Skip to main content
Top
Published in: EJNMMI Research 1/2016

Open Access 01-12-2016 | Original research

Contribution of Auger/conversion electrons to renal side effects after radionuclide therapy: preclinical comparison of 161Tb-folate and 177Lu-folate

Authors: Stephanie Haller, Giovanni Pellegrini, Christiaan Vermeulen, Nicholas P. van der Meulen, Ulli Köster, Peter Bernhardt, Roger Schibli, Cristina Müller

Published in: EJNMMI Research | Issue 1/2016

Login to get access

Abstract

Background

The radiolanthanide 161Tb has, in recent years, attracted increasing interest due to its favorable characteristics for medical application. 161Tb exhibits similar properties to the widely-used therapeutic radionuclide 177Lu. In contrast to 177Lu, 161Tb yields a significant number of short-ranging Auger/conversion electrons (≤50 keV) during its decay process. 161Tb has been shown to be more effective for tumor therapy than 177Lu if applied using the same activity. The purpose of this study was to investigate long-term damage to the kidneys after application of 161Tb-folate and compare it to the renal effects caused by 177Lu-folate.

Methods

Renal side effects were investigated in nude mice after the application of different activities of 161Tb-folate (10, 20, and 30 MBq per mouse) over a period of 8 months. Renal function was monitored by the determination of 99mTc-DMSA uptake in the kidneys and by measuring blood urea nitrogen and creatinine levels in the plasma. Histopathological analysis was performed by scoring of the tissue damage observed in HE-stained kidney sections from euthanized mice.

Results

Due to the co-emitted Auger/conversion electrons, the mean absorbed renal dose of 161Tb-folate (3.0 Gy/MBq) was about 24 % higher than that of 177Lu-folate (2.3 Gy/MBq). After application of 161Tb-folate, kidney function was reduced in a dose- and time-dependent manner, as indicated by the decreased renal uptake of 99mTc-DMSA and the increased levels of blood urea nitrogen and creatinine. Similar results were obtained when 177Lu-folate was applied at the same activity. Histopathological investigations confirmed comparable renal cortical damage after application of the same activities of 161Tb-folate and 177Lu-folate. This was characterized by collapsed tubules and enlarged glomeruli with fibrin deposition in moderately injured kidneys and glomerulosclerosis in severely damaged kidneys.

