Skip to main content
Top
Published in: EJNMMI Research 1/2016

Open Access 01-12-2016 | Original research

Renal PET-imaging with 11C-metformin in a transgenic mouse model for chronic kidney disease

Authors: Lea Pedersen, Jonas Brorson Jensen, Lise Wogensen, Ole Lajord Munk, Niels Jessen, Jørgen Frøkiær, Steen Jakobsen

Published in: EJNMMI Research | Issue 1/2016

Login to get access

Abstract

Background

Organic cation transporters (OCTs) in the renal proximal tubule are important for the excretion of both exo- and endogenous compounds, and chronic kidney disease (CKD) alter the expression of OCT. Metformin is a well-known substrate for OCT, and recently, we demonstrated that positron emission tomography (PET) with 11C-labelled metformin (11C-metformin) is a promising approach to evaluate the function of OCT. The aim of this study is therefore to examine renal pharmacokinetics of 11C-metformin and expression of OCTs in a transgenic (RenTGF-β1) mouse model of CKD.

Methods

Age- and sex-matched RenTGF-β1 (Tg) and wildtype (WT) mice were used (5–8/group). Animals received an iv bolus of 11C-metformin followed by 90-min dynamic PET and MRI scan. PET data were analysed using a one-tissue compartment model. Renal protein abundance of OCT2 (by Western blot) as well as OCT1, OCT2, and MATE1 messenger RNA (mRNA) (by RT-PCR) was examined.

Results

Protein expression of the basolateral uptake transporter OCT2 was 1.5-fold lower in Tg mice compared to WT mice while OCT1 and MATE1 mRNA expression did not differ between the two groups. The influx rate constant of 11C-metformin in renal cortex (K 1) was 2.2-fold lower in transgenic mice whereas the backflux rate constant (k 2) was similar in the two groups, consistent with protein expression. Total body clearance (TBC) correlated within each group linearly with K 1.

Conclusions

In conclusion, this study demonstrates that both renal OCT2 expression and 11C-metformin uptake are reduced in CKD mice. This potentially makes 11C-metformin valuable as a PET probe to evaluate kidney function.
Literature
2.
go back to reference Hallan SI, Coresh J, Astor BC, Asberg A, Powe NR, Romundstad S, Hallan HA, Lydersen S, Holmen J. International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol. 2006;17:2275–84. doi:10.1681/ASN.2005121273.CrossRefPubMed Hallan SI, Coresh J, Astor BC, Asberg A, Powe NR, Romundstad S, Hallan HA, Lydersen S, Holmen J. International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol. 2006;17:2275–84. doi:10.​1681/​ASN.​2005121273.CrossRefPubMed
3.
go back to reference Levey AS, De Jong PE, Coresh J, El NM, Astor BC, Matsushita K, Gansevoort RT, Kasiske BL, Eckardt KU. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011;80:17–28. doi:10.1038/ki.2010.483.CrossRefPubMed Levey AS, De Jong PE, Coresh J, El NM, Astor BC, Matsushita K, Gansevoort RT, Kasiske BL, Eckardt KU. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011;80:17–28. doi:10.​1038/​ki.​2010.​483.CrossRefPubMed
4.
go back to reference Stengel B, Combe C, Jacquelinet C, Briancon S, Fouque D, Laville M, Frimat L, Pascal C, Herpe YE, Deleuze JF, Schanstra J, Pisoni RL, Robinson BM, Massy ZA. The French Chronic Kidney Disease-Renal Epidemiology and Information Network (CKD-REIN) cohort study. Nephrol Dial Transplant. 2014;29:1500–7. doi:10.1093/ndt/gft388.CrossRefPubMed Stengel B, Combe C, Jacquelinet C, Briancon S, Fouque D, Laville M, Frimat L, Pascal C, Herpe YE, Deleuze JF, Schanstra J, Pisoni RL, Robinson BM, Massy ZA. The French Chronic Kidney Disease-Renal Epidemiology and Information Network (CKD-REIN) cohort study. Nephrol Dial Transplant. 2014;29:1500–7. doi:10.​1093/​ndt/​gft388.CrossRefPubMed
5.
go back to reference Stengel B, Metzger M, Froissart M, Rainfray M, Berr C, Tzourio C, Helmer C. Epidemiology and prognostic significance of chronic kidney disease in the elderly—the Three-City prospective cohort study. Nephrol Dial Transplant. 2011;26:3286–95. doi:10.1093/ndt/gfr323.CrossRefPubMedPubMedCentral Stengel B, Metzger M, Froissart M, Rainfray M, Berr C, Tzourio C, Helmer C. Epidemiology and prognostic significance of chronic kidney disease in the elderly—the Three-City prospective cohort study. Nephrol Dial Transplant. 2011;26:3286–95. doi:10.​1093/​ndt/​gfr323.CrossRefPubMedPubMedCentral
6.
go back to reference Tuttle KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J, Hirsch IB, Kalantar-Zadeh K, Narva AS, Navaneethan SD, Neumiller JJ, Patel UD, Ratner RE, Whaley-Connell AT, Molitch ME. Diabetic kidney disease: a report from an ADA consensus conference. Am J Kidney Dis. 2014;64:510–33. doi:10.1053/j.ajkd.2014.08.001.CrossRefPubMed Tuttle KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J, Hirsch IB, Kalantar-Zadeh K, Narva AS, Navaneethan SD, Neumiller JJ, Patel UD, Ratner RE, Whaley-Connell AT, Molitch ME. Diabetic kidney disease: a report from an ADA consensus conference. Am J Kidney Dis. 2014;64:510–33. doi:10.​1053/​j.​ajkd.​2014.​08.​001.CrossRefPubMed
8.
go back to reference Shim WS, Park JH, Ahn SJ, Han L, Jin QR, Li H, Choi MK, Kim DD, Chung SJ, Shim CK. Testosterone-independent down-regulation of Oct2 in the kidney medulla from a uranyl nitrate-induced rat model of acute renal failure: effects on distribution of a model organic cation, tetraethylammonium. J Pharm Sci. 2009;98:739–47. doi:10.1002/jps.21442.CrossRefPubMed Shim WS, Park JH, Ahn SJ, Han L, Jin QR, Li H, Choi MK, Kim DD, Chung SJ, Shim CK. Testosterone-independent down-regulation of Oct2 in the kidney medulla from a uranyl nitrate-induced rat model of acute renal failure: effects on distribution of a model organic cation, tetraethylammonium. J Pharm Sci. 2009;98:739–47. doi:10.​1002/​jps.​21442.CrossRefPubMed
10.
go back to reference Urakami Y, Okuda M, Masuda S, Saito H, Inui KI. Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther. 1998;287:800–5.PubMed Urakami Y, Okuda M, Masuda S, Saito H, Inui KI. Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther. 1998;287:800–5.PubMed
11.
go back to reference Jakobsen S, Busk M, Jensen JB, Munk OL, Zois NE, Alstrup AK, Jessen N, Frokiaer J. A PET tracer for renal organic cation transporters, 11c-metformin: radiosynthesis and preclinical proof-of-concept studies. J Nucl Med. 2016. doi:10.2967/jnumed.115.169292. Jakobsen S, Busk M, Jensen JB, Munk OL, Zois NE, Alstrup AK, Jessen N, Frokiaer J. A PET tracer for renal organic cation transporters, 11c-metformin: radiosynthesis and preclinical proof-of-concept studies. J Nucl Med. 2016. doi:10.​2967/​jnumed.​115.​169292.
12.
go back to reference Higgins JW, Bedwell DW, Zamek-Gliszczynski MJ. Ablation of both organic cation transporter (OCT)1 and OCT2 alters metformin pharmacokinetics but has no effect on tissue drug exposure and pharmacodynamics. Drug Metab Dispos. 2012;40:1170–7. doi:10.1124/dmd.112.044875.CrossRefPubMed Higgins JW, Bedwell DW, Zamek-Gliszczynski MJ. Ablation of both organic cation transporter (OCT)1 and OCT2 alters metformin pharmacokinetics but has no effect on tissue drug exposure and pharmacodynamics. Drug Metab Dispos. 2012;40:1170–7. doi:10.​1124/​dmd.​112.​044875.CrossRefPubMed
