Skip to main content
Top
Published in: Antimicrobial Resistance & Infection Control 1/2020

Open Access 01-12-2020 | Nosocomial Infection | Research

A rapid model for developing dry surface biofilms of Staphylococcus aureus and Pseudomonas aeruginosa for in vitro disinfectant efficacy testing

Authors: Carine A. Nkemngong, Maxwell G. Voorn, Xiaobao Li, Peter J. Teska, Haley F. Oliver

Published in: Antimicrobial Resistance & Infection Control | Issue 1/2020

Login to get access

Abstract

Background

Bacterial biofilms persistent on dry environmental surfaces in healthcare facilities play an important role in the occurrence of healthcare associated infections (HAI). Compared to wet surface biofilms and planktonic bacteria, dry surface biofilms (DSB) are more tolerant to disinfection. However, there is no official method for developing DSB for in vitro disinfectant efficacy testing. The objectives of this study were to (i) develop an in vitro model of DSB of S. aureus and P. aeruginosa for disinfectant efficacy testing and (ii) investigate the effect of drying times and temperatures on DSB development. We hypothesized that a minimum six log10 density of DSB could be achieved on glass coupons by desiccating wet surface biofilms near room temperatures. We also hypothesized that a DSB produced by the model in this study will be encased in extracellular polymeric substances (EPS).

Methods

S. aureus ATCC-6538 and P. aeruginosa ATCC-15442 wet surface biofilms were grown on glass coupons following EPA MLB SOP MB-19. A DSB model was developed by drying coupons in an incubator and viable bacteria were recovered following a modified version of EPA MLB SOP MB-20. Scanning electron microscopy was used to confirm the EPS presence on DSB.

Results

Overall, a minimum of six mean log10 densities of DSB for disinfectant efficacy were recovered per coupon after drying at different temperatures and drying times. Regardless of strain, temperature and dry time, 86% of coupons with DSB were confirmed to have EPS.

