Skip to main content
Top
Published in: Cancer & Metabolism 1/2015

Open Access 01-12-2015 | Case report

Treatment of glioma patients with ketogenic diets: report of two cases treated with an IRB-approved energy-restricted ketogenic diet protocol and review of the literature

Authors: Kenneth Schwartz, Howard T Chang, Michele Nikolai, Joseph Pernicone, Sherman Rhee, Karl Olson, Peter C Kurniali, Norman G Hord, Mary Noel

Published in: Cancer & Metabolism | Issue 1/2015

Login to get access

Abstract

Background

Based on the hypothesis that cancer cells may not be able to metabolize ketones as efficiently as normal brain cells, the ketogenic diet (KD) has been proposed as a complementary or alternative therapy for treatment of malignant gliomas.

Case presentation

We report here our experience in treating two glioma patients with an IRB-approved energy-restricted ketogenic diet (ERKD) protocol as monotherapy and review the literature on KD therapy for human glioma patients. An ERKD protocol was used in this pilot clinical study. In addition to the two patients who enrolled in this study, we also reviewed findings from 30 other patients, including 5 patients from case reports, 19 patients from a clinical trial reported by Rieger and 6 patients described by Champ. A total of 32 glioma patients have been treated using several different KD protocols as adjunctive/complementary therapy. The two patients who enrolled in our ERKD pilot study were monitored with twice daily measurements of blood glucose and ketones and daily weights. However, both patients showed tumor progression while on the ERKD therapy. Immunohistochemistry reactions showed that their tumors had tissue expression of at least one of the two critical mitochondrial ketolytic enzymes (succinyl CoA: 3-oxoacid CoA transferase, beta-3-hydroxybutyrate dehydrogenase 1). The other 30 glioma patients in the literature were treated with several different KD protocols with varying responses. Prolonged remissions ranging from more than 5 years to 4 months were reported in the case reports. Only one of these patients was treated using KD as monotherapy. The best responses reported in the more recent patient series were stable disease for approximately 6 weeks. No major side effects due to KD have been reported in any of these patients.

Conclusions

We conclude that 1. KD is safe and without major side effects; 2. ketosis can be induced using customary foods; 3. treatment with KD may be effective in controlling the progression of some gliomas; and 4. further studies are needed to determine factors that influence the effectiveness of KD, whether as a monotherapy, or as adjunctive or supplemental therapy in treating glioma patients.