13.
go back to reference Tsuda M, Terada T, Mizuno T, Katsura T, Shimakura J, Inui K. Targeted disruption of the multidrug and toxin extrusion 1 (mate1) gene in mice reduces renal secretion of metformin. Mol Pharmacol. 2009;75:1280–6. doi:10.1124/mol.109.056242.CrossRefPubMed Tsuda M, Terada T, Mizuno T, Katsura T, Shimakura J, Inui K. Targeted disruption of the multidrug and toxin extrusion 1 (mate1) gene in mice reduces renal secretion of metformin. Mol Pharmacol. 2009;75:1280–6. doi:10.​1124/​mol.​109.​056242.CrossRefPubMed
14.
go back to reference Kellenberger T, Krag S, Danielsen CC, Wang XF, Nyengaard JR, Pedersen L, Yang C, Gao S, Wogensen L. Differential effects of Smad3 targeting in a murine model of chronic kidney disease. Physiol Rep. 2013;1(7):e00181.CrossRefPubMedPubMedCentral Kellenberger T, Krag S, Danielsen CC, Wang XF, Nyengaard JR, Pedersen L, Yang C, Gao S, Wogensen L. Differential effects of Smad3 targeting in a murine model of chronic kidney disease. Physiol Rep. 2013;1(7):e00181.CrossRefPubMedPubMedCentral
15.
go back to reference Krag S, Østerby R, Chai Q, Nielsen B, Hermans C, Wogensen L. TGF-b1-induced glomerular disorder is associated with impaired concentrating ability mimicking primary glomerular disease with renal failure in man. Lab Invest. 2000;80:1855–68.CrossRefPubMed Krag S, Østerby R, Chai Q, Nielsen B, Hermans C, Wogensen L. TGF-b1-induced glomerular disorder is associated with impaired concentrating ability mimicking primary glomerular disease with renal failure in man. Lab Invest. 2000;80:1855–68.CrossRefPubMed
16.
go back to reference Wogensen L, Nielsen CB, Hjorth P, Rasmussen LM, Høj Nielsen A, Gross K, Sarvetnick N, Ledet T. Under control of the Renin-1c promoter, locally, produced transforming growth factor-b1 induces accumulation of glomerular extracellular matrix in transgenic mice. Diabetes. 1999;48:182–92.CrossRefPubMed Wogensen L, Nielsen CB, Hjorth P, Rasmussen LM, Høj Nielsen A, Gross K, Sarvetnick N, Ledet T. Under control of the Renin-1c promoter, locally, produced transforming growth factor-b1 induces accumulation of glomerular extracellular matrix in transgenic mice. Diabetes. 1999;48:182–92.CrossRefPubMed
17.
go back to reference Jensen JB, Sundelin EI, Jakobsen S, Gormsen LC, Munk OL, Frokiaer J, Jessen N. [11C]-metformin distribution in the liver and small intestine using dynamic PET in mice demonstrates tissue-specific transporter dependency. Diabetes. 2016. doi:10.2337/db16-0032. Jensen JB, Sundelin EI, Jakobsen S, Gormsen LC, Munk OL, Frokiaer J, Jessen N. [11C]-metformin distribution in the liver and small intestine using dynamic PET in mice demonstrates tissue-specific transporter dependency. Diabetes. 2016. doi:10.​2337/​db16-0032.
18.
go back to reference Pedersen L, Wogensen L, Marcussen N, Cecchi CR, Dalsgaard T, Dagnaes-Hansen F. Restoration of haemoglobin level using hydrodynamic gene therapy with erythropoietin does not alleviate the disease progression in an anaemic mouse model for TGFbeta1-induced chronic kidney disease. PLoS One. 2015;10:e0128367. doi:10.1371/journal.pone.0128367.CrossRefPubMedPubMedCentral Pedersen L, Wogensen L, Marcussen N, Cecchi CR, Dalsgaard T, Dagnaes-Hansen F. Restoration of haemoglobin level using hydrodynamic gene therapy with erythropoietin does not alleviate the disease progression in an anaemic mouse model for TGFbeta1-induced chronic kidney disease. PLoS One. 2015;10:e0128367. doi:10.​1371/​journal.​pone.​0128367.CrossRefPubMedPubMedCentral
19.
go back to reference Jonker JW, Wagenaar E, Van ES, Schinkel AH. Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Mol Cell Biol. 2003;23:7902–8.CrossRefPubMedPubMedCentral Jonker JW, Wagenaar E, Van ES, Schinkel AH. Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Mol Cell Biol. 2003;23:7902–8.CrossRefPubMedPubMedCentral
20.
21.
go back to reference Kimura N, Masuda S, Tanihara Y, Ueo H, Okuda M, Katsura T, Inui K. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet. 2005;20:379–86.CrossRefPubMed Kimura N, Masuda S, Tanihara Y, Ueo H, Okuda M, Katsura T, Inui K. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet. 2005;20:379–86.CrossRefPubMed
22.
23.
go back to reference Hung SC, Chang YK, Liu JS, Kuo KL, Chen YH, Hsu CC, Tarng DC. Metformin use and mortality in patients with advanced chronic kidney disease: national, retrospective, observational, cohort study. Lancet Diabetes Endocrinol. 2015;3:605–14. doi:10.1016/S2213-8587(15)00123-0.CrossRefPubMed Hung SC, Chang YK, Liu JS, Kuo KL, Chen YH, Hsu CC, Tarng DC. Metformin use and mortality in patients with advanced chronic kidney disease: national, retrospective, observational, cohort study. Lancet Diabetes Endocrinol. 2015;3:605–14. doi:10.​1016/​S2213-8587(15)00123-0.CrossRefPubMed
Metadata
Title
Renal PET-imaging with 11C-metformin in a transgenic mouse model for chronic kidney disease
Authors
Lea Pedersen
Jonas Brorson Jensen
Lise Wogensen
Ole Lajord Munk
Niels Jessen
Jørgen Frøkiær
Steen Jakobsen
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2016
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-016-0211-x

Other articles of this Issue 1/2016

EJNMMI Research 1/2016 Go to the issue