Conclusion

A rapid model for developing DSB with characteristic EPS was developed for disinfectant efficacy testing against DSB.
Literature
2.
go back to reference Madden GR, Weinstein RA, Sifri CD. Diagnostic stewardship for healthcare-associated infections: opportunities and challenges to safely reduce test use. J Infect Control Hosp Epidemiol. 2018;39:214–8.CrossRef Madden GR, Weinstein RA, Sifri CD. Diagnostic stewardship for healthcare-associated infections: opportunities and challenges to safely reduce test use. J Infect Control Hosp Epidemiol. 2018;39:214–8.CrossRef
3.
go back to reference Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, et al. Multistate point-prevalence survey of health care–associated infections. N Engl J Med. 2014;370:1198–208.CrossRef Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, et al. Multistate point-prevalence survey of health care–associated infections. N Engl J Med. 2014;370:1198–208.CrossRef
5.
go back to reference Umscheid CA, Mitchell MD, Doshi JA, Agarwal R, Williams K, Brennan PJ. Estimating the proportion of healthcare-associated infections that are reasonably preventable and the related mortality and cost. Infect Control Hosp Epidemiol. 2011;32:101–14. https://doi.org/10.1086/657912.CrossRefPubMed Umscheid CA, Mitchell MD, Doshi JA, Agarwal R, Williams K, Brennan PJ. Estimating the proportion of healthcare-associated infections that are reasonably preventable and the related mortality and cost. Infect Control Hosp Epidemiol. 2011;32:101–14. https://​doi.​org/​10.​1086/​657912.CrossRefPubMed
7.
go back to reference Sievert DM, Ricks P, Edwards JR, et al. National Healthcare Safety Network (NHSN) team and participating NHSN facilities antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention 2009–2010. Infect Control Hosp Epidemiol. 2013;34:1–14.CrossRef Sievert DM, Ricks P, Edwards JR, et al. National Healthcare Safety Network (NHSN) team and participating NHSN facilities antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention 2009–2010. Infect Control Hosp Epidemiol. 2013;34:1–14.CrossRef
8.
go back to reference Weiner LM, Webb AK, Limbago B, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol. 2016;37(11):1288–301.CrossRef Weiner LM, Webb AK, Limbago B, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol. 2016;37(11):1288–301.CrossRef
9.
go back to reference Hermandez-Jimenez E, del Rosa C, Toledano D, et al. Biofilm vs. planktonic bacteria mode of growth: which do human macrophages prefer? Biochem Biophys Res Commun. 2013;441:947–52.CrossRef Hermandez-Jimenez E, del Rosa C, Toledano D, et al. Biofilm vs. planktonic bacteria mode of growth: which do human macrophages prefer? Biochem Biophys Res Commun. 2013;441:947–52.CrossRef
10.
go back to reference Olson ME, Ceri H, Morck DW, Buret AG, Read RR. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res. 2002;66:86–92.PubMedPubMedCentral Olson ME, Ceri H, Morck DW, Buret AG, Read RR. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res. 2002;66:86–92.PubMedPubMedCentral
11.
go back to reference Percival S, Cutting K, Thomas J, Williams D. An introduction to the world of microbiology and biofilmology. In: Percival S, Cutting K, editors. Microbiology of wounds. Boca Raton: CRC Press; 2010.CrossRef Percival S, Cutting K, Thomas J, Williams D. An introduction to the world of microbiology and biofilmology. In: Percival S, Cutting K, editors. Microbiology of wounds. Boca Raton: CRC Press; 2010.CrossRef
12.
go back to reference Abdallah M, Khelissa O, Ibrahim A, Benoliel C, Heliot L, Dhulster P, Chihib NE. Impact of growth temperature and surface type on the resistance of Pseudomonas aeruginosa and Staphylococcus aureus biofilms to disinfectants. Int J Food Microbiol. 2015;214:38–47. Abdallah M, Khelissa O, Ibrahim A, Benoliel C, Heliot L, Dhulster P, Chihib NE. Impact of growth temperature and surface type on the resistance of Pseudomonas aeruginosa and Staphylococcus aureus biofilms to disinfectants. Int J Food Microbiol. 2015;214:38–47.
13.
go back to reference Macia MD, Rojo-Molinero E, Oliver A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect. 2014;20:981–90.CrossRef Macia MD, Rojo-Molinero E, Oliver A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect. 2014;20:981–90.CrossRef
14.
go back to reference Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA. Bacteria biofilms and associated infections. J Chin Med Assoc. 2017;81:7–11.CrossRef Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA. Bacteria biofilms and associated infections. J Chin Med Assoc. 2017;81:7–11.CrossRef
16.
go back to reference Gialluly DC, Morange V, Gialluly DE, Loulergue J, et al. Blood pressure cuff as a potential vector of pathogenic microorganisms: a prospective study in a teaching hospital. Infect Control Hosp Epidemiol. 2006;27:940–3.CrossRef Gialluly DC, Morange V, Gialluly DE, Loulergue J, et al. Blood pressure cuff as a potential vector of pathogenic microorganisms: a prospective study in a teaching hospital. Infect Control Hosp Epidemiol. 2006;27:940–3.CrossRef
17.
go back to reference Obasi C, Allison A, Akinpelu W, Hammons R, et al. Contamination of equipment in emergency settings: an exploratory study with a targeted automated intervention. Ann Surg Innov and Res. 2009;3:8.CrossRef Obasi C, Allison A, Akinpelu W, Hammons R, et al. Contamination of equipment in emergency settings: an exploratory study with a targeted automated intervention. Ann Surg Innov and Res. 2009;3:8.CrossRef
18.
go back to reference Percival SL, Suleman L, Vuotto C, Donelli G. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol. 2015;64:323–34.CrossRef Percival SL, Suleman L, Vuotto C, Donelli G. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol. 2015;64:323–34.CrossRef
19.
go back to reference Johani K, Abualsaud D, Costa DM, Hu H, et al. Characterization of microbial community composition, antimicrobial resistance and biofilm on intensive care surfaces. J Infect Pub Health. 2018;11:418–24.CrossRef Johani K, Abualsaud D, Costa DM, Hu H, et al. Characterization of microbial community composition, antimicrobial resistance and biofilm on intensive care surfaces. J Infect Pub Health. 2018;11:418–24.CrossRef
20.
go back to reference Almatroudi A, Hu H, Deva A, Gosbell I, Jacombs A, et al. A new dry-surface biofilm model: an essential tool for efficacy testing of hospital surface decontamination procedures. J Microbiol Methods. 2015;117:171–6.CrossRef Almatroudi A, Hu H, Deva A, Gosbell I, Jacombs A, et al. A new dry-surface biofilm model: an essential tool for efficacy testing of hospital surface decontamination procedures. J Microbiol Methods. 2015;117:171–6.CrossRef
21.
go back to reference Hou J, Veeregowda DH, Belt-Gritter B, Busscher HJ, Mei CH. Extracellular polymeric matrix production and relaxation under fluid shear and mechanical pressure in Staphylococcus aureus biofilms. Applied and Environ Microbiol. 2018. https://doi.org/10.1128/AEM.01516-17. Hou J, Veeregowda DH, Belt-Gritter B, Busscher HJ, Mei CH. Extracellular polymeric matrix production and relaxation under fluid shear and mechanical pressure in Staphylococcus aureus biofilms. Applied and Environ Microbiol. 2018. https://​doi.​org/​10.​1128/​AEM.​01516-17.
22.
go back to reference Hu H, Johani K, Gosbell IB, Jacombs ASW, et al. Intensive care unit environmental surfaces are contaminated by multidrug-resistant bacteria in biofilms: combined results of conventional culture, pyrosequencing, scanning electron microscopy, and confocal laser microscopy. J of Hosp Infect. 2015;91:35–44. https://doi.org/10.1016/j.jhin.2015.05.016.CrossRef Hu H, Johani K, Gosbell IB, Jacombs ASW, et al. Intensive care unit environmental surfaces are contaminated by multidrug-resistant bacteria in biofilms: combined results of conventional culture, pyrosequencing, scanning electron microscopy, and confocal laser microscopy. J of Hosp Infect. 2015;91:35–44. https://​doi.​org/​10.​1016/​j.​jhin.​2015.​05.​016.CrossRef
24.
go back to reference Chowdhury D, Tahir S, Legge S, Hu H, Prvan T, et al. Transfer of dry surface biofilm in the healthcare environment: the role of healthcare workers’ hands as vehicles. J Hosp Infect. 2018;100:85–90.CrossRef Chowdhury D, Tahir S, Legge S, Hu H, Prvan T, et al. Transfer of dry surface biofilm in the healthcare environment: the role of healthcare workers’ hands as vehicles. J Hosp Infect. 2018;100:85–90.CrossRef
25.
go back to reference Buckinghan-Meyer K, Goeres DM, Hamilton MA. Comparative evaluation of biofilm disinfectant efficacy tests. J of Microbiol Methods. 2007;70:236–44.CrossRef Buckinghan-Meyer K, Goeres DM, Hamilton MA. Comparative evaluation of biofilm disinfectant efficacy tests. J of Microbiol Methods. 2007;70:236–44.CrossRef
28.
go back to reference Moormeier DE, Bayles KW. Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol. 2017;10:365–76.CrossRef Moormeier DE, Bayles KW. Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol. 2017;10:365–76.CrossRef
29.
go back to reference Donskey CJ. Does improving cleaning and disinfection reduce healthcare-associated infections? American J Infect Control. 2013;41:12–9.CrossRef Donskey CJ. Does improving cleaning and disinfection reduce healthcare-associated infections? American J Infect Control. 2013;41:12–9.CrossRef
33.
go back to reference Köse H, Yapar N. The comparison of various disinfectants’ efficacy on Staphylococcus aureus and Pseudomonas aeruginosa biofilm layers. Turkish J Me Sci. 2017;47:1287–94.CrossRef Köse H, Yapar N. The comparison of various disinfectants’ efficacy on Staphylococcus aureus and Pseudomonas aeruginosa biofilm layers. Turkish J Me Sci. 2017;47:1287–94.CrossRef
35.
go back to reference Chen X, Stewart PS. Chlorine penetration into artificial biofilm is limited by a reaction-diffusion interaction. Environ Sci Technol. 1996;30:2078–83.CrossRef Chen X, Stewart PS. Chlorine penetration into artificial biofilm is limited by a reaction-diffusion interaction. Environ Sci Technol. 1996;30:2078–83.CrossRef
36.
go back to reference Donlan RM. Role of biofilms in antimicrobial resistance. ASAIO J. 2000;46:47–52.CrossRef Donlan RM. Role of biofilms in antimicrobial resistance. ASAIO J. 2000;46:47–52.CrossRef
37.
go back to reference Almatroudi A, Tahir S, Hu H, et al. Staphylococcus aureus dry-surface biofilms are more resistant to heat treatment than traditional hydrated biofilms. J Hosp Infect. 2018;98:161–7.CrossRef Almatroudi A, Tahir S, Hu H, et al. Staphylococcus aureus dry-surface biofilms are more resistant to heat treatment than traditional hydrated biofilms. J Hosp Infect. 2018;98:161–7.CrossRef
46.
go back to reference Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8:881–90.CrossRef Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8:881–90.CrossRef
47.
go back to reference Meesilp N, Mesil N. Effect of microbial sanitizers for reducing biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa on stainless steel by cultivation with UHT milk. Food Sci Biotech. 2018;28:289–96.CrossRef Meesilp N, Mesil N. Effect of microbial sanitizers for reducing biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa on stainless steel by cultivation with UHT milk. Food Sci Biotech. 2018;28:289–96.CrossRef
48.
go back to reference Iibuchi R, Hara-Kudo Y, Hasegawa A, Kumagai S. Survival of Salmonella on a polypropylene surface under dry conditions in relation to biofilm-formation capability. J of Food Protec. 2010;73:1506–10.CrossRef Iibuchi R, Hara-Kudo Y, Hasegawa A, Kumagai S. Survival of Salmonella on a polypropylene surface under dry conditions in relation to biofilm-formation capability. J of Food Protec. 2010;73:1506–10.CrossRef
49.
go back to reference Magrex-Debar E, Lemoine J, Gelle MP. Evaluation of biohazards in dehydrated biofilms on foodstuff packaging. Int J of Food Microbiol. 2000;55:239–43.CrossRef Magrex-Debar E, Lemoine J, Gelle MP. Evaluation of biohazards in dehydrated biofilms on foodstuff packaging. Int J of Food Microbiol. 2000;55:239–43.CrossRef
50.
go back to reference Marshall KC, Goodman AE. Effects of adhesion on microbial cell physiology. Colloids Surfaces B: Biointerfaces. 1994;2:1–8.CrossRef Marshall KC, Goodman AE. Effects of adhesion on microbial cell physiology. Colloids Surfaces B: Biointerfaces. 1994;2:1–8.CrossRef
51.
go back to reference O’Connor A, McClean S. The role of universal stress proteins in bacterial infections. Curr Med Chem. 2017;24:3970–9.CrossRef O’Connor A, McClean S. The role of universal stress proteins in bacterial infections. Curr Med Chem. 2017;24:3970–9.CrossRef
52.
go back to reference Nystrom T, Olson RM, Kjellerberg S. Survival, stress resistance and alterations in protein expression in the marine Vibrio sp. strain S14 during starvation for different individual nutrients. Appl. Environ. Microbiol. 1992;58:55–65. Nystrom T, Olson RM, Kjellerberg S. Survival, stress resistance and alterations in protein expression in the marine Vibrio sp. strain S14 during starvation for different individual nutrients. Appl. Environ. Microbiol. 1992;58:55–65.
Metadata
Title
A rapid model for developing dry surface biofilms of Staphylococcus aureus and Pseudomonas aeruginosa for in vitro disinfectant efficacy testing
Authors
Carine A. Nkemngong
Maxwell G. Voorn
Xiaobao Li
Peter J. Teska
Haley F. Oliver
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Antimicrobial Resistance & Infection Control / Issue 1/2020
Electronic ISSN: 2047-2994
DOI
https://doi.org/10.1186/s13756-020-00792-9

Other articles of this Issue 1/2020

Antimicrobial Resistance & Infection Control 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.