Conclusions

Tb-folate induced dose-dependent radionephropathy over time, but did not result in more severe damage than 177Lu-folate when applied at the same activity. These data are an indication that Auger/conversion electrons do not exacerbate overall renal damage after application with 161Tb-folate as compared to 177Lu-folate, even though they result in an increased dose deposition in the renal tissue. Global toxicity affecting other tissues than kidneys remains to be investigated after 161Tb-based therapy, however.
Literature
2.
go back to reference Müller C, Reber J, Haller S, Dorrer H, Bernhardt P, Zhernosekov K, et al. Direct in vitro and in vivo comparison of 161Tb and 177Lu using a tumour-targeting folate conjugate. Eur J Nucl Med Mol Imaging. 2014;41(3):476–85. doi:10.1007/s00259-013-2563-z.CrossRefPubMed Müller C, Reber J, Haller S, Dorrer H, Bernhardt P, Zhernosekov K, et al. Direct in vitro and in vivo comparison of 161Tb and 177Lu using a tumour-targeting folate conjugate. Eur J Nucl Med Mol Imaging. 2014;41(3):476–85. doi:10.​1007/​s00259-013-2563-z.CrossRefPubMed
6.
go back to reference Uusijärvi H, Bernhardt P, Rösch F, Maecke HR, Forssell-Aronsson E. Electron- and positron-emitting radiolanthanides for therapy: aspects of dosimetry and production. J Nucl Med. 2006;47(5):807–14.PubMed Uusijärvi H, Bernhardt P, Rösch F, Maecke HR, Forssell-Aronsson E. Electron- and positron-emitting radiolanthanides for therapy: aspects of dosimetry and production. J Nucl Med. 2006;47(5):807–14.PubMed
7.
go back to reference Müller C, Zhernosekov K, Köster U, Johnston K, Dorrer H, Hohn A, et al. A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for α- and β-radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl Med. 2012;53(12):1951–9. doi:10.2967/jnumed.112.107540.CrossRefPubMed Müller C, Zhernosekov K, Köster U, Johnston K, Dorrer H, Hohn A, et al. A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for α- and β-radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl Med. 2012;53(12):1951–9. doi:10.​2967/​jnumed.​112.​107540.CrossRefPubMed
8.
go back to reference de Jong M, Breeman WA, Bernard BF, Rolleman EJ, Hofland LJ, Visser TJ, et al. Evaluation in vitro and in rats of 161Tb-DTPA-octreotide, a somatostatin analogue with potential for intraoperative scanning and radiotherapy. Eur J Nucl Med. 1995;22(7):608–16.CrossRefPubMed de Jong M, Breeman WA, Bernard BF, Rolleman EJ, Hofland LJ, Visser TJ, et al. Evaluation in vitro and in rats of 161Tb-DTPA-octreotide, a somatostatin analogue with potential for intraoperative scanning and radiotherapy. Eur J Nucl Med. 1995;22(7):608–16.CrossRefPubMed
9.
go back to reference Grünberg J, Lindenblatt D, Dorrer H, Cohrs S, Zhernosekov K, Köster U, et al. Anti-L1CAM radioimmunotherapy is more effective with the radiolanthanide terbium-161 compared to lutetium-177 in an ovarian cancer model. Eur J Nucl Med Mol Imaging. 2014;41(10):1907–15. doi:10.1007/s00259-014-2798-3.CrossRefPubMed Grünberg J, Lindenblatt D, Dorrer H, Cohrs S, Zhernosekov K, Köster U, et al. Anti-L1CAM radioimmunotherapy is more effective with the radiolanthanide terbium-161 compared to lutetium-177 in an ovarian cancer model. Eur J Nucl Med Mol Imaging. 2014;41(10):1907–15. doi:10.​1007/​s00259-014-2798-3.CrossRefPubMed
11.
go back to reference Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. AnalBiochem. 2005;338(2):284–93. doi:10.1016/j.ab.2004.12.026. Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. AnalBiochem. 2005;338(2):284–93. doi:10.​1016/​j.​ab.​2004.​12.​026.
12.
go back to reference Müller C. Folate based radiopharmaceuticals for imaging and therapy of cancer and inflammation. Curr Pharm Design. 2012;18(8):1058–83.CrossRef Müller C. Folate based radiopharmaceuticals for imaging and therapy of cancer and inflammation. Curr Pharm Design. 2012;18(8):1058–83.CrossRef
14.
go back to reference Antony AC. The biological chemistry of folate receptors. Blood. 1992;79(11):2807–20.PubMed Antony AC. The biological chemistry of folate receptors. Blood. 1992;79(11):2807–20.PubMed
15.
go back to reference Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Research. 2008;41(1):120–9. doi:10.1021/ar7000815.CrossRef Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Research. 2008;41(1):120–9. doi:10.​1021/​ar7000815.CrossRef
17.
go back to reference Müller C, Struthers H, Winiger C, Zhernosekov K, Schibli R. DOTA conjugate with an albumin-binding entity enables the first folic acid-targeted 177Lu-radionuclide tumor therapy in mice. J Nucl Med. 2013;54(1):124–31. doi:10.2967/jnumed.112.107235.CrossRefPubMed Müller C, Struthers H, Winiger C, Zhernosekov K, Schibli R. DOTA conjugate with an albumin-binding entity enables the first folic acid-targeted 177Lu-radionuclide tumor therapy in mice. J Nucl Med. 2013;54(1):124–31. doi:10.​2967/​jnumed.​112.​107235.CrossRefPubMed
21.
go back to reference Uusijärvi H, Bernhardt P, Ericsson T, Forssell-Aronsson E. Dosimetric characterization of radionuclides for systemic tumor therapy: influence of particle range, photon emission, and subcellular distribution. Med Phys. 2006;33(9):3260–9.CrossRefPubMed Uusijärvi H, Bernhardt P, Ericsson T, Forssell-Aronsson E. Dosimetric characterization of radionuclides for systemic tumor therapy: influence of particle range, photon emission, and subcellular distribution. Med Phys. 2006;33(9):3260–9.CrossRefPubMed
23.
go back to reference Forrer F, Valkema R, Bernard B, Schramm NU, Hoppin JW, Rolleman E, et al. In vivo radionuclide uptake quantification using a multi-pinhole SPECT system to predict renal function in small animals. Eur J Nucl Med Mol Imaging. 2006;33(10):1214–7. doi:10.1007/s00259-006-0178-3.CrossRefPubMed Forrer F, Valkema R, Bernard B, Schramm NU, Hoppin JW, Rolleman E, et al. In vivo radionuclide uptake quantification using a multi-pinhole SPECT system to predict renal function in small animals. Eur J Nucl Med Mol Imaging. 2006;33(10):1214–7. doi:10.​1007/​s00259-006-0178-3.CrossRefPubMed
24.
go back to reference Forrer F, Rolleman E, Bijster M, Melis M, Bernard B, Krenning EP, et al. From outside to inside? Dose-dependent renal tubular damage after high-dose peptide receptor radionuclide therapy in rats measured with in vivo 99mTc-DMSA-SPECT and molecular imaging. Cancer Biother & Radiopharm. 2007;22(1):40–9. doi:10.1089/cbr.2006.353.CrossRef Forrer F, Rolleman E, Bijster M, Melis M, Bernard B, Krenning EP, et al. From outside to inside? Dose-dependent renal tubular damage after high-dose peptide receptor radionuclide therapy in rats measured with in vivo 99mTc-DMSA-SPECT and molecular imaging. Cancer Biother & Radiopharm. 2007;22(1):40–9. doi:10.​1089/​cbr.​2006.​353.CrossRef
25.
go back to reference Valkema R, Pauwels SA, Kvols LK, Kwekkeboom DJ, Jamar F, de Jong M, et al. Long-term follow-up of renal function after peptide receptor radiation therapy with 90Y-DOTA0,Tyr3-octreotide and 177Lu-DOTA0,Tyr3-octreotate. J Nucl Med. 2005;46 Suppl 1:83S–91.PubMed Valkema R, Pauwels SA, Kvols LK, Kwekkeboom DJ, Jamar F, de Jong M, et al. Long-term follow-up of renal function after peptide receptor radiation therapy with 90Y-DOTA0,Tyr3-octreotide and 177Lu-DOTA0,Tyr3-octreotate. J Nucl Med. 2005;46 Suppl 1:83S–91.PubMed
26.
go back to reference Valkema R, De Jong M, Bakker WH, Breeman WA, Kooij PP, Lugtenburg PJ, et al. Phase I study of peptide receptor radionuclide therapy with [111In-DTPA0]octreotide: the Rotterdam experience. Semin Nucl Med. 2002;32(2):110–22.CrossRefPubMed Valkema R, De Jong M, Bakker WH, Breeman WA, Kooij PP, Lugtenburg PJ, et al. Phase I study of peptide receptor radionuclide therapy with [111In-DTPA0]octreotide: the Rotterdam experience. Semin Nucl Med. 2002;32(2):110–22.CrossRefPubMed
28.
go back to reference Holm J, Hansen SI, Hoier-Madsen M, Bostad L. A high-affinity folate binding protein in proximal tubule cells of human kidney. Kidney Int. 1992;41(1):50–5.CrossRefPubMed Holm J, Hansen SI, Hoier-Madsen M, Bostad L. A high-affinity folate binding protein in proximal tubule cells of human kidney. Kidney Int. 1992;41(1):50–5.CrossRefPubMed
29.
go back to reference Vegt E, de Jong M, Wetzels JF, Masereeuw R, Melis M, Oyen WJ, et al. Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med. 2010;51(7):1049–58. doi:10.2967/jnumed.110.075101.CrossRefPubMed Vegt E, de Jong M, Wetzels JF, Masereeuw R, Melis M, Oyen WJ, et al. Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med. 2010;51(7):1049–58. doi:10.​2967/​jnumed.​110.​075101.CrossRefPubMed
30.
go back to reference Melis M, Krenning EP, Bernard BF, Barone R, Visser TJ, de Jong M. Localisation and mechanism of renal retention of radiolabelled somatostatin analogues. Eur J Nucl Med. 2005;32(10):1136–43. doi:10.1007/s00259-005-1793-0.CrossRef Melis M, Krenning EP, Bernard BF, Barone R, Visser TJ, de Jong M. Localisation and mechanism of renal retention of radiolabelled somatostatin analogues. Eur J Nucl Med. 2005;32(10):1136–43. doi:10.​1007/​s00259-005-1793-0.CrossRef
32.
go back to reference Michalowski A. Effects of radiation on normal tissues: hypothetical mechanisms and limitations of in situ assays of clonogenicity. Radiat Environ Biophys. 1981;19(3):157–72.CrossRefPubMed Michalowski A. Effects of radiation on normal tissues: hypothetical mechanisms and limitations of in situ assays of clonogenicity. Radiat Environ Biophys. 1981;19(3):157–72.CrossRefPubMed
33.
go back to reference Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 7th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012. Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 7th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012.
34.
go back to reference Dieterle F, Perentes E, Cordier A, Roth DR, Verdes P, Grenet O, et al. Urinary clusterin, cystatin C, β2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nature Biotech. 2010;28(5):463–9. doi:10.1038/nbt.1622.CrossRef Dieterle F, Perentes E, Cordier A, Roth DR, Verdes P, Grenet O, et al. Urinary clusterin, cystatin C, β2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nature Biotech. 2010;28(5):463–9. doi:10.​1038/​nbt.​1622.CrossRef
Metadata
Title
Contribution of Auger/conversion electrons to renal side effects after radionuclide therapy: preclinical comparison of 161Tb-folate and 177Lu-folate
Authors
Stephanie Haller
Giovanni Pellegrini
Christiaan Vermeulen
Nicholas P. van der Meulen
Ulli Köster
Peter Bernhardt
Roger Schibli
Cristina Müller
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2016
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-016-0171-1

Other articles of this Issue 1/2016

EJNMMI Research 1/2016 Go to the issue