Skip to main content
Top
Published in: Cancer & Metabolism 1/2015

Open Access 01-12-2015 | Research

Quantification of folate metabolism using transient metabolic flux analysis

Authors: Philip M Tedeschi, Nadine Johnson-Farley, Hongxia Lin, Laura M Shelton, Takushi Ooga, Gillian Mackay, Niels Van Den Broek, Joseph R Bertino, Alexei Vazquez

Published in: Cancer & Metabolism | Issue 1/2015

Login to get access

Abstract

Background

Systematic quantitative methodologies are needed to understand the heterogeneity of cell metabolism across cell types in normal physiology, disease, and treatment. Metabolic flux analysis (MFA) can be used to infer steady state fluxes, but it does not apply for transient dynamics. Kinetic flux profiling (KFP) can be used in the context of transient dynamics, and it is the current gold standard. However, KFP requires measurements at several time points, limiting its use in high-throughput applications.

Results

Here we propose transient MFA (tMFA) as a cost-effective methodology to quantify metabolic fluxes using metabolomics and isotope tracing. tMFA exploits the time scale separation between the dynamics of different metabolites to obtain mathematical equations relating metabolic fluxes to metabolite concentrations and isotope fractions. We show that the isotope fractions of serine and glycine are at steady state 8 h after addition of a tracer, while those of purines and glutathione are following a transient dynamics with an approximately constant turnover rate per unit of metabolite, supporting the application of tMFA to the analysis of folate metabolism. Using tMFA, we investigate the heterogeneity of folate metabolism and the response to the antifolate methotrexate in breast cancer cells. Our analysis indicates that methotrexate not only inhibits purine synthesis but also induces an increase in the AMP/ATP ratio, activation of AMP kinase (AMPK), and the inhibition of protein and glutathione synthesis. We also find that in some cancer cells, the generation of one-carbon units from serine exceeds the biosynthetic demand.