Trial registration

ClinicalTrials.gov# NCT01535911
Literature
1.
2.
go back to reference Buckner JC, Brown PD, O’Neill BP, Meyer FB, Wetmore CJ, Uhm JH. Central nervous system tumors. Mayo Clin Proc. 2007;82:1271–86.CrossRefPubMed Buckner JC, Brown PD, O’Neill BP, Meyer FB, Wetmore CJ, Uhm JH. Central nervous system tumors. Mayo Clin Proc. 2007;82:1271–86.CrossRefPubMed
3.
go back to reference Clarke J, Butowski N, Chang S. Recent advances in therapy for glioblastoma. Arch Neurol. 2010;67:279–83.CrossRefPubMed Clarke J, Butowski N, Chang S. Recent advances in therapy for glioblastoma. Arch Neurol. 2010;67:279–83.CrossRefPubMed
4.
go back to reference Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRefPubMed Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRefPubMed
5.
go back to reference Jeswani S, Nuno M, Folkerts V, Mukherjee D, Black KL, Patil CG. Comparison of survival between cerebellar and supratentorial gioblastoma patients: surveillance, epidemiology, and end results (SEER) analysis. Neurosurgery. 2013;73(2):240-6. Jeswani S, Nuno M, Folkerts V, Mukherjee D, Black KL, Patil CG. Comparison of survival between cerebellar and supratentorial gioblastoma patients: surveillance, epidemiology, and end results (SEER) analysis. Neurosurgery. 2013;73(2):240-6.
6.
go back to reference Champ CE, Palmer JD, Volek JS, Werner-Wasik M, Andrews DW, Evans JJ, Glass J, Kim L, Shi W. Targeting metabolism with a ketogenic diet during the treatment of glioblastoma multiforme. J Neuro Oncol 2014, 117. Champ CE, Palmer JD, Volek JS, Werner-Wasik M, Andrews DW, Evans JJ, Glass J, Kim L, Shi W. Targeting metabolism with a ketogenic diet during the treatment of glioblastoma multiforme. J Neuro Oncol 2014, 117.
7.
go back to reference Maroon J, Bost J, Amos A, Zuccoli G. Restricted calorie ketogenic diet for the treatment of glioblastoma multiforme. J Child Neurol. 2013;28:1002–8.CrossRefPubMed Maroon J, Bost J, Amos A, Zuccoli G. Restricted calorie ketogenic diet for the treatment of glioblastoma multiforme. J Child Neurol. 2013;28:1002–8.CrossRefPubMed
8.
go back to reference Seyfried T, Shelton L. Cancer as a metabolic disease. Nutrition & Metabolism. 2010;7:7.CrossRef Seyfried T, Shelton L. Cancer as a metabolic disease. Nutrition & Metabolism. 2010;7:7.CrossRef
9.
go back to reference Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer. 2003;89:1375–82.CrossRefPubMedCentralPubMed Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer. 2003;89:1375–82.CrossRefPubMedCentralPubMed
10.
go back to reference Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13:472–82.CrossRefPubMed Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13:472–82.CrossRefPubMed
11.
go back to reference Fredericks M, Ramsey RB. 3-Oxo acid coenzyme A transferase activity in brain and tumors of the nervous system. J Neurochem. 1978;31:1529–31.CrossRefPubMed Fredericks M, Ramsey RB. 3-Oxo acid coenzyme A transferase activity in brain and tumors of the nervous system. J Neurochem. 1978;31:1529–31.CrossRefPubMed
12.
go back to reference Mauer GD, Brucker DP, Bahr O, Harter PN, Hattingen E, Walenta S, et al. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer. 2011;11:315–32.CrossRef Mauer GD, Brucker DP, Bahr O, Harter PN, Hattingen E, Walenta S, et al. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer. 2011;11:315–32.CrossRef
13.
go back to reference Chang HT, Olson LK, Schwarz KA. Ketolytic and glycolytic enzymatic expression profiles in malignant gliomas: implication for ketogenic diet. Nutr Metab. 2013;10:47.CrossRef Chang HT, Olson LK, Schwarz KA. Ketolytic and glycolytic enzymatic expression profiles in malignant gliomas: implication for ketogenic diet. Nutr Metab. 2013;10:47.CrossRef
14.
go back to reference Link TW, Woodworth GF, Chaichana KL, Grossman SA, Mayer RS, Brem H, et al. Hyperglycemia is independently associated with post-operative function loss in patients with primary eloquent glioblastoma. J Clin Neurosci. 2012;19:996–1000.CrossRefPubMed Link TW, Woodworth GF, Chaichana KL, Grossman SA, Mayer RS, Brem H, et al. Hyperglycemia is independently associated with post-operative function loss in patients with primary eloquent glioblastoma. J Clin Neurosci. 2012;19:996–1000.CrossRefPubMed
15.
go back to reference Mayer A, Vaupel P, Struss HG, Giese A, Stockinger M, Schmidberger H. Strong adverse prognostic impact of hyperglycemic episodes during adjuvant chemoradiotherapy of glioblastoma multiforme. Strahlenther Onkol. 2014;190(10):933-8. Mayer A, Vaupel P, Struss HG, Giese A, Stockinger M, Schmidberger H. Strong adverse prognostic impact of hyperglycemic episodes during adjuvant chemoradiotherapy of glioblastoma multiforme. Strahlenther Onkol. 2014;190(10):933-8.
16.
go back to reference Nebeling LC, Miraldi F, Shurin SB, Lerner E. Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr. 1995;14:202–8.CrossRefPubMed Nebeling LC, Miraldi F, Shurin SB, Lerner E. Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr. 1995;14:202–8.CrossRefPubMed
17.
go back to reference Zuccoli G, Marcello N, Pisanello A, Servadei F, Vaccaro S, Mukherjee P, et al. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: case report. Nutrition & Metabolism. 2010;7:33.CrossRef Zuccoli G, Marcello N, Pisanello A, Servadei F, Vaccaro S, Mukherjee P, et al. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: case report. Nutrition & Metabolism. 2010;7:33.CrossRef
18.
go back to reference Kalamian M, Zupec-Kania B, Favara BE, Liepa GU. Ketogenic diet as adjunctive therapy for brain tumors. First international symposium on the ketogenic diet for epilepsy and other neurological disorders (Barrows Neurological Institute, Phoeniz Az 2008: Poster presentation. Kalamian M, Zupec-Kania B, Favara BE, Liepa GU. Ketogenic diet as adjunctive therapy for brain tumors. First international symposium on the ketogenic diet for epilepsy and other neurological disorders (Barrows Neurological Institute, Phoeniz Az 2008: Poster presentation.
19.
go back to reference Moore K. Using the restricted ketogenic diet for brain cancer management: comments from neuro-oncologist. In: Hoboken ST, editor. Cancer as a Metabolic Disease: Management and Prevention of Cancer. First Edition edition. New Jersey: John Wiley & Sons Inc; 2012. p. 397–400. [Seyfried T (Series Editor). Moore K. Using the restricted ketogenic diet for brain cancer management: comments from neuro-oncologist. In: Hoboken ST, editor. Cancer as a Metabolic Disease: Management and Prevention of Cancer. First Edition edition. New Jersey: John Wiley & Sons Inc; 2012. p. 397–400. [Seyfried T (Series Editor).
20.
go back to reference Rieger J, Bahr O, Maurer GD, Hattingen E, Franz K, Brucker D, et al. ERCO A pilot study of ketogenic diet in recurrent glioblastoma. Int J Oncol. 2014;44:1843–52.PubMedCentralPubMed Rieger J, Bahr O, Maurer GD, Hattingen E, Franz K, Brucker D, et al. ERCO A pilot study of ketogenic diet in recurrent glioblastoma. Int J Oncol. 2014;44:1843–52.PubMedCentralPubMed
21.
go back to reference Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.CrossRefPubMed Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.CrossRefPubMed
Metadata
Title
Treatment of glioma patients with ketogenic diets: report of two cases treated with an IRB-approved energy-restricted ketogenic diet protocol and review of the literature
Authors
Kenneth Schwartz
Howard T Chang
Michele Nikolai
Joseph Pernicone
Sherman Rhee
Karl Olson
Peter C Kurniali
Norman G Hord
Mary Noel
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Cancer & Metabolism / Issue 1/2015
Electronic ISSN: 2049-3002
DOI
https://doi.org/10.1186/s40170-015-0129-1

Other articles of this Issue 1/2015

Cancer & Metabolism 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine