1996) Phenotype and function of human hematopoietic cells engrafting immune-deficient CB17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells. Blood 88:3731–3740PubMed
237.
go back to reference Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J, Greiner DL, Handgretinger R (2005) Human lymphoid and myeloid development in NOD/LtSz-scid IL2rγ null engrafted with mobilized human hematopoietic stem cells. J Immunol 174:6477–6489PubMed Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J, Greiner DL, Handgretinger R (2005) Human lymphoid and myeloid development in NOD/LtSz-scid IL2rγ null engrafted with mobilized human hematopoietic stem cells. J Immunol 174:6477–6489PubMed
238.
go back to reference Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, Watanabe T, Akashi K, Shultz LD, Harada M (2005) Development of functional human blood and immune systems in NOD/SCID/IL2 receptor gamma chain(null) mice. Blood 106:1565–1573PubMedCrossRef Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, Watanabe T, Akashi K, Shultz LD, Harada M (2005) Development of functional human blood and immune systems in NOD/SCID/IL2 receptor gamma chain(null) mice. Blood 106:1565–1573PubMedCrossRef
239.
go back to reference Todd JA, Aitman TJ, Cornall RJ, Ghosh S, Hall JRS, Hearne CM, Knight AM, Love JM, McAleer MA, Prins JB, Rodriques N, Lathrop M, Pressey A, DeLarato NH, Peterson LB, Wicker LS (1991) Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature 351:542–547PubMedCrossRef Todd JA, Aitman TJ, Cornall RJ, Ghosh S, Hall JRS, Hearne CM, Knight AM, Love JM, McAleer MA, Prins JB, Rodriques N, Lathrop M, Pressey A, DeLarato NH, Peterson LB, Wicker LS (1991) Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature 351:542–547PubMedCrossRef
240.
go back to reference Pearce RB (1998) Fine-mapping of the mouse T lymphocyte fraction (Tlf) locus on Chromosome 9: association with autoimmune diabetes. J Autoimm 10:1–15 Pearce RB (1998) Fine-mapping of the mouse T lymphocyte fraction (Tlf) locus on Chromosome 9: association with autoimmune diabetes. J Autoimm 10:1–15
241.
go back to reference Ivakine EA, Mortin-Toth SM, Gulban OM, Valova A, Canty A, Scott C, Danska JS (2006) The idd4 locus displays sex-specific epistatic effects on type 1 diabetes susceptibility in nonobese diabetic mice. Diabetes 55:3611–3619PubMedCrossRef Ivakine EA, Mortin-Toth SM, Gulban OM, Valova A, Canty A, Scott C, Danska JS (2006) The idd4 locus displays sex-specific epistatic effects on type 1 diabetes susceptibility in nonobese diabetic mice. Diabetes 55:3611–3619PubMedCrossRef
242.
go back to reference Wicker LS, Chamberlain G, Hunter K, Rainbow D, Howlett S, Tiffen P, Clark J, Gonzalez-Munoz A, Cumiskey AM, Rosa RL, Howson JM, Smink LJ, Kingsnorth A, Lyons PA, Gregory S, Rogers J, Todd JA, Peterson LB (2004) Fine mapping, gene content, comparative sequencing, and expression analyses support Ctla4 and Nramp1 as candidates for Idd5.1 and Idd5.2 in the nonobese diabetic mouse. J Immunol 173:164–173PubMed Wicker LS, Chamberlain G, Hunter K, Rainbow D, Howlett S, Tiffen P, Clark J, Gonzalez-Munoz A, Cumiskey AM, Rosa RL, Howson JM, Smink LJ, Kingsnorth A, Lyons PA, Gregory S, Rogers J, Todd JA, Peterson LB (2004) Fine mapping, gene content, comparative sequencing, and expression analyses support Ctla4 and Nramp1 as candidates for Idd5.1 and Idd5.2 in the nonobese diabetic mouse. J Immunol 173:164–173PubMed
243.
go back to reference Hunter K, Rainbow D, Plagnol V, Todd JA, Peterson LB, Wicker LS (2007) Interactions between Idd5.1/Ctla4 and other type 1 diabetes genes. J Immunol 179:8341–8349PubMed Hunter K, Rainbow D, Plagnol V, Todd JA, Peterson LB, Wicker LS (2007) Interactions between Idd5.1/Ctla4 and other type 1 diabetes genes. J Immunol 179:8341–8349PubMed
244.
go back to reference Hung MS, Avner P, Rogner UC (2006) Identification of the transcription factor ARNTL2 as a candidate gene for the type 1 diabetes locus Idd6. Hum Mol Genet 15:2732–2742PubMedCrossRef Hung MS, Avner P, Rogner UC (2006) Identification of the transcription factor ARNTL2 as a candidate gene for the type 1 diabetes locus Idd6. Hum Mol Genet 15:2732–2742PubMedCrossRef
245.
go back to reference Bergman ML, Duarte N, Campino S, Lundholm M, Motta V, Lejon K, Penha-Goncalves C, Holmberg D (2003) Diabetes protection and restoration of thymocyte apoptosis in NOD Idd6 congenic strains. Diabetes 52:1677–1682PubMedCrossRef Bergman ML, Duarte N, Campino S, Lundholm M, Motta V, Lejon K, Penha-Goncalves C, Holmberg D (2003) Diabetes protection and restoration of thymocyte apoptosis in NOD Idd6 congenic strains. Diabetes 52:1677–1682PubMedCrossRef
246.
go back to reference Ghosh S, Palmer SM, Rodrigues NR, Cordell HJ, Hearne CM, Cornall RJ, Prins JB, McShane P, Lathrop GM, Peterson LB, Wicker LS, Todd JA (1993) Polygenic control of autoimmune diabetes in nonobese diabetic mice. Nat Genet 4:404–409PubMedCrossRef Ghosh S, Palmer SM, Rodrigues NR, Cordell HJ, Hearne CM, Cornall RJ, Prins JB, McShane P, Lathrop GM, Peterson LB, Wicker LS, Todd JA (1993) Polygenic control of autoimmune diabetes in nonobese diabetic mice. Nat Genet 4:404–409PubMedCrossRef
247.
go back to reference McAleer MA, Reifsnyder PC, Palmer SM, Prochazka M, Love JM, Copeman JB, Powell EE, Rodrigues NR, Prins J-B, Serreze DV, DeLarto NH, Wicker LS, Peterson LB, Schork NJ, Todd JA, Leiter EH (1995) Crosses of NOD mice with the related NON strain: a polygenic threshold model for type I diabetes. Diabetes 44:1186–1195PubMedCrossRef McAleer MA, Reifsnyder PC, Palmer SM, Prochazka M, Love JM, Copeman JB, Powell EE, Rodrigues NR, Prins J-B, Serreze DV, DeLarto NH, Wicker LS, Peterson LB, Schork NJ, Todd JA, Leiter EH (1995) Crosses of NOD mice with the related NON strain: a polygenic threshold model for type I diabetes. Diabetes 44:1186–1195PubMedCrossRef
248.
go back to reference Siegmund T, Armitage N, Wicker LS, Peterson LB, Todd JA, Lyons PA (2000) Analysis of the mouse CD30 gene: a candidate for the NOD mouse type 1 diabetes locus Idd9.2. Diabetes 49:1612–1616PubMedCrossRef Siegmund T, Armitage N, Wicker LS, Peterson LB, Todd JA, Lyons PA (2000) Analysis of the mouse CD30 gene: a candidate for the NOD mouse type 1 diabetes locus Idd9.2. Diabetes 49:1612–1616PubMedCrossRef
249.
go back to reference Cannons JL, Chamberlain G, Howson J, Smink LJ, Todd JA, Peterson LB, Wicker LS, Watts TH (2005) Genetic and functional association of the immune signaling molecule 4-1BB (CD137/TNFRSF9) with type 1 diabetes. J Autoimmun 25:13–20PubMedCrossRef Cannons JL, Chamberlain G, Howson J, Smink LJ, Todd JA, Peterson LB, Wicker LS, Watts TH (2005) Genetic and functional association of the immune signaling molecule 4-1BB (CD137/TNFRSF9) with type 1 diabetes. J Autoimmun 25:13–20PubMedCrossRef
250.
go back to reference Penha-Goncalves C, Moule C, Smink LJ, Howson J, Gregory S, Rogers J, Lyons PA, Suttie JJ, Lord CJ, Peterson LB, Todd JA, Wicker LS (2003) Identification of a structurally distinct CD101 molecule encoded in the 950-kb Idd10 region of NOD mice. Diabetes 52:1551–1556PubMedCrossRef Penha-Goncalves C, Moule C, Smink LJ, Howson J, Gregory S, Rogers J, Lyons PA, Suttie JJ, Lord CJ, Peterson LB, Todd JA, Wicker LS (2003) Identification of a structurally distinct CD101 molecule encoded in the 950-kb Idd10 region of NOD mice. Diabetes 52:1551–1556PubMedCrossRef
251.
go back to reference Brodnicki TC, McClive P, Couper S, Morahan G (2000) Localization of Idd11 using NOD congenic mouse strains: elimination of Slc9a1 as a candidate gene. Immunogenetics 51:37–41PubMedCrossRef Brodnicki TC, McClive P, Couper S, Morahan G (2000) Localization of Idd11 using NOD congenic mouse strains: elimination of Slc9a1 as a candidate gene. Immunogenetics 51:37–41PubMedCrossRef
252.
go back to reference Morahan G, McClive P, Huang D, Little P, Baxter A (1994) Genetic and physiological association of diabetes susceptibility with raised Na+/H + exchange activity. Proc Natl Acad Sci U S A 91:5898–5902PubMedCrossRef Morahan G, McClive P, Huang D, Little P, Baxter A (1994) Genetic and physiological association of diabetes susceptibility with raised Na+/H + exchange activity. Proc Natl Acad Sci U S A 91:5898–5902PubMedCrossRef
253.
go back to reference Brodnicki TC, Quirk F, Morahan G (2003) A susceptibility allele from a non-diabetes-prone mouse strain accelerates diabetes in NOD congenic mice. Diabetes 52:218–222PubMedCrossRef Brodnicki TC, Quirk F, Morahan G (2003) A susceptibility allele from a non-diabetes-prone mouse strain accelerates diabetes in NOD congenic mice. Diabetes 52:218–222PubMedCrossRef
254.
go back to reference Deruytter N, Boulard O, Garchon HJ (2004) Mapping non-class II H2-linked loci for type 1 diabetes in nonobese diabetic mice. Diabetes 53:3323–3327PubMedCrossRef Deruytter N, Boulard O, Garchon HJ (2004) Mapping non-class II H2-linked loci for type 1 diabetes in nonobese diabetic mice. Diabetes 53:3323–3327PubMedCrossRef
255.
go back to reference Podolin PL, Denny P, Lord CJ, Hill NJ, Todd JA, Peterson LB, Wicker LS, Lyons PA (1997) Congenic mapping of the insulin-dependent diabetes (Idd) gene, Idd10, localizes two genes mediating the Idd10 effect and eliminates the candidate Fcgr1. J Immunol 159:1835–1843PubMed Podolin PL, Denny P, Lord CJ, Hill NJ, Todd JA, Peterson LB, Wicker LS, Lyons PA (1997) Congenic mapping of the insulin-dependent diabetes (Idd) gene, Idd10, localizes two genes mediating the Idd10 effect and eliminates the candidate Fcgr1. J Immunol 159:1835–1843PubMed
256.
go back to reference Lyons PA, Armitage N, Lord CJ, Phillips MS, Todd JA, Peterson LB, Wicker LS (2001) Mapping by genetic interaction: high-resolution congenic mapping of the type 1 diabetes loci Idd10 and Idd18 in the NOD mouse. Diabetes 50:2633–2637PubMedCrossRef Lyons PA, Armitage N, Lord CJ, Phillips MS, Todd JA, Peterson LB, Wicker LS (2001) Mapping by genetic interaction: high-resolution congenic mapping of the type 1 diabetes loci Idd10 and Idd18 in the NOD mouse. Diabetes 50:2633–2637PubMedCrossRef
257.
go back to reference Morin J, Boitard C, Vallois D, Avner P, Rogner UC (2006) Mapping of the murine type 1 diabetes locus Idd20 by genetic interaction. Mamm Genome 17:1105–1112PubMedCrossRef Morin J, Boitard C, Vallois D, Avner P, Rogner UC (2006) Mapping of the murine type 1 diabetes locus Idd20 by genetic interaction. Mamm Genome 17:1105–1112PubMedCrossRef
258.
go back to reference Rogner UC, Boitard C, Morin J, Melanitou E, Avner P (2001) Three loci on mouse chromosome 6 influence onset and final incidence of type I diabetes in NOD.C3H congenic strains. Genomics 74:163–171PubMedCrossRef Rogner UC, Boitard C, Morin J, Melanitou E, Avner P (2001) Three loci on mouse chromosome 6 influence onset and final incidence of type I diabetes in NOD.C3H congenic strains. Genomics 74:163–171PubMedCrossRef
259.
go back to reference Hollis-Moffatt JE, Hook SM, Merriman TR (2005) Colocalization of mouse autoimmune diabetes loci Idd21.1 and Idd21.2 with IDDM6 (human) and Iddm3 (rat). Diabetes 54:2820–2825PubMedCrossRef Hollis-Moffatt JE, Hook SM, Merriman TR (2005) Colocalization of mouse autoimmune diabetes loci Idd21.1 and Idd21.2 with IDDM6 (human) and Iddm3 (rat). Diabetes 54:2820–2825PubMedCrossRef
260.
go back to reference Mathews CE, Graser RT, Bagley RJ, Caldwell JW, Li R, Churchill GA, Serreze DV, Leiter EH (2003) Genetic analysis of resistance to type-1 diabetes in ALR/Lt mice, a NOD-related strain with defenses against autoimmune-mediated diabetogenic stress. Immunogenetics 55:491–496PubMedCrossRef Mathews CE, Graser RT, Bagley RJ, Caldwell JW, Li R, Churchill GA, Serreze DV, Leiter EH (2003) Genetic analysis of resistance to type-1 diabetes in ALR/Lt mice, a NOD-related strain with defenses against autoimmune-mediated diabetogenic stress. Immunogenetics 55:491–496PubMedCrossRef
261.
go back to reference Chen J, Reifsnyder PC, Scheuplein F, Schott WH, Mileikovsky M, Soodeen-Karamath S, Nagy A, Dosch MH, Ellis J, Koch-Nolte F, Leiter EH (2005) “Agouti NOD”: identification of a CBA-derived Idd locus on chromosome 7 and its use for chimera production with NOD embryonic stem cells. Mamm Genome 16:775–783PubMedCrossRef Chen J, Reifsnyder PC, Scheuplein F, Schott WH, Mileikovsky M, Soodeen-Karamath S, Nagy A, Dosch MH, Ellis J, Koch-Nolte F, Leiter EH (2005) “Agouti NOD”: identification of a CBA-derived Idd locus on chromosome 7 and its use for chimera production with NOD embryonic stem cells. Mamm Genome 16:775–783PubMedCrossRef
262.
go back to reference Leiter EH, Reifsnyder PC, Wallace R, Li R, King B, Churchill GC (2009) NOD × 129.H2(g7) backcross delineates 129S1/SvImJ-derived genomic regions modulating type 1 diabetes development in mice. Diabetes 58:1700–1703PubMedCrossRef Leiter EH, Reifsnyder PC, Wallace R, Li R, King B, Churchill GC (2009) NOD × 129.H2(g7) backcross delineates 129S1/SvImJ-derived genomic regions modulating type 1 diabetes development in mice. Diabetes 58:1700–1703PubMedCrossRef
Metadata
Title
Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease
Authors
John P. Driver
David V. Serreze
Yi-Guang Chen
Publication date
01-01-2011
Publisher
Springer-Verlag
Published in
Seminars in Immunopathology / Issue 1/2011
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-010-0204-1

Other articles of this Issue 1/2011

Seminars in Immunopathology 1/2011 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.