Conclusions

This work validates tMFA as a cost-effective methodology to investigate cell metabolism. Using tMFA, we have shown that the effects of treatment with the antifolate methotrexate extend beyond inhibition of purine synthesis and propagate to other pathways in central metabolism.
Appendix
Available only for authorised users
Literature
1.
go back to reference Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer. 2013;13(8):572–83.PubMedCentralPubMed Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer. 2013;13(8):572–83.PubMedCentralPubMed
2.
go back to reference Maddocks ODK, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E, et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature. 2013;493(7433):542−+.CrossRefPubMed Maddocks ODK, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E, et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature. 2013;493(7433):542−+.CrossRefPubMed
3.
go back to reference Labuschagne CF, van den Broek NJF, Mackay GM, Vousden KH, Maddocks ODK. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep. 2014;7(4):1248–58.PubMed Labuschagne CF, van den Broek NJF, Mackay GM, Vousden KH, Maddocks ODK. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep. 2014;7(4):1248–58.PubMed
4.
go back to reference Fan J, Ye JB, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. Quantitative flux analysis reveals folate-dependent NADPH production (vol 510, pg 298, 2014). Nature. 2014;513(7519):574.CrossRef Fan J, Ye JB, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. Quantitative flux analysis reveals folate-dependent NADPH production (vol 510, pg 298, 2014). Nature. 2014;513(7519):574.CrossRef
5.
go back to reference Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY, Green CR, et al. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell. 2014;55(2):253–63.PubMed Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY, Green CR, et al. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell. 2014;55(2):253–63.PubMed
6.
go back to reference Vazquez A, Markert EK, Oltvai ZN. Serine biosynthesis with one carbon catabolism and the glycine cleavage system represents a novel pathway for ATP generation. Plos One. 2011;6(11), e25881.CrossRefPubMedCentralPubMed Vazquez A, Markert EK, Oltvai ZN. Serine biosynthesis with one carbon catabolism and the glycine cleavage system represents a novel pathway for ATP generation. Plos One. 2011;6(11), e25881.CrossRefPubMedCentralPubMed
7.
go back to reference Tedeschi PM, Markert EK, Gounder M, Lin H, Dvorzhinski D, Dolfi SC, et al. Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell Death Dis. 2013;4, e877.PubMedCentralPubMed Tedeschi PM, Markert EK, Gounder M, Lin H, Dvorzhinski D, Dolfi SC, et al. Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell Death Dis. 2013;4, e877.PubMedCentralPubMed
8.
go back to reference Hu J, Locasale JW, Bielas JH, O’Sullivan J, Sheahan K, Cantley LC, et al. Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat Biotechnol. 2013;31(6):522–U511.PubMedCentralPubMed Hu J, Locasale JW, Bielas JH, O’Sullivan J, Sheahan K, Cantley LC, et al. Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat Biotechnol. 2013;31(6):522–U511.PubMedCentralPubMed
9.
go back to reference Shlomi T, Cabili MN, Herrgard MJ, Palsson BO, Ruppin E. Network-based prediction of human tissue-specific metabolism. Nat Biotechnol. 2008;26(9):1003–10.PubMed Shlomi T, Cabili MN, Herrgard MJ, Palsson BO, Ruppin E. Network-based prediction of human tissue-specific metabolism. Nat Biotechnol. 2008;26(9):1003–10.PubMed
10.
go back to reference Shih C, Chen VJ, Gossett LS, Gates SB, MacKellar WC, Habeck LL, et al. LY231514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res. 1997;57(6):1116–23.PubMed Shih C, Chen VJ, Gossett LS, Gates SB, MacKellar WC, Habeck LL, et al. LY231514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res. 1997;57(6):1116–23.PubMed
11.
go back to reference Kwon YK, Lu WY, Melamud E, Khanam N, Bognar A, Rabinowitz JD. A domino effect in antifolate drug action in Escherichia coli. Nat Chem Biol. 2008;4(10):602–8.PubMedCentralPubMed Kwon YK, Lu WY, Melamud E, Khanam N, Bognar A, Rabinowitz JD. A domino effect in antifolate drug action in Escherichia coli. Nat Chem Biol. 2008;4(10):602–8.PubMedCentralPubMed
12.
go back to reference Hryniuk WM. Purineless death as a link between growth-rate and cytotoxicity by methotrexate. Cancer Res. 1972;32(7):1506.PubMed Hryniuk WM. Purineless death as a link between growth-rate and cytotoxicity by methotrexate. Cancer Res. 1972;32(7):1506.PubMed
13.
go back to reference Pike ST, Rajendra R, Artzt K, Appling DR. Mitochondrial C1-tetrahydrofolate synthase (MTHFD1L) supports the flow of mitochondrial one-carbon units into the methyl cycle in embryos. The Journal of biological chemistry. 2010;285(7):4612–20.PubMedCentralPubMed Pike ST, Rajendra R, Artzt K, Appling DR. Mitochondrial C1-tetrahydrofolate synthase (MTHFD1L) supports the flow of mitochondrial one-carbon units into the methyl cycle in embryos. The Journal of biological chemistry. 2010;285(7):4612–20.PubMedCentralPubMed
14.
go back to reference Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science. 2012;336(6084):1040–4.CrossRefPubMedCentralPubMed Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science. 2012;336(6084):1040–4.CrossRefPubMedCentralPubMed
15.
go back to reference Sauer U. Metabolic networks in motion: C-13-based flux analysis. Mol Syst Biol. 2006;2. Sauer U. Metabolic networks in motion: C-13-based flux analysis. Mol Syst Biol. 2006;2.
16.
go back to reference Zamboni N, Fendt SM, Ruhl M, Sauer U. (13)C-based metabolic flux analysis. Nat Protoc. 2009;4(6):878–92.PubMed Zamboni N, Fendt SM, Ruhl M, Sauer U. (13)C-based metabolic flux analysis. Nat Protoc. 2009;4(6):878–92.PubMed
17.
go back to reference Yuan J, Bennett BD, Rabinowitz JD. Kinetic flux profiling for quantitation of cellular metabolic fluxes. Nat Protoc. 2008;3(8):1328–40.PubMedCentralPubMed Yuan J, Bennett BD, Rabinowitz JD. Kinetic flux profiling for quantitation of cellular metabolic fluxes. Nat Protoc. 2008;3(8):1328–40.PubMedCentralPubMed
18.
go back to reference Soga T, Heiger DN. Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem. 2000;72(6):1236–41.PubMed Soga T, Heiger DN. Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem. 2000;72(6):1236–41.PubMed
19.
go back to reference Soga T, Ueno Y, Naraoka H, Ohashi Y, Tomita M, Nishioka T. Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem. 2002;74(10):2233–9.PubMed Soga T, Ueno Y, Naraoka H, Ohashi Y, Tomita M, Nishioka T. Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem. 2002;74(10):2233–9.PubMed
20.
go back to reference Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res. 2003;2(5):488–94.PubMed Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res. 2003;2(5):488–94.PubMed
21.
go back to reference Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Bio. 2012;13(4):251–62. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Bio. 2012;13(4):251–62.
22.
go back to reference Dolfi SC, Chan LL, Qiu J, Tedeschi PM, Bertino JR, Hirshfield KM, et al. The metabolic demands of cancer cells are coupled to their size and protein synthesis rates. Cancer & metabolism. 2013;1(1):20.CrossRef Dolfi SC, Chan LL, Qiu J, Tedeschi PM, Bertino JR, Hirshfield KM, et al. The metabolic demands of cancer cells are coupled to their size and protein synthesis rates. Cancer & metabolism. 2013;1(1):20.CrossRef
23.
go back to reference Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452(7184):230–U274.CrossRefPubMed Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452(7184):230–U274.CrossRefPubMed
24.
go back to reference Anastasiou D, Yu YM, Israelsen WJ, Jiang JK, Boxer MB, Hong BS, et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol. 2012;8(10):839–47.PubMedCentralPubMed Anastasiou D, Yu YM, Israelsen WJ, Jiang JK, Boxer MB, Hong BS, et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol. 2012;8(10):839–47.PubMedCentralPubMed
25.
go back to reference Warita K, Warita T, Beckwitt CH, Schurdak ME, Vazquez A, Wells A, et al. Statin-induced mevalonate pathway inhibition attenuates the growth of mesenchymal-like cancer cells that lack functional E-cadherin mediated cell cohesion. Scientific reports. 2014;4:7593.CrossRefPubMedCentralPubMed Warita K, Warita T, Beckwitt CH, Schurdak ME, Vazquez A, Wells A, et al. Statin-induced mevalonate pathway inhibition attenuates the growth of mesenchymal-like cancer cells that lack functional E-cadherin mediated cell cohesion. Scientific reports. 2014;4:7593.CrossRefPubMedCentralPubMed
26.
go back to reference Beckers A, Organe S, Timmermans L, Vanderhoydonc F, Deboel L, Derua R, et al. Methotrexate enhances the antianabolic and antiproliferative effects of 5-aminoimidazole-4-carboxamide riboside. Mol Cancer Ther. 2006;5(9):2211–7.PubMed Beckers A, Organe S, Timmermans L, Vanderhoydonc F, Deboel L, Derua R, et al. Methotrexate enhances the antianabolic and antiproliferative effects of 5-aminoimidazole-4-carboxamide riboside. Mol Cancer Ther. 2006;5(9):2211–7.PubMed
Metadata
Title
Quantification of folate metabolism using transient metabolic flux analysis
Authors
Philip M Tedeschi
Nadine Johnson-Farley
Hongxia Lin
Laura M Shelton
Takushi Ooga
Gillian Mackay
Niels Van Den Broek
Joseph R Bertino
Alexei Vazquez
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Cancer & Metabolism / Issue 1/2015
Electronic ISSN: 2049-3002
DOI
https://doi.org/10.1186/s40170-015-0132-6

Other articles of this Issue 1/2015

Cancer & Metabolism 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine