Skip to main content
Top
Published in: Clinical and Translational Medicine 1/2018

Open Access 01-12-2018 | Review

Oncolytic viruses and checkpoint inhibitors: combination therapy in clinical trials

Authors: Christopher J. LaRocca, Susanne G. Warner

Published in: Clinical and Translational Medicine | Issue 1/2018

Login to get access

Abstract

Advances in the understanding of cancer immunotherapy and the development of multiple checkpoint inhibitors have dramatically changed the current landscape of cancer treatment. Recent large-scale phase III trials (e.g. PHOCUS, OPTiM) are establishing use of oncolytic viruses as another tool in the cancer therapeutics armamentarium. These viruses do not simply lyse cells to achieve their cancer-killing effects, but also cause dramatic changes in the tumor immune microenvironment. This review will highlight the major vector platforms that are currently in development (including adenoviruses, reoviruses, vaccinia viruses, herpesviruses, and coxsackieviruses) and how they are combined with checkpoint inhibitors. These vectors employ a variety of engineered capsid modifications to enhance infectivity, genome deletions or promoter elements to confer selective replication, and encode a variety of transgenes to enhance anti-tumor or immunogenic effects. Pre-clinical and clinical data have shown that oncolytic vectors can induce anti-tumor immunity and markedly increase immune cell infiltration (including cytotoxic CD8+ T cells) into the local tumor microenvironment. This “priming” by the viral infection can change a ‘cold’ tumor microenvironment into a ‘hot’ one with the influx of a multitude of immune cells and cytokines. This alteration sets the stage for subsequent checkpoint inhibitor delivery, as they are most effective in an environment with a large lymphocytic infiltrate. There are multiple ongoing clinical trials that are currently combining oncolytic viruses with checkpoint inhibitors (e.g. CAPTIVE, CAPRA, and Masterkey-265), and the initial results are encouraging. It is clear that oncolytic viruses and checkpoint inhibitors will continue to evolve together as a combination therapy for multiple types of cancers.
Literature
1.
go back to reference Burstein HJ, Krilov L, Aragon-Ching JB, Baxter NN, Chiorean EG, Chow WA, De Groot JF, Devine SM, DuBois SG, El-Deiry WS et al (2017) Clinical cancer advances 2017: annual report on progress against cancer from the american society of clinical oncology. J Clin Oncol 35(12):1341–1367PubMedCrossRef Burstein HJ, Krilov L, Aragon-Ching JB, Baxter NN, Chiorean EG, Chow WA, De Groot JF, Devine SM, DuBois SG, El-Deiry WS et al (2017) Clinical cancer advances 2017: annual report on progress against cancer from the american society of clinical oncology. J Clin Oncol 35(12):1341–1367PubMedCrossRef
2.
go back to reference Dizon DS, Krilov L, Cohen E, Gangadhar T, Ganz PA, Hensing TA, Hunger S, Krishnamurthi SS, Lassman AB, Markham MJ et al (2016) Clinical cancer advances 2016: annual report on progress against cancer from the american society of clinical oncology. J Clin Oncol 34(9):987–1011PubMedCrossRef Dizon DS, Krilov L, Cohen E, Gangadhar T, Ganz PA, Hensing TA, Hunger S, Krishnamurthi SS, Lassman AB, Markham MJ et al (2016) Clinical cancer advances 2016: annual report on progress against cancer from the american society of clinical oncology. J Clin Oncol 34(9):987–1011PubMedCrossRef
3.
go back to reference Heymach J, Krilov L, Alberg A, Baxter N, Chang SM, Corcoran R, Dale W, DeMichele A, Magid Diefenbach CS, Dreicer R et al (2018) Clinical cancer advances 2018: annual report on progress against cancer from the american society of clinical oncology. J Clin Oncol 36(10):1020–1044PubMedCrossRef Heymach J, Krilov L, Alberg A, Baxter N, Chang SM, Corcoran R, Dale W, DeMichele A, Magid Diefenbach CS, Dreicer R et al (2018) Clinical cancer advances 2018: annual report on progress against cancer from the american society of clinical oncology. J Clin Oncol 36(10):1020–1044PubMedCrossRef
7.
go back to reference Hazama S, Tamada K, Yamaguchi Y, Kawakami Y, Nagano H (2018) Current status of immunotherapy against gastrointestinal cancers and its biomarkers: perspective for precision immunotherapy. Ann Gastroenterol Surg 2(4):289–303PubMedPubMedCentralCrossRef Hazama S, Tamada K, Yamaguchi Y, Kawakami Y, Nagano H (2018) Current status of immunotherapy against gastrointestinal cancers and its biomarkers: perspective for precision immunotherapy. Ann Gastroenterol Surg 2(4):289–303PubMedPubMedCentralCrossRef
8.
go back to reference Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373(1):23–34PubMedPubMedCentralCrossRef Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373(1):23–34PubMedPubMedCentralCrossRef
9.
go back to reference Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF et al (2017) Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377(14):1345–1356PubMedPubMedCentralCrossRef Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF et al (2017) Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377(14):1345–1356PubMedPubMedCentralCrossRef
10.
go back to reference Warner SG, O’Leary MP, Fong Y (2017) Therapeutic oncolytic viruses: clinical advances and future directions. Curr Opin Oncol 29(5):359–365PubMedCrossRef Warner SG, O’Leary MP, Fong Y (2017) Therapeutic oncolytic viruses: clinical advances and future directions. Curr Opin Oncol 29(5):359–365PubMedCrossRef
12.
go back to reference Lichty BD, Breitbach CJ, Stojdl DF, Bell JC (2014) Going viral with cancer immunotherapy. Nat Rev Cancer 14(8):559–567PubMedCrossRef Lichty BD, Breitbach CJ, Stojdl DF, Bell JC (2014) Going viral with cancer immunotherapy. Nat Rev Cancer 14(8):559–567PubMedCrossRef
13.
go back to reference Liu Z, Ravindranathan R, Kalinski P, Guo ZS, Bartlett DL (2017) Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun 8:14754PubMedPubMedCentralCrossRef Liu Z, Ravindranathan R, Kalinski P, Guo ZS, Bartlett DL (2017) Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun 8:14754PubMedPubMedCentralCrossRef
15.
go back to reference Hardcastle J, Kurozumi K, Chiocca EA, Kaur B (2007) Oncolytic viruses driven by tumor-specific promoters. Curr Cancer Drug Targets 7(2):181–189PubMedCrossRef Hardcastle J, Kurozumi K, Chiocca EA, Kaur B (2007) Oncolytic viruses driven by tumor-specific promoters. Curr Cancer Drug Targets 7(2):181–189PubMedCrossRef
17.
go back to reference LaRocca CJ, Han J, Gavrikova T, Armstrong L, Oliveira AR, Shanley R, Vickers SM, Yamamoto M, Davydova J (2015) Oncolytic adenovirus expressing interferon alpha in a syngeneic Syrian hamster model for the treatment of pancreatic cancer. Surgery 157(5):888–898PubMedCrossRef LaRocca CJ, Han J, Gavrikova T, Armstrong L, Oliveira AR, Shanley R, Vickers SM, Yamamoto M, Davydova J (2015) Oncolytic adenovirus expressing interferon alpha in a syngeneic Syrian hamster model for the treatment of pancreatic cancer. Surgery 157(5):888–898PubMedCrossRef
18.
go back to reference Latham JP, Searle PF, Mautner V, James ND (2000) Prostate-specific antigen promoter/enhancer driven gene therapy for prostate cancer: construction and testing of a tissue-specific adenovirus vector. Cancer Res 60(2):334–341PubMed Latham JP, Searle PF, Mautner V, James ND (2000) Prostate-specific antigen promoter/enhancer driven gene therapy for prostate cancer: construction and testing of a tissue-specific adenovirus vector. Cancer Res 60(2):334–341PubMed
19.
go back to reference Doloff JC, Waxman DJ, Jounaidi Y (2008) Human telomerase reverse transcriptase promoter-driven oncolytic adenovirus with E1B-19 kDa and E1B-55 kDa gene deletions. Hum Gene Ther 19(12):1383–1400PubMedPubMedCentralCrossRef Doloff JC, Waxman DJ, Jounaidi Y (2008) Human telomerase reverse transcriptase promoter-driven oncolytic adenovirus with E1B-19 kDa and E1B-55 kDa gene deletions. Hum Gene Ther 19(12):1383–1400PubMedPubMedCentralCrossRef
20.
go back to reference Ottolino-Perry K, Diallo JS, Lichty BD, Bell JC, McCart JA (2010) Intelligent design: combination therapy with oncolytic viruses. Mol Ther 18(2):251–263PubMedCrossRef Ottolino-Perry K, Diallo JS, Lichty BD, Bell JC, McCart JA (2010) Intelligent design: combination therapy with oncolytic viruses. Mol Ther 18(2):251–263PubMedCrossRef
21.
go back to reference Steinwaerder DS, Carlson CA, Lieber A (2001) Human papilloma virus E6 and E7 proteins support DNA replication of adenoviruses deleted for the E1A and E1B genes. Mol Ther 4(3):211–216PubMedCrossRef Steinwaerder DS, Carlson CA, Lieber A (2001) Human papilloma virus E6 and E7 proteins support DNA replication of adenoviruses deleted for the E1A and E1B genes. Mol Ther 4(3):211–216PubMedCrossRef
22.
go back to reference LaRocca CJ, Han J, Salzwedel AO, Davydova J, Herzberg MC, Gopalakrishnan R, Yamamoto M (2016) Oncolytic adenoviruses targeted to Human Papilloma Virus-positive head and neck squamous cell carcinomas. Oral Oncol 56:25–31PubMedPubMedCentralCrossRef LaRocca CJ, Han J, Salzwedel AO, Davydova J, Herzberg MC, Gopalakrishnan R, Yamamoto M (2016) Oncolytic adenoviruses targeted to Human Papilloma Virus-positive head and neck squamous cell carcinomas. Oral Oncol 56:25–31PubMedPubMedCentralCrossRef
23.
go back to reference Huang JL, LaRocca CJ, Yamamoto M (2016) Showing the way: oncolytic adenoviruses as chaperones of immunostimulatory adjuncts. Biomedicines 4(3):23PubMedCentralCrossRef Huang JL, LaRocca CJ, Yamamoto M (2016) Showing the way: oncolytic adenoviruses as chaperones of immunostimulatory adjuncts. Biomedicines 4(3):23PubMedCentralCrossRef
24.
go back to reference Armstrong L, Arrington A, Han J, Gavrikova T, Brown E, Yamamoto M, Vickers SM, Davydova J (2012) Generation of a novel, cyclooxygenase-2-targeted, interferon-expressing, conditionally replicative adenovirus for pancreatic cancer therapy. Am J Surg 204(5):741–750PubMedPubMedCentralCrossRef Armstrong L, Arrington A, Han J, Gavrikova T, Brown E, Yamamoto M, Vickers SM, Davydova J (2012) Generation of a novel, cyclooxygenase-2-targeted, interferon-expressing, conditionally replicative adenovirus for pancreatic cancer therapy. Am J Surg 204(5):741–750PubMedPubMedCentralCrossRef
25.
go back to reference Toda M, Martuza RL, Rabkin SD (2000) Tumor growth inhibition by intratumoral inoculation of defective herpes simplex virus vectors expressing granulocyte-macrophage colony-stimulating factor. Mol Ther 2(4):324–329PubMedCrossRef Toda M, Martuza RL, Rabkin SD (2000) Tumor growth inhibition by intratumoral inoculation of defective herpes simplex virus vectors expressing granulocyte-macrophage colony-stimulating factor. Mol Ther 2(4):324–329PubMedCrossRef
27.
go back to reference Li H, Peng KW, Russell SJ (2012) Oncolytic measles virus encoding thyroidal sodium iodide symporter for squamous cell cancer of the head and neck radiovirotherapy. Hum Gene Ther 23(3):295–301PubMedCrossRef Li H, Peng KW, Russell SJ (2012) Oncolytic measles virus encoding thyroidal sodium iodide symporter for squamous cell cancer of the head and neck radiovirotherapy. Hum Gene Ther 23(3):295–301PubMedCrossRef
28.
29.
go back to reference Raki M, Sarkioja M, Escutenaire S, Kangasniemi L, Haavisto E, Kanerva A, Cerullo V, Joensuu T, Oksanen M, Pesonen S et al (2011) Switching the fiber knob of oncolytic adenoviruses to avoid neutralizing antibodies in human cancer patients. J Gene Med 13(5):253–261PubMedCrossRef Raki M, Sarkioja M, Escutenaire S, Kangasniemi L, Haavisto E, Kanerva A, Cerullo V, Joensuu T, Oksanen M, Pesonen S et al (2011) Switching the fiber knob of oncolytic adenoviruses to avoid neutralizing antibodies in human cancer patients. J Gene Med 13(5):253–261PubMedCrossRef
30.
go back to reference Garcia-Castro J, Alemany R, Cascallo M, Martinez-Quintanilla J, Arriero Mdel M, Lassaletta A, Madero L, Ramirez M (2010) Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: an exploratory study. Cancer Gene Ther 17(7):476–483PubMedCrossRef Garcia-Castro J, Alemany R, Cascallo M, Martinez-Quintanilla J, Arriero Mdel M, Lassaletta A, Madero L, Ramirez M (2010) Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: an exploratory study. Cancer Gene Ther 17(7):476–483PubMedCrossRef
31.
go back to reference Guo ZS, Parimi V, O’Malley ME, Thirunavukarasu P, Sathaiah M, Austin F, Bartlett DL (2010) The combination of immunosuppression and carrier cells significantly enhances the efficacy of oncolytic poxvirus in the pre-immunized host. Gene Ther 17(12):1465–1475PubMedPubMedCentralCrossRef Guo ZS, Parimi V, O’Malley ME, Thirunavukarasu P, Sathaiah M, Austin F, Bartlett DL (2010) The combination of immunosuppression and carrier cells significantly enhances the efficacy of oncolytic poxvirus in the pre-immunized host. Gene Ther 17(12):1465–1475PubMedPubMedCentralCrossRef
33.
go back to reference Guo ZS, Liu Z, Bartlett DL (2014) Oncolytic immunotherapy: dying the right way is a key to eliciting potent antitumor immunity. Front Oncol 4:74PubMedPubMedCentral Guo ZS, Liu Z, Bartlett DL (2014) Oncolytic immunotherapy: dying the right way is a key to eliciting potent antitumor immunity. Front Oncol 4:74PubMedPubMedCentral
34.
go back to reference Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296(5566):298–300PubMedCrossRef Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296(5566):298–300PubMedCrossRef
35.
go back to reference Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L (2007) Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 7(2):95–106PubMedCrossRef Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L (2007) Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 7(2):95–106PubMedCrossRef
36.
go back to reference Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, Golstein P (1987) A new member of the immunoglobulin superfamily—CTLA-4. Nature 328(6127):267–270PubMedCrossRef Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, Golstein P (1987) A new member of the immunoglobulin superfamily—CTLA-4. Nature 328(6127):267–270PubMedCrossRef
37.
go back to reference Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11(11):3887–3895PubMedPubMedCentralCrossRef Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11(11):3887–3895PubMedPubMedCentralCrossRef
38.
go back to reference Berkey SE, Thorne SH, Bartlett DL (2017) Oncolytic virotherapy and the tumor microenvironment. Adv Exp Med Biol 1036:157–172PubMedCrossRef Berkey SE, Thorne SH, Bartlett DL (2017) Oncolytic virotherapy and the tumor microenvironment. Adv Exp Med Biol 1036:157–172PubMedCrossRef
39.
40.
go back to reference Gujar S, Pol JG, Kim Y, Lee PW, Kroemer G (2018) Antitumor benefits of antiviral immunity: an underappreciated aspect of oncolytic virotherapies. Trends Immunol 39(3):209–221PubMedCrossRef Gujar S, Pol JG, Kim Y, Lee PW, Kroemer G (2018) Antitumor benefits of antiviral immunity: an underappreciated aspect of oncolytic virotherapies. Trends Immunol 39(3):209–221PubMedCrossRef
41.
go back to reference Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, Olszanski AJ, Malvehy J, Cebon J, Fernandez E et al (2017) Oncolytic virotherapy promotes intratumoral t cell infiltration and improves anti-PD-1 immunotherapy. Cell 170(6):1109–1119PubMedCrossRefPubMedCentral Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, Olszanski AJ, Malvehy J, Cebon J, Fernandez E et al (2017) Oncolytic virotherapy promotes intratumoral t cell infiltration and improves anti-PD-1 immunotherapy. Cell 170(6):1109–1119PubMedCrossRefPubMedCentral
42.
go back to reference Samson A, Scott KJ, Taggart D, West EJ, Wilson E, Nuovo GJ, Thomson S, Corns R, Mathew RK, Fuller MJ et al (2018) Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Sci Transl Med 10(422):7577CrossRef Samson A, Scott KJ, Taggart D, West EJ, Wilson E, Nuovo GJ, Thomson S, Corns R, Mathew RK, Fuller MJ et al (2018) Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Sci Transl Med 10(422):7577CrossRef
43.
go back to reference Grinde B (2013) Herpesviruses: latency and reactivation—viral strategies and host response. J Oral Microbiol 5:22766CrossRef Grinde B (2013) Herpesviruses: latency and reactivation—viral strategies and host response. J Oral Microbiol 5:22766CrossRef
44.
go back to reference Sanchala DS, Bhatt LK, Prabhavalkar KS (2017) Oncolytic herpes simplex viral therapy: a stride toward selective targeting of cancer cells. Front Pharmacol 8:270PubMedPubMedCentralCrossRef Sanchala DS, Bhatt LK, Prabhavalkar KS (2017) Oncolytic herpes simplex viral therapy: a stride toward selective targeting of cancer cells. Front Pharmacol 8:270PubMedPubMedCentralCrossRef
45.
go back to reference Liu BL, Robinson M, Han ZQ, Branston RH, English C, Reay P, McGrath Y, Thomas SK, Thornton M, Bullock P et al (2003) ICP345 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther 10(4):292–303PubMedCrossRef Liu BL, Robinson M, Han ZQ, Branston RH, English C, Reay P, McGrath Y, Thomas SK, Thornton M, Bullock P et al (2003) ICP345 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther 10(4):292–303PubMedCrossRef
46.
go back to reference Kohlhapp FJ, Kaufman HL (2016) Molecular pathways: mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res 22(5):1048–1054PubMedCrossRef Kohlhapp FJ, Kaufman HL (2016) Molecular pathways: mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res 22(5):1048–1054PubMedCrossRef
47.
go back to reference Hu JC, Coffin RS, Davis CJ, Graham NJ, Groves N, Guest PJ, Harrington KJ, James ND, Love CA, McNeish I et al (2006) A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res 12(22):6737–6747PubMedCrossRef Hu JC, Coffin RS, Davis CJ, Graham NJ, Groves N, Guest PJ, Harrington KJ, James ND, Love CA, McNeish I et al (2006) A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res 12(22):6737–6747PubMedCrossRef
48.
go back to reference Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I, Agarwala SS et al (2015) Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 33(25):2780–2788PubMedCrossRef Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I, Agarwala SS et al (2015) Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 33(25):2780–2788PubMedCrossRef
49.
go back to reference Kaufman HL, Kim DW, DeRaffele G, Mitcham J, Coffin RS, Kim-Schulze S (2010) Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol 17(3):718–730PubMedCrossRef Kaufman HL, Kim DW, DeRaffele G, Mitcham J, Coffin RS, Kim-Schulze S (2010) Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol 17(3):718–730PubMedCrossRef
50.
go back to reference Puzanov I, Milhem MM, Minor D, Hamid O, Li A, Chen L, Chastain M, Gorski KS, Anderson A, Chou J et al (2016) Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB–IV melanoma. J Clin Oncol 34(22):2619–2626PubMedCrossRefPubMedCentral Puzanov I, Milhem MM, Minor D, Hamid O, Li A, Chen L, Chastain M, Gorski KS, Anderson A, Chou J et al (2016) Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB–IV melanoma. J Clin Oncol 34(22):2619–2626PubMedCrossRefPubMedCentral
51.
go back to reference Chesney J, Puzanov I, Collichio F, Singh P, Milhem MM, Glaspy J, Hamid O, Ross M, Friedlander P, Garbe C et al (2018) Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol 36(17):1658–1667PubMedCrossRef Chesney J, Puzanov I, Collichio F, Singh P, Milhem MM, Glaspy J, Hamid O, Ross M, Friedlander P, Garbe C et al (2018) Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol 36(17):1658–1667PubMedCrossRef
52.
go back to reference Eissa IR, Naoe Y, Bustos-Villalobos I, Ichinose T, Tanaka M, Zhiwen W, Mukoyama N, Morimoto T, Miyajima N, Hitoki H et al (2017) Genomic signature of the natural oncolytic herpes simplex virus HF10 and its therapeutic role in preclinical and clinical trials. Front Oncol 7:149PubMedPubMedCentralCrossRef Eissa IR, Naoe Y, Bustos-Villalobos I, Ichinose T, Tanaka M, Zhiwen W, Mukoyama N, Morimoto T, Miyajima N, Hitoki H et al (2017) Genomic signature of the natural oncolytic herpes simplex virus HF10 and its therapeutic role in preclinical and clinical trials. Front Oncol 7:149PubMedPubMedCentralCrossRef
53.
go back to reference Andtbacka RHI, Ross MI, Agarwala SS, Taylor MH, Vetto JT, Neves RI, Daud A, Khong HT, Ungerleider RS, Tanaka M et al (2017) Final results of a phase II multicenter trial of HF10, a replication-competent HSV-1 oncolytic virus, and ipilimumab combination treatment in patients with stage IIIB–IV unresectable or metastatic melanoma. J Clin Oncol 35(15_suppl):9510CrossRef Andtbacka RHI, Ross MI, Agarwala SS, Taylor MH, Vetto JT, Neves RI, Daud A, Khong HT, Ungerleider RS, Tanaka M et al (2017) Final results of a phase II multicenter trial of HF10, a replication-competent HSV-1 oncolytic virus, and ipilimumab combination treatment in patients with stage IIIB–IV unresectable or metastatic melanoma. J Clin Oncol 35(15_suppl):9510CrossRef
54.
go back to reference Khanal S, Ghimire P, Dhamoon AS (2018) The repertoire of adenovirus in human disease: the innocuous to the deadly. Biomedicines 6(1):30PubMedCentralCrossRef Khanal S, Ghimire P, Dhamoon AS (2018) The repertoire of adenovirus in human disease: the innocuous to the deadly. Biomedicines 6(1):30PubMedCentralCrossRef
55.
go back to reference Buijs PR, Verhagen JH, van Eijck CH, van den Hoogen BG (2015) Oncolytic viruses: from bench to bedside with a focus on safety. Hum Vaccin Immunother 11(7):1573–1584PubMedPubMedCentralCrossRef Buijs PR, Verhagen JH, van Eijck CH, van den Hoogen BG (2015) Oncolytic viruses: from bench to bedside with a focus on safety. Hum Vaccin Immunother 11(7):1573–1584PubMedPubMedCentralCrossRef
56.
go back to reference Fueyo J, Alemany R, Gomez-Manzano C, Fuller GN, Khan A, Conrad CA, Liu TJ, Jiang H, Lemoine MG, Suzuki K et al (2003) Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J Natl Cancer Inst 95(9):652–660PubMedCrossRef Fueyo J, Alemany R, Gomez-Manzano C, Fuller GN, Khan A, Conrad CA, Liu TJ, Jiang H, Lemoine MG, Suzuki K et al (2003) Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J Natl Cancer Inst 95(9):652–660PubMedCrossRef
57.
go back to reference Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P, Shi YX, Levin VA, Yung WK, Kyritsis AP (2000) A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 19(1):2–12PubMedCrossRef Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P, Shi YX, Levin VA, Yung WK, Kyritsis AP (2000) A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 19(1):2–12PubMedCrossRef
58.
go back to reference Lang FF, Conrad C, Gomez-Manzano C, Yung WKA, Sawaya R, Weinberg JS, Prabhu SS, Rao G, Fuller GN, Aldape KD et al (2018) Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol 36(14):1419–1427PubMedPubMedCentralCrossRef Lang FF, Conrad C, Gomez-Manzano C, Yung WKA, Sawaya R, Weinberg JS, Prabhu SS, Rao G, Fuller GN, Aldape KD et al (2018) Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol 36(14):1419–1427PubMedPubMedCentralCrossRef
60.
go back to reference Koski A, Kangasniemi L, Escutenaire S, Pesonen S, Cerullo V, Diaconu I, Nokisalmi P, Raki M, Rajecki M, Guse K et al (2010) Treatment of cancer patients with a serotype 5/3 chimeric oncolytic adenovirus expressing GMCSF. Mol Ther 18(10):1874–1884PubMedPubMedCentralCrossRef Koski A, Kangasniemi L, Escutenaire S, Pesonen S, Cerullo V, Diaconu I, Nokisalmi P, Raki M, Rajecki M, Guse K et al (2010) Treatment of cancer patients with a serotype 5/3 chimeric oncolytic adenovirus expressing GMCSF. Mol Ther 18(10):1874–1884PubMedPubMedCentralCrossRef
61.
go back to reference Ranki T, Pesonen S, Hemminki A, Partanen K, Kairemo K, Alanko T, Lundin J, Linder N, Turkki R, Ristimaki A et al (2016) Phase I study with ONCOS-102 for the treatment of solid tumors—an evaluation of clinical response and exploratory analyses of immune markers. J Immunother Cancer 4:17PubMedPubMedCentralCrossRef Ranki T, Pesonen S, Hemminki A, Partanen K, Kairemo K, Alanko T, Lundin J, Linder N, Turkki R, Ristimaki A et al (2016) Phase I study with ONCOS-102 for the treatment of solid tumors—an evaluation of clinical response and exploratory analyses of immune markers. J Immunother Cancer 4:17PubMedPubMedCentralCrossRef
62.
go back to reference Ranki T, Joensuu T, Jager E, Karbach J, Wahle C, Kairemo K, Alanko T, Partanen K, Turkki R, Linder N et al (2014) Local treatment of a pleural mesothelioma tumor with ONCOS-102 induces a systemic antitumor CD8(+) T-cell response, prominent infiltration of CD8(+) lymphocytes and Th1 type polarization. Oncoimmunology 3(10):e958937PubMedPubMedCentralCrossRef Ranki T, Joensuu T, Jager E, Karbach J, Wahle C, Kairemo K, Alanko T, Partanen K, Turkki R, Linder N et al (2014) Local treatment of a pleural mesothelioma tumor with ONCOS-102 induces a systemic antitumor CD8(+) T-cell response, prominent infiltration of CD8(+) lymphocytes and Th1 type polarization. Oncoimmunology 3(10):e958937PubMedPubMedCentralCrossRef
63.
go back to reference Vassilev L, Ranki T, Joensuu T, Jager E, Karbach J, Wahle C, Partanen K, Kairemo K, Alanko T, Turkki R et al (2015) Repeated intratumoral administration of ONCOS-102 leads to systemic antitumor CD8(+) T-cell response and robust cellular and transcriptional immune activation at tumor site in a patient with ovarian cancer. Oncoimmunology 4(7):e1017702PubMedPubMedCentralCrossRef Vassilev L, Ranki T, Joensuu T, Jager E, Karbach J, Wahle C, Partanen K, Kairemo K, Alanko T, Turkki R et al (2015) Repeated intratumoral administration of ONCOS-102 leads to systemic antitumor CD8(+) T-cell response and robust cellular and transcriptional immune activation at tumor site in a patient with ovarian cancer. Oncoimmunology 4(7):e1017702PubMedPubMedCentralCrossRef
65.
go back to reference Dias JD, Hemminki O, Diaconu I, Hirvinen M, Bonetti A, Guse K, Escutenaire S, Kanerva A, Pesonen S, Loskog A et al (2012) Targeted cancer immunotherapy with oncolytic adenovirus coding for a fully human monoclonal antibody specific for CTLA-4. Gene Ther 19(10):988–998PubMedCrossRef Dias JD, Hemminki O, Diaconu I, Hirvinen M, Bonetti A, Guse K, Escutenaire S, Kanerva A, Pesonen S, Loskog A et al (2012) Targeted cancer immunotherapy with oncolytic adenovirus coding for a fully human monoclonal antibody specific for CTLA-4. Gene Ther 19(10):988–998PubMedCrossRef
66.
go back to reference Du T, Shi G, Li YM, Zhang JF, Tian HW, Wei YQ, Deng H, Yu DC (2014) Tumor-specific oncolytic adenoviruses expressing granulocyte macrophage colony-stimulating factor or anti-CTLA4 antibody for the treatment of cancers. Cancer Gene Ther 21(8):340–348PubMedCrossRef Du T, Shi G, Li YM, Zhang JF, Tian HW, Wei YQ, Deng H, Yu DC (2014) Tumor-specific oncolytic adenoviruses expressing granulocyte macrophage colony-stimulating factor or anti-CTLA4 antibody for the treatment of cancers. Cancer Gene Ther 21(8):340–348PubMedCrossRef
69.
go back to reference Al Yaghchi C, Zhang Z, Alusi G, Lemoine NR, Wang Y (2015) Vaccinia virus, a promising new therapeutic agent for pancreatic cancer. Immunotherapy 7(12):1249–1258PubMedCrossRef Al Yaghchi C, Zhang Z, Alusi G, Lemoine NR, Wang Y (2015) Vaccinia virus, a promising new therapeutic agent for pancreatic cancer. Immunotherapy 7(12):1249–1258PubMedCrossRef
70.
go back to reference Breitbach CJ, Bell JC, Hwang TH, Kirn DH, Burke J (2015) The emerging therapeutic potential of the oncolytic immunotherapeutic Pexa-Vec (JX-594). Oncolytic Virother 4:25–31PubMedPubMedCentralCrossRef Breitbach CJ, Bell JC, Hwang TH, Kirn DH, Burke J (2015) The emerging therapeutic potential of the oncolytic immunotherapeutic Pexa-Vec (JX-594). Oncolytic Virother 4:25–31PubMedPubMedCentralCrossRef
71.
go back to reference Hengstschlager M, Pfeilstocker M, Wawra E (1998) Thymidine kinase expression. A marker for malignant cells. Adv Exp Med Biol 431:455–460PubMedCrossRef Hengstschlager M, Pfeilstocker M, Wawra E (1998) Thymidine kinase expression. A marker for malignant cells. Adv Exp Med Biol 431:455–460PubMedCrossRef
72.
go back to reference Breitbach CJ, Arulanandam R, De Silva N, Thorne SH, Patt R, Daneshmand M, Moon A, Ilkow C, Burke J, Hwang TH et al (2013) Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans. Cancer Res 73(4):1265–1275PubMedCrossRef Breitbach CJ, Arulanandam R, De Silva N, Thorne SH, Patt R, Daneshmand M, Moon A, Ilkow C, Burke J, Hwang TH et al (2013) Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans. Cancer Res 73(4):1265–1275PubMedCrossRef
73.
go back to reference Mastrangelo MJ, Maguire HC Jr, Eisenlohr LC, Laughlin CE, Monken CE, McCue PA, Kovatich AJ, Lattime EC (1999) Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther 6(5):409–422PubMedCrossRef Mastrangelo MJ, Maguire HC Jr, Eisenlohr LC, Laughlin CE, Monken CE, McCue PA, Kovatich AJ, Lattime EC (1999) Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther 6(5):409–422PubMedCrossRef
74.
go back to reference Breitbach CJ, Burke J, Jonker D, Stephenson J, Haas AR, Chow LQ, Nieva J, Hwang TH, Moon A, Patt R et al (2011) Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature 477(7362):99–102PubMedCrossRef Breitbach CJ, Burke J, Jonker D, Stephenson J, Haas AR, Chow LQ, Nieva J, Hwang TH, Moon A, Patt R et al (2011) Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature 477(7362):99–102PubMedCrossRef
75.
go back to reference Hwang TH, Moon A, Burke J, Ribas A, Stephenson J, Breitbach CJ, Daneshmand M, De Silva N, Parato K, Diallo JS et al (2011) A mechanistic proof-of-concept clinical trial with JX-594, a targeted multi-mechanistic oncolytic poxvirus, in patients with metastatic melanoma. Mol Ther 19(10):1913–1922PubMedPubMedCentralCrossRef Hwang TH, Moon A, Burke J, Ribas A, Stephenson J, Breitbach CJ, Daneshmand M, De Silva N, Parato K, Diallo JS et al (2011) A mechanistic proof-of-concept clinical trial with JX-594, a targeted multi-mechanistic oncolytic poxvirus, in patients with metastatic melanoma. Mol Ther 19(10):1913–1922PubMedPubMedCentralCrossRef
76.
go back to reference Park BH, Hwang T, Liu TC, Sze DY, Kim JS, Kwon HC, Oh SY, Han SY, Yoon JH, Hong SH et al (2008) Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol 9(6):533–542PubMedCrossRef Park BH, Hwang T, Liu TC, Sze DY, Kim JS, Kwon HC, Oh SY, Han SY, Yoon JH, Hong SH et al (2008) Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol 9(6):533–542PubMedCrossRef
77.
go back to reference Anthoney A, Samson A, West E, Turnbull SJ, Scott K, Tidswell E, Kingston J, Johnpulle M, Noutch S, Bendjama K et al (2018) Single intravenous preoperative administration of the oncolytic virus Pexa-Vec to prime anti-tumor immunity. J Clin Oncol 36(15_Suppl):3092CrossRef Anthoney A, Samson A, West E, Turnbull SJ, Scott K, Tidswell E, Kingston J, Johnpulle M, Noutch S, Bendjama K et al (2018) Single intravenous preoperative administration of the oncolytic virus Pexa-Vec to prime anti-tumor immunity. J Clin Oncol 36(15_Suppl):3092CrossRef
78.
go back to reference Phillips MB, Stuart JD, Rodriguez Stewart RM, Berry JT, Mainou BA, Boehme KW (2018) Current understanding of reovirus oncolysis mechanisms. Oncolytic Virother 7:53–63PubMedPubMedCentralCrossRef Phillips MB, Stuart JD, Rodriguez Stewart RM, Berry JT, Mainou BA, Boehme KW (2018) Current understanding of reovirus oncolysis mechanisms. Oncolytic Virother 7:53–63PubMedPubMedCentralCrossRef
79.
go back to reference Strong JE, Coffey MC, Tang D, Sabinin P, Lee PW (1998) The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J 17(12):3351–3362PubMedPubMedCentralCrossRef Strong JE, Coffey MC, Tang D, Sabinin P, Lee PW (1998) The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J 17(12):3351–3362PubMedPubMedCentralCrossRef
80.
go back to reference Gong J, Sachdev E, Mita AC, Mita MM (2016) Clinical development of reovirus for cancer therapy: an oncolytic virus with immune-mediated antitumor activity. World J Methodol 6(1):25–42PubMedPubMedCentralCrossRef Gong J, Sachdev E, Mita AC, Mita MM (2016) Clinical development of reovirus for cancer therapy: an oncolytic virus with immune-mediated antitumor activity. World J Methodol 6(1):25–42PubMedPubMedCentralCrossRef
81.
go back to reference Chakrabarty R, Tran H, Selvaggi G, Hagerman A, Thompson B, Coffey M (2015) The oncolytic virus, pelareorep, as a novel anticancer agent: a review. Invest New Drugs 33(3):761–774PubMedCrossRef Chakrabarty R, Tran H, Selvaggi G, Hagerman A, Thompson B, Coffey M (2015) The oncolytic virus, pelareorep, as a novel anticancer agent: a review. Invest New Drugs 33(3):761–774PubMedCrossRef
82.
go back to reference Rajani K, Parrish C, Kottke T, Thompson J, Zaidi S, Ilett L, Shim KG, Diaz RM, Pandha H, Harrington K et al (2016) Combination therapy With reovirus and anti-PD-1 blockade controls tumor growth through innate and adaptive immune responses. Mol Ther 24(1):166–174PubMedCrossRef Rajani K, Parrish C, Kottke T, Thompson J, Zaidi S, Ilett L, Shim KG, Diaz RM, Pandha H, Harrington K et al (2016) Combination therapy With reovirus and anti-PD-1 blockade controls tumor growth through innate and adaptive immune responses. Mol Ther 24(1):166–174PubMedCrossRef
83.
go back to reference Mahalingam D, Fountzilas C, Moseley JL, Noronha N, Cheetham K, Dzugalo A, Nuovo G, Gutierrez A, Arora SP (2018) A study of pelareorep in combination with pembrolizumab and chemotherapy in patients (pts) with relapsed metastatic adenocarcinoma of the pancreas (MAP). J Clin Oncol 36(4_Suppl):283 Mahalingam D, Fountzilas C, Moseley JL, Noronha N, Cheetham K, Dzugalo A, Nuovo G, Gutierrez A, Arora SP (2018) A study of pelareorep in combination with pembrolizumab and chemotherapy in patients (pts) with relapsed metastatic adenocarcinoma of the pancreas (MAP). J Clin Oncol 36(4_Suppl):283
84.
go back to reference Lundstrom K (2018) New frontiers in oncolytic viruses: optimizing and selecting for virus strains with improved efficacy. Biologics 12:43–60PubMedPubMedCentral Lundstrom K (2018) New frontiers in oncolytic viruses: optimizing and selecting for virus strains with improved efficacy. Biologics 12:43–60PubMedPubMedCentral
85.
go back to reference Bradley S, Jakes AD, Harrington K, Pandha H, Melcher A, Errington-Mais F (2014) Applications of coxsackievirus A21 in oncology. Oncolytic Virother 3:47–55PubMedPubMedCentralCrossRef Bradley S, Jakes AD, Harrington K, Pandha H, Melcher A, Errington-Mais F (2014) Applications of coxsackievirus A21 in oncology. Oncolytic Virother 3:47–55PubMedPubMedCentralCrossRef
86.
go back to reference Shafren DR, Dorahy DJ, Ingham RA, Burns GF, Barry RD (1997) Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry. J Virol 71(6):4736–4743PubMedPubMedCentral Shafren DR, Dorahy DJ, Ingham RA, Burns GF, Barry RD (1997) Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry. J Virol 71(6):4736–4743PubMedPubMedCentral
87.
go back to reference Shafren DR, Au GG, Nguyen T, Newcombe NG, Haley ES, Beagley L, Johansson ES, Hersey P, Barry RD (2004) Systemic therapy of malignant human melanoma tumors by a common cold-producing enterovirus, coxsackievirus a21. Clin Cancer Res 10(1 Pt 1):53–60PubMedCrossRef Shafren DR, Au GG, Nguyen T, Newcombe NG, Haley ES, Beagley L, Johansson ES, Hersey P, Barry RD (2004) Systemic therapy of malignant human melanoma tumors by a common cold-producing enterovirus, coxsackievirus a21. Clin Cancer Res 10(1 Pt 1):53–60PubMedCrossRef
88.
go back to reference Au GG, Lindberg AM, Barry RD, Shafren DR (2005) Oncolysis of vascular malignant human melanoma tumors by Coxsackievirus A21. Int J Oncol 26(6):1471–1476PubMed Au GG, Lindberg AM, Barry RD, Shafren DR (2005) Oncolysis of vascular malignant human melanoma tumors by Coxsackievirus A21. Int J Oncol 26(6):1471–1476PubMed
89.
go back to reference Au GG, Beagley LG, Haley ES, Barry RD, Shafren DR (2011) Oncolysis of malignant human melanoma tumors by Coxsackieviruses A13, A15 and A18. Virol J 8:22PubMedPubMedCentralCrossRef Au GG, Beagley LG, Haley ES, Barry RD, Shafren DR (2011) Oncolysis of malignant human melanoma tumors by Coxsackieviruses A13, A15 and A18. Virol J 8:22PubMedPubMedCentralCrossRef
90.
go back to reference Andtbacka RH, Shafren DR, Grose M, Post L, Weisberg J (2014) Abstract 2939: cAVATAK-mediated oncolytic immunotherapy in advanced melanoma patients. Can Res 74(19 Supplement):2939CrossRef Andtbacka RH, Shafren DR, Grose M, Post L, Weisberg J (2014) Abstract 2939: cAVATAK-mediated oncolytic immunotherapy in advanced melanoma patients. Can Res 74(19 Supplement):2939CrossRef
91.
go back to reference Yuan Quah M, Wong Y, Andtbacka R, Au G, Shafren DR (2016) Abstract 2341: elevated immune activity following an anticancer combination therapy of a novel oncolytic immunotherapeutic agent, CAVATAK (Coxsackievirus A21), and immune checkpoint blockade. Can Res 76(14 Supplement):2341CrossRef Yuan Quah M, Wong Y, Andtbacka R, Au G, Shafren DR (2016) Abstract 2341: elevated immune activity following an anticancer combination therapy of a novel oncolytic immunotherapeutic agent, CAVATAK (Coxsackievirus A21), and immune checkpoint blockade. Can Res 76(14 Supplement):2341CrossRef
92.
go back to reference Andtbacka R, Curti B, Hallmeyer S, Peng Z, Paustian C, Bifulco C, Fox B, Grose M, Shafren DR (2016) Abstract CT053: Intratumoral coxsackievirus A21 increases immune-cell infiltrates and upregulates immune-checkpoint molecules in the tumor microenvironment of advanced melanoma patients: phase II CALM extension study. Cancer Res 76(14 Supplement):CT053CrossRef Andtbacka R, Curti B, Hallmeyer S, Peng Z, Paustian C, Bifulco C, Fox B, Grose M, Shafren DR (2016) Abstract CT053: Intratumoral coxsackievirus A21 increases immune-cell infiltrates and upregulates immune-checkpoint molecules in the tumor microenvironment of advanced melanoma patients: phase II CALM extension study. Cancer Res 76(14 Supplement):CT053CrossRef
93.
go back to reference Pandha H, Harrington K, Ralph C, Melcher A, Gupta S, Akerley W, Sandborn RE, Rudin C, Rosenberg J, Kaufman D et al (2017) Abstract CT115: phase 1b KEYNOTE 200 (STORM study): A study of an intravenously delivered oncolytic virus, Coxsackievirus A21 in combination with pembrolizumab in advanced cancer patients. Cancer Res 77(13 Supplement):CT115CrossRef Pandha H, Harrington K, Ralph C, Melcher A, Gupta S, Akerley W, Sandborn RE, Rudin C, Rosenberg J, Kaufman D et al (2017) Abstract CT115: phase 1b KEYNOTE 200 (STORM study): A study of an intravenously delivered oncolytic virus, Coxsackievirus A21 in combination with pembrolizumab in advanced cancer patients. Cancer Res 77(13 Supplement):CT115CrossRef
94.
go back to reference Curti B, Richards J, Hallmeyer S, Faries M, Andtbacka R, Daniels G, Grose M, Shafren DR (2017) Abstract CT114: the MITCI (Phase 1b) study: a novel immunotherapy combination of intralesional Coxsackievirus A21 and systemic ipilimumab in advanced melanoma patients with or without previous immune checkpoint therapy treatment. Cancer Res 77(13 Supplement):CT114CrossRef Curti B, Richards J, Hallmeyer S, Faries M, Andtbacka R, Daniels G, Grose M, Shafren DR (2017) Abstract CT114: the MITCI (Phase 1b) study: a novel immunotherapy combination of intralesional Coxsackievirus A21 and systemic ipilimumab in advanced melanoma patients with or without previous immune checkpoint therapy treatment. Cancer Res 77(13 Supplement):CT114CrossRef
95.
go back to reference Silk AW, Kaufman H, Gabrail N, Mehnert J, Bryan J, Norrell J, Medina D, Bommareddy P, Shafren D, Grose M et al (2017) Abstract CT026: phase 1b study of intratumoral Coxsackievirus A21 (CVA21) and systemic pembrolizumab in advanced melanoma patients: interim results of the CAPRA clinical trial. Cancer Res 77(13 Supplement):CT026CrossRef Silk AW, Kaufman H, Gabrail N, Mehnert J, Bryan J, Norrell J, Medina D, Bommareddy P, Shafren D, Grose M et al (2017) Abstract CT026: phase 1b study of intratumoral Coxsackievirus A21 (CVA21) and systemic pembrolizumab in advanced melanoma patients: interim results of the CAPRA clinical trial. Cancer Res 77(13 Supplement):CT026CrossRef
96.
go back to reference Engeland CE, Grossardt C, Veinalde R, Bossow S, Lutz D, Kaufmann JK, Shevchenko I, Umansky V, Nettelbeck DM, Weichert W et al (2014) CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy. Mol Ther 22(11):1949–1959PubMedPubMedCentralCrossRef Engeland CE, Grossardt C, Veinalde R, Bossow S, Lutz D, Kaufmann JK, Shevchenko I, Umansky V, Nettelbeck DM, Weichert W et al (2014) CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy. Mol Ther 22(11):1949–1959PubMedPubMedCentralCrossRef
97.
go back to reference Hardcastle J, Mills L, Malo CS, Jin F, Kurokawa C, Geekiyanage H, Schroeder M, Sarkaria J, Johnson AJ, Galanis E (2017) Immunovirotherapy with measles virus strains in combination with anti-PD-1 antibody blockade enhances antitumor activity in glioblastoma treatment. Neuro Oncol 19(4):493–502PubMed Hardcastle J, Mills L, Malo CS, Jin F, Kurokawa C, Geekiyanage H, Schroeder M, Sarkaria J, Johnson AJ, Galanis E (2017) Immunovirotherapy with measles virus strains in combination with anti-PD-1 antibody blockade enhances antitumor activity in glioblastoma treatment. Neuro Oncol 19(4):493–502PubMed
98.
go back to reference Gao Y, Whitaker-Dowling P, Griffin JA, Barmada MA, Bergman I (2009) Recombinant vesicular stomatitis virus targeted to Her2/neu combined with anti-CTLA4 antibody eliminates implanted mammary tumors. Cancer Gene Ther 16(1):44–52PubMedCrossRef Gao Y, Whitaker-Dowling P, Griffin JA, Barmada MA, Bergman I (2009) Recombinant vesicular stomatitis virus targeted to Her2/neu combined with anti-CTLA4 antibody eliminates implanted mammary tumors. Cancer Gene Ther 16(1):44–52PubMedCrossRef
99.
go back to reference Shen W, Patnaik MM, Ruiz A, Russell SJ, Peng KW (2016) Immunovirotherapy with vesicular stomatitis virus and PD-L1 blockade enhances therapeutic outcome in murine acute myeloid leukemia. Blood 127(11):1449–1458PubMedPubMedCentralCrossRef Shen W, Patnaik MM, Ruiz A, Russell SJ, Peng KW (2016) Immunovirotherapy with vesicular stomatitis virus and PD-L1 blockade enhances therapeutic outcome in murine acute myeloid leukemia. Blood 127(11):1449–1458PubMedPubMedCentralCrossRef
100.
go back to reference Zamarin D, Holmgaard RB, Subudhi SK, Park JS, Mansour M, Palese P, Merghoub T, Wolchok JD, Allison JP (2014) Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med 6(226):226ra232CrossRef Zamarin D, Holmgaard RB, Subudhi SK, Park JS, Mansour M, Palese P, Merghoub T, Wolchok JD, Allison JP (2014) Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med 6(226):226ra232CrossRef
101.
go back to reference Zamarin D, Ricca JM, Sadekova S, Oseledchyk A, Yu Y, Blumenschein WM, Wong J, Gigoux M, Merghoub T, Wolchok JD (2018) PD-L1 in tumor microenvironment mediates resistance to oncolytic immunotherapy. J Clin Invest 128(4):1413–1428PubMedPubMedCentralCrossRef Zamarin D, Ricca JM, Sadekova S, Oseledchyk A, Yu Y, Blumenschein WM, Wong J, Gigoux M, Merghoub T, Wolchok JD (2018) PD-L1 in tumor microenvironment mediates resistance to oncolytic immunotherapy. J Clin Invest 128(4):1413–1428PubMedPubMedCentralCrossRef
102.
go back to reference Quetglas JI, Labiano S, Aznar MA, Bolanos E, Azpilikueta A, Rodriguez I, Casales E, Sanchez-Paulete AR, Segura V, Smerdou C et al (2015) Virotherapy with a semliki forest virus-based vector encoding IL12 synergizes with PD-1/PD-L1 blockade. Cancer Immunol Res 3(5):449–454PubMedCrossRef Quetglas JI, Labiano S, Aznar MA, Bolanos E, Azpilikueta A, Rodriguez I, Casales E, Sanchez-Paulete AR, Segura V, Smerdou C et al (2015) Virotherapy with a semliki forest virus-based vector encoding IL12 synergizes with PD-1/PD-L1 blockade. Cancer Immunol Res 3(5):449–454PubMedCrossRef
103.
go back to reference Heinrich B, Goepfert K, Delic M, Galle PR, Moehler M (2013) Influence of the oncolytic parvovirus H-1, CTLA-4 antibody tremelimumab and cytostatic drugs on the human immune system in a human in vitro model of colorectal cancer cells. Oncol Targets Ther 6:1119–1127CrossRef Heinrich B, Goepfert K, Delic M, Galle PR, Moehler M (2013) Influence of the oncolytic parvovirus H-1, CTLA-4 antibody tremelimumab and cytostatic drugs on the human immune system in a human in vitro model of colorectal cancer cells. Oncol Targets Ther 6:1119–1127CrossRef
105.
go back to reference Woller N, Gurlevik E, Fleischmann-Mundt B, Schumacher A, Knocke S, Kloos AM, Saborowski M, Geffers R, Manns MP, Wirth TC et al (2015) Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T-cell responses. Mol Ther 23(10):1630–1640PubMedPubMedCentralCrossRef Woller N, Gurlevik E, Fleischmann-Mundt B, Schumacher A, Knocke S, Kloos AM, Saborowski M, Geffers R, Manns MP, Wirth TC et al (2015) Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T-cell responses. Mol Ther 23(10):1630–1640PubMedPubMedCentralCrossRef
Metadata
Title
Oncolytic viruses and checkpoint inhibitors: combination therapy in clinical trials
Authors
Christopher J. LaRocca
Susanne G. Warner
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2018
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-018-0214-5

Other articles of this Issue 1/2018

Clinical and Translational Medicine 1/2018 Go to